1
|
Khemis IB, Aouaini F, Bukhari L, Albadrani GM, Alruwaili A, Knani S, Lamine AB. Theoretical assessment of the adsorption mechanism of carvone enantiomers on cow btOR1A1: New microscopic interpretations. Int J Biol Macromol 2024; 293:139332. [PMID: 39743076 DOI: 10.1016/j.ijbiomac.2024.139332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
In this study, the olfactory threshold concentration was introduced in the statistical physics approach to provide fruitful and deep discussions. Indeed, a modified mono-layer mono-energy model established using statistical physics theory was successfully used to theoretically study the adsorption involved in the olfactory response of (R)-(-)-carvone and (S)-(+)-carvone key food odorants (KFOs) on cow (Bos taurus) olfactory receptor btOR1A1 through the analysis of the different model physicochemical parameters. Thus, stereographic results indicated that the two carvone enantiomers were non-parallelly docked on btOR1A1 binding sites during the adsorption process since the different values of n were superior to 1. Molecular docking studies suggest that the high olfactory response of (R)-(-)-carvone was attributed to the specific types of interactions observed. The energetic results showed via the fitted values of the molar adsorption energies, which were positive and lower than 5 kJ/mol, that the studied enantiomers were exothermically physisorbed via conventional hydrogen bond, pi-alkyl, alkyl, pi-sigma, and van der Waals interactions for (R)-(-)-carvone-btOR1A1 complex and via carbon hydrogen bond, alkyl, pi-alkyl, pi-sigma, and van der Waals interactions for (S)-(+)-carvone-btOR1A1 complex. Moreover, the cow olfactory responses were detected only when 0.49 % and 8.63 % of btOR1A1 binding sites are fired or occupied by (R)-(-)-carvone and (S)-(+)-carvone, respectively. These parameters may also be employed to quantitatively characterize the two olfactory systems.
Collapse
Affiliation(s)
- Ismahene Ben Khemis
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lamies Bukhari
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadeer Mohsen Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amani Alruwaili
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Jahanbakhsh K, Ansari-Ahl R, Mashhadi B, Zare M, Samarkhazan NS, Kazemzadeh H, Dehghan G, Dehkordi MF, Gharaghani S, Mahdavi M. DNA binding, and apoptosis-inducing activities of a β-ionone-derived ester in human myeloid leukemia cells: multispectral and molecular dynamic simulation analyses. Sci Rep 2024; 14:27985. [PMID: 39543249 PMCID: PMC11564724 DOI: 10.1038/s41598-024-78690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
β-Ionone is the end-ring counterpart of β-carotenoids, which are widely found in fruits and vegetables. Recent studies have illustrated the antimetastatic, anti-proliferative, and apoptosis-inducing activities of β-ionone both in vitro and in vivo. We aimed to explore the anti-cancer potency of β-Ionone-derived ester, (E)-4-(2,6,6-trimethylcyclohex-1-enyl) but-3-en-2-ylpyrazine-2-carboxylate (4-TM.P). The cytotoxic effects of the compound on K562 cells were evaluated by MTT assay. The mechanisms of apoptosis induction were investigated by acridine orange/ethidium bromide (AO/EtBr) double staining, cell cycle analysis, and Annexin V/PI staining. Furthermore, the 4-TM.P-DNA interactions have been thoroughly elucidated by various methods, such as ultraviolet-visible spectroscopy, fluorescence assays, viscosity measurements, molecular docking, and dynamic simulation. The MTT cytotoxicity assay revealed that the growth of K562 cells was inhibited by treatment with β-ionone-derived ester, with an IC50 of 25 ± 5.0 µM at 72 h. Morphological studies revealed the occurrence of apoptosis in treated cells, and G0/G1 cell cycle arrest was observed after treatment of the cells with the IC50 value of the compound. Analyses of multi-spectroscopy and viscosity assays revealed that 4-TM.P binds to DNA in the minor groove mode, which was supported by molecular docking studies. The dynamic stability of the complex was also confirmed using molecular dynamic simulation analyses.
Collapse
Affiliation(s)
- Kamran Jahanbakhsh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ramin Ansari-Ahl
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Benyamin Mashhadi
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Monireh Zare
- Department of Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Kazemzadeh
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Abdollahi-Najafabadi M, Farhadian S, Shareghi B, Asgharzadeh S. The investigation of the interaction determination between carbendazim and elastase, using both in vitro and in silico methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124586. [PMID: 38833886 DOI: 10.1016/j.saa.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Pesticides, including fungicides, are one of the important groups of environmental toxins that affect human and animal health. Studies have shown that these compounds are considered chemical pollutants. Carbendazim is a systemic fungicide. Unfortunately, excessive use of carbendazim has caused environmental pollution all over the world. In this study, the effect of carbendazim on the enzyme elastase (secreted from the endocrine gland of the pancreas) has been investigated. In a study, the performance and reaction of carbendazim with elastase were investigated using spectroscopic techniques. The stability and structure of elastase enzymes were studied under the influence of carbendazim. The results of fluorescence emission and UV-visible absorption spectrum showed that in the presence of carbendazim, there is an increase in UV-Vis absorption and a decrease in the intensity of the intrinsic fluorescence emission in the protein spectrum. Additionally, a decrease in the thermal stability of elastase was observed in the presence of carbendazim. The stability and structure of elastase enzyme were investigated in the presence of carbendazim. The results revealed that the UV-Vis absorption increased due to the presence of carbendazim, as indicated by the hyperchromic spectrum at 220 and 280 nm peaks. Additionally, the intrinsic fluorescence emission in the protein spectrum decreased with increasing carbendazim concentration at three different temperatures (298, 303, and 313 K). Moreover, the study demonstrated that the TM decreased from 2.59 to 4.58 with the increase of carbendazim, suggesting a decrease in the stability of the elastase structure in response to the elevated carbendazim concentration. According to the results of the research, the interaction between elastase and carbendazim has occurred, and changes have been made in the enzyme under the influence of carbendazim. The formation of the complex between elastase and carbendazim was consistent with the results obtained from molecular simulation and confirmed the thermodynamic data.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Wei Y, Zhang D, Pan J, Gong D, Zhang G. Elucidating the Interaction of Indole-3-Propionic Acid and Calf Thymus DNA: Multispectroscopic and Computational Modeling Approaches. Foods 2024; 13:1878. [PMID: 38928819 PMCID: PMC11202999 DOI: 10.3390/foods13121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Indole-3-propionic acid (IPA) is a plant growth regulator with good specificity and long action. IPA may be harmful to human health because of its accumulation in vegetables and fruits. Therefore, in this study, the properties of the interaction between calf thymus DNA (ctDNA) and IPA were systematically explored using multispectroscopic and computational modeling approaches. Analysis of fluorescence spectra showed that IPA binding to ctDNA to spontaneously form a complex was mainly driven by hydrogen bonds and hydrophobic interaction. DNA melting analysis, viscosity analysis, DNA cleavage study, and circular dichroism measurement revealed the groove binding of IPA to ctDNA and showed that the binding did not significantly change ctDNA confirmation. Furthermore, molecular docking found that IPA attached in the A-T rich minor groove region of the DNA. Molecular dynamics simulation showed that DNA and IPA formed a stable complex and IPA caused slight fluctuations for the residues at the binding site. Gel electrophoresis experiments showed that IPA did not significantly disrupt the DNA structure. These findings may provide useful information on the potential toxicological effects and environmental risk assessments of IPA residue in food at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.W.); (D.Z.); (J.P.); (D.G.)
| |
Collapse
|
5
|
Asgharzadeh S, Shareghi B, Farhadian S. Probing the toxic effect of chlorpyrifos as an environmental pollutant on the structure and biological activity of lysozyme under physiological conditions. CHEMOSPHERE 2024; 355:141724. [PMID: 38499074 DOI: 10.1016/j.chemosphere.2024.141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
The pervasive use of pesticides like chlorpyrifos (CPY) has been associated with deleterious effects on biomolecules, posing significant risks to environmental integrity, public health, and overall ecosystem equilibrium. Accordingly, in this study, we investigated the potential binding interaction between the well-conserved enzyme, lysozyme (LSZ), and CPY through various spectroscopic techniques and molecular modeling. The UV-vis absorption and fluorescence experiments confirmed the complex formation and static quenching of the intrinsic fluorescence intensity. LSZ revealed a singular binding site for CPY, with binding constants around 105 M-1 across different temperature ranges. Analysis of thermodynamic parameters showed the spontaneous nature of the complexation process, while also revealing the pivotal role of hydrophobic interactions in stabilizing the LSZ-CPY system. According to circular dichroism and Fourier transform infrared studies, CPY binding changed the secondary structure of LSZ by boosting α-helix presence and reducing the levels of β-sheet and β-turn content. Further, CPY decreased the stability and activity of LSZ. Computational docking delineated the specific and highly preferred binding site of CPY within the structure of LSZ. Molecular dynamic simulation indicated the enduring stability of the LSZ/CPY complex and revealed structural modifications in the LSZ after binding with CPY. This research provides a detailed understanding of the intermolecular dynamics between CPY and LSZ, concurrently elucidating the molecular-level implications for the potential hazards of pesticides in the natural environment.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
6
|
Sonpasare K, Lalchandani DS, Chenkual L, Sathala PK, Khatoon R, Porwal PK. Effect of glycation-induced concentration-dependent change in albumin structure and alteration in its binding capacity. J Biomol Struct Dyn 2024:1-10. [PMID: 38381667 DOI: 10.1080/07391102.2024.2316783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
Reducing sugars causes confirmatory alterations in albumin structure by the nonenzymatic glycation of the amino group of serum albumin. In this study, glucose and its hazardous metabolic products like glyoxal and methylglyoxal were incubated with bovine serum albumin (BSA). The confirmational changes in BSA molecule's structure by glycating substances was investigated using a variety of spectroscopic methods, including deconvolutionFourier Transform Infra-red (FT-IR) spectroscopy, fluorescence spectroscopy, UV spectroscopy and circular dichroism (CD) spectroscopy. Dynamic fluorescence quenching was observed in the case of glucose, while static quenching was observed in the case of methyl glyoxal and glyoxal. Similarly, employing deconvolution FT-IR spectroscopy and CD spectroscopy for determination of change in secondary structures in terms signature of α-helix, β-turn, β-sheet and random coil modifications. Destabilization or unfolding of the albumin structure, due to the disruption of the hydrogen bonding pattern that stabilizes the albumin manifold, causes a 25-50% reduction in α-helix and a 2-fold increase in β-sheet and turns in glycated BSA. The competitive displacement interaction studies with warfarin were performed using the ultrafiltration technique and quantitative determination of free drug in ultrafiltrate using LC-MS/MS. The binding of carbamazepine (CBZ) or its active metabolite to proteins was unaffected by the glycation of BSA with glucose and methyl glyoxal. Nevertheless, with glyoxal-modified BSA, it changed the binding of selected analytes significantly. Based on in vitro observations and results, it could be anticipated that the serum CBZ concentration variation may be worsened in uncontrolled diabetes circumstances, with an overall variance of 30-40% possible.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kailas Sonpasare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Guwahati, Assam, India
| | - Dimple S Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Guwahati, Assam, India
| | - Laltanpuii Chenkual
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Guwahati, Assam, India
| | - Pavan Kumar Sathala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Guwahati, Assam, India
| | - Raheema Khatoon
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Guwahati, Assam, India
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Guwahati, Assam, India
| |
Collapse
|
7
|
Mohammadi MA, Shareghi B, Farhadian S, Uversky VN. Investigating the effect of pH on the interaction of cypermethrin with human serum albumin: Insights from spectroscopic and molecular dynamics simulation studies. Int J Biol Macromol 2024; 257:128459. [PMID: 38035951 DOI: 10.1016/j.ijbiomac.2023.128459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
To efficiently combat the negative consequences of the utilization of pesticides and hazardous substances with biomolecules, it is crucial to comprehend the features of the corresponding compounds. In this study, interactions between cypermethrin (CYP) and HSA at neutral and acidic pH were investigated using a set of spectroscopic and computational tools, such as UV/VIS's absorption spectroscopy, fluorescence, Fourier-transform infrared (FTIR) spectroscopy, molecular docking, and molecular dynamics. Furthermore, the effect of CYP on the HSA thermal stability was investigated. The increase in the CYP concentration at acidic and neutral pH resulted in static HSA fluorescence quenching. In the interaction between HSA and CYP at both pH, increasing the temperature led to a decrease in the Stern-Volmer quenching constant and the binding constant. We also revealed that with increasing CYP concentration, the melting temperature of HSA increases at both pH values.
Collapse
Affiliation(s)
- Mohammad Ali Mohammadi
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Farokhvand N, Shareghi B, Farhadian S. Evidence for paraquat-pepsin interaction: In vitro and silico study. CHEMOSPHERE 2024; 349:140714. [PMID: 38006922 DOI: 10.1016/j.chemosphere.2023.140714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
The use of the herbicide paraquat (PQ) has raised concerns about potential environmental consequences due to its toxicity and persistence in the environment. Considering the affinity of dangerous compounds to biological molecules, it is necessary to know their binding properties. This article focuses on the behavior of the pepsin enzyme following its contact with paraquat poison, and the interaction between paraquat and pepsin has been investigated in laboratory conditions and simulated physiological conditions using multispectral techniques. Fluorescence experiments showed that PQ uses a static method to quench pepsin's intrinsic fluorescence. By causing structural damage to pepsin, PQ may be detrimental as it alters its conformational function based on FT-IR spectroscopy. The coupling reaction is a spontaneous process caused by hydrogen bonding and van der Waals forces according to the analysis of the thermodynamic parameters of each system at three different temperatures. The molecular structure of pepsin changes when it binds to PQ. Also, the results showed that PQ is a pepsin inhibitor that changes the function of the enzyme.
Collapse
Affiliation(s)
- Najimeh Farokhvand
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
9
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Samiee-Rad F, Rahmani B. Computational analysis of the functional and structural impact of the most deleterious missense mutations in the human Protein C. PLoS One 2023; 18:e0294417. [PMID: 38015884 PMCID: PMC10683990 DOI: 10.1371/journal.pone.0294417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Protein C (PC) is a vitamin K-dependent factor that plays a crucial role in controlling anticoagulant processes and acts as a cytoprotective agent to promote cell survival. Several mutations in human PC are associated with decreased protein production or altered protein structure, resulting in PC deficiency. In this study, we conducted a comprehensive analysis of nonsynonymous single nucleotide polymorphisms in human PC to prioritize and confirm the most high-risk mutations predicted to cause disease. Of the 340 missense mutations obtained from the NCBI database, only 26 were classified as high-risk mutations using various bioinformatic tools. Among these, we identified that 12 mutations reduced the stability of protein, and thereby had the greatest potential to disturb protein structure and function. Molecular dynamics simulations revealed moderate alterations in the structural stability, flexibility, and secondary structural organization of the serine protease domain of human PC for five missense mutations (L305R, W342C, G403R, V420E, and W444C) when compared to the native structure that could maybe influence its interaction with other molecules. Protein-protein interaction analyses demonstrated that the occurrence of these five mutations can affect the regular interaction between PC and activated factor V. Therefore, our findings assume that these mutants can be used in the identification and development of therapeutics for diseases associated with PC dysfunction, although assessment the effect of these mutations need to be proofed in in-vitro.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Iran
| | - Fatemeh Samiee-Rad
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Pathobiology, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
10
|
Farajzadeh-Dehkordi M, Mafakher L, Samiee-Rad F, Rahmani B. Computational analysis of missense variant CYP4F2*3 (V433M) in association with human CYP4F2 dysfunction: a functional and structural impact. BMC Mol Cell Biol 2023; 24:17. [PMID: 37161313 PMCID: PMC10170697 DOI: 10.1186/s12860-023-00479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Cytochrome P450 4F2 (CYP4F2) enzyme is a member of the CYP4 family responsible for the metabolism of fatty acids, therapeutic drugs, and signaling molecules such as arachidonic acid, tocopherols, and vitamin K. Several reports have demonstrated that the missense variant CYP4F2*3 (V433M) causes decreased activity of CYP4F2 and inter-individual variations in warfarin dose in different ethnic groups. However, the molecular pathogenicity mechanism of missense V433M in CYP4F2 at the atomic level has not yet been completely elucidated. METHODS AND RESULTS In the current study, we evaluated the effect of the V433M substitution on CYP4F2 using 14 different bioinformatics tools. Further molecular dynamics (MD) simulations were performed to assess the impact of the V433M mutation on the CYP4F2 protein structure, stability, and dynamics. In addition, molecular docking was used to illustrate the effect of V433M on its interaction with vitamin K1. Based on our results, the CYP4F2*3 variant was a damaging amino acid substitution with a destabilizing nature. The simulation results showed that missense V433M affects the dynamics and stability of CYP4F2 by reducing its compactness and stability, which means that it tends to change the overall structural conformation and flexibility of CYP4F2. The docking results showed that the CYP4F2*3 variant decreased the binding affinity between vitamin K1 and CYP4F2, which reduced the activity of CYP4F2*3 compared to native CYP4F2. CONCLUSIONS This study determined the molecular pathogenicity mechanism of the CYP4F2*3 variant on the human CYP4F2 protein and provided new information for understanding the structure-function relationship of CYP4F2 and other CYP4 enzymes. These findings will aid in the development of effective drugs and treatment options.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Department of Molecular Medicine, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Pathology, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Fatemeh Samiee-Rad
- Department of Pathology, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Department of Molecular Medicine, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
11
|
Gao Y, Wang H, Li X, Niu X. Molecular mechanism of green tea polyphenol epicatechin gallate attenuating Staphylococcus aureus pathogenicity by targeting Ser/Thr phosphatase Stp1. Food Funct 2023; 14:4792-4806. [PMID: 37128867 DOI: 10.1039/d3fo00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, through virtual screening and in vitro bioactivity assays, we discovered that (-)-epicatechin gallate (ECG), a polyphenol compound extracted from green tea, demonstrated marked anti-Ser/Thr phosphatase (Stp1) activity towards Staphylococcus aureus (S. aureus) with an IC50 value of 8.35 μM. By targeting S. aureus Stp1, ECG prevented the up-regulation of virulence gene and the formation of antibody membrane and protected the mice from S. aureus infection. Through MD simulation, the allosteric inhibitory mechanism of ECG on Stp1 was determined. The Stp1-ECG complex model underwent a significant change in conformation; its flap subdomain changed from opening to closing, whereas Stp1 activity was lost when bound to ECG. In addition, the MD simulation results of Stp1 and several tea polyphenol compounds showed that gallate groups and fewer adjacent phenolic hydroxyl groups contributed to the binding of Stp1 and inhibitors. As an inhibitor targeting S. aureus Stp1, ECG reduced the pathogenicity of S. aureus without inhibiting S. aureus, which largely reduced the possibility of drug resistance. Our findings demonstrated a novel molecular mechanism of green tea as the usual drink against S. aureus infection and elucidated the future design of allosteric inhibitors targeting Stp1.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Xuening Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| |
Collapse
|
12
|
Hashemi-Shahraki F, Shareghi B, Farhadian S, Yadollahi E. A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122240. [PMID: 36527971 DOI: 10.1016/j.saa.2022.122240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The interaction between caffeic acid (CA) and pepsin was investigated using multi-spectroscopy approaches and molecular dynamic simulations (MDS). The effects of CA on the structure, stability, and activity of pepsin were studied. Fluorescence emission spectra and UV-vis absorption peaks all represented the static quenching mechanism of pepsin by CA. Moreover, the fluorescence spectra displayed that the interaction of CA exposed the tryptophan chromophores of pepsin to a more hydrophilic micro-environment. Consistent with the simulation results, thermodynamic parameters revealed that CA was bound to pepsin with a high binding affinity. The Van der Waals force and Hydrogen bond interaction were the dominant driving forces during the binding process. The circular dichroism (CD) spectroscopy analysis showed that the CA binding to pepsin decreased the contents of α-Helix and Random Coil but increased the content of β-sheet in the pepsin structure. Accordingly, MD simulations confirmed all the experimental results. As a result, CA is considered an inhibitor with adverse effects on pepsin activity.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Elham Yadollahi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box.115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
13
|
Dehkordi MF, Farhadian S, Hashemi-Shahraki F, Rahmani B, Darzi S, Dehghan G. The interaction mechanism of candidone with calf thymus DNA: A multi-spectroscopic and MD simulation study. Int J Biol Macromol 2023; 235:123713. [PMID: 36801300 DOI: 10.1016/j.ijbiomac.2023.123713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this investigation, the effects of candidone on the structure and conformation of DNA were evaluated by spectroscopic methods, molecular dynamics simulation, and molecular docking studies. Fluorescence emission peaks, ultraviolet-visible spectra, and molecular docking exhibited the complex formation between candidone and DNA in a groove-binding mode. Fluorescence spectroscopy results also showed a static quenching mechanism of DNA in the presence of candidone. Moreover, thermodynamic parameters demonstrated that candidone spontaneously bound to DNA with a high binding affinity. The hydrophobic interactions were the dominant forces over the binding process. Based on the Fourier transform infrared data candidone tended to attach to the A-T base pairs of the minor grooves of DNA. The thermal denaturation and circular dichroism measurements displayed that candidone caused a slight change in the DNA structure, which was confirmed by the molecular dynamics simulation results. According to the obtained findings from the molecular dynamic simulation, the structural flexibility and dynamics of DNA were altered to a more extended structure.
Collapse
Affiliation(s)
- Mahvash Farajzadeh Dehkordi
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Babak Rahmani
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Sina Darzi
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
14
|
Lei Y, Zhang Z, Ma X, Cai R, Dai L, Guo Y, Tuo X. Deciphering the interaction of perampanel and calf thymus DNA: A multi-spectroscopic and computer modelling study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Desta KT, Abd El-Aty AM. Millettia isoflavonoids: a comprehensive review of structural diversity, extraction, isolation, and pharmacological properties. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:275-308. [PMID: 36345415 PMCID: PMC9630821 DOI: 10.1007/s11101-022-09845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED There are approximately 260 known species in the genus Millettia, many of which are used in traditional medicine to treat human and other animal ailments in various parts of the world. Being in the Leguminosae (Fabaceae) family, Millettia species are rich sources of isoflavonoids. In the past three decades alone, several isoflavonoids originating from Millettia have been isolated, and their pharmacological activities have been evaluated against major diseases, such as cancer, inflammation, and diabetes. Despite such extensive research, no recent and comprehensive review of the phytochemistry and pharmacology of Millettia isoflavonoids is available. Furthermore, the structural diversity of isoflavonoids in Millettia species has rarely been reported. In this review, we comprehensively summarized the structural diversity of Millettia isoflavonoids, the methods used for their extraction and isolation protocols, and their pharmacological properties. According to the literature, 154 structurally diverse isoflavonoids were isolated and reported from the various tissues of nine well-known Millettia species. Prenylated isoflavonoids and rotenoids were the most dominant subclasses of isoflavonoids reported. Other subclasses of reported isoflavonoids include isoflavans, aglycone isoflavones, glycosylated isoflavones, geranylated isoflavonoids, phenylcoumarins, pterocarpans and coumaronochromenes. Although some isolated molecules showed promising pharmacological properties, such as anticancer, anti-inflammatory, estrogenic, and antibacterial activities, others remained untested. In general, this review highlights the potential of Millettia isoflavonoids and could improve their utilization in drug discovery and medicinal use processes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09845-w.
Collapse
Affiliation(s)
- Kebede Taye Desta
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
16
|
Çeşme M, Özaltay A. DNA‐Binding Studies of Ofloxacin Using a Series of Spectroscopic, Electrochemical Techniques and in Silico Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mustafa Çeşme
- Department of Chemistry Faculty of Sciences Kahramanmaras Sütçü İmam University 46040 Kahramanmaras TURKEY
| | - Ayşe Özaltay
- Department of Chemistry Faculty of Sciences Kahramanmaras Sütçü İmam University 46040 Kahramanmaras TURKEY
| |
Collapse
|
17
|
Al-Janabi IAS, Yavuz SÇ, Köprü S, Tapera M, Kekeçmuhammed H, Akkoç S, Tüzün B, Patat Ş, Sarıpınar E. Antiproliferative activity and molecular docking studies of new 4-oxothiazolidin-5-ylidene acetate derivatives containing guanylhydrazone moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Zhang D, Pan J, Gong D, Zhang G. Groove binding of indole-3-butyric acid to calf thymus DNA: Spectroscopic and in silico approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Deciphering the DNA-binding affinity, cytotoxicity and apoptosis induce as the anticancer mechanism of Bavachinin: An experimental and computational investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Li Y, Li N, Chen F, Yang X, Lei Y, Liu Y, Tuo X. Evaluation of binding properties of human serum albumin and mono-benzyl phthalate (MBZP): Multi-spectroscopic analysis and computer simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Yanti S, Wu ZW, Agrawal DC, Chien WJ. Interaction between phloretin and insulin: a spectroscopic study. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00284-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractDiabetes is among the top ten deadly diseases in the world. It occurs either when the pancreas does not produce enough insulin (INS) or when the body cannot effectively use the insulin it produces. Phloretin (PHL) has a biological effect that can treat diabetes. A spectroscopic study was carried out to explore the interaction between phloretin and insulin. UV/Vis spectroscopy, fluorescence spectroscopy, and circular dichroism spectropolarimeter were used in the study. UV/Vis spectra showed that the interaction between PHL and INS produced strong absorption at a wavelength of 282 nm. The fluorescence analysis results showed that the excitation and emission occurred at 280-nm and 305-nm wavelengths, respectively. Temperature changes did not affect INS emissions. However, the interaction of PHL–INS caused a redshift at 305 to 317 nm. Temperature affected the binding constant (Ka) and the binding site (n). Ka decreased with increasing temperature and increased the binding site. The thermodynamic parameters such as enthalpy (ΔH0) and entropy (ΔS0) each had a value of − 16,514 kJ/mol and 22.65 J/mol·K. PHL and INS interaction formed hydrogen bonds and hydrophobic interaction. The free energy (ΔG0) recorded was negative. PHL and INS interactions took place spontaneously. The quenching effect was dynamic and static. KD values were greater than KS. The higher the temperature, the less was KD and KS. The appearance of two negative signals on circular dichroism (CD) spectropolarimeter implies that phloretin could induce regional configuration changes in insulin. The addition of PHL has revealed that the proportion of α-helix in the insulin stabilizes its structure. Phloretin’s stabilization and enhancement of the α-helix structural configuration in insulin indicate that phloretin can improve insulin resistance.
Collapse
|