1
|
Chen Y, Tang Y, Li Y, Rui Y, Zhang P. Enhancing the Efficacy of Active Pharmaceutical Ingredients in Medicinal Plants through Nanoformulations: A Promising Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1598. [PMID: 39404324 PMCID: PMC11478102 DOI: 10.3390/nano14191598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
This article explores the emerging field of nanomedicine as a drug delivery system, aimed at enhancing the therapeutic efficacy of active pharmaceutical ingredients in medicinal plants. The traditional methods of applying medicinal plants present several limitations, such as low bioavailability, poor solubility, challenges in accurately controlling drug dosage, and inadequate targeting. Nanoformulations represent an innovative approach in drug preparation that employs nanotechnology to produce nanoscale particles or carriers, which are designed to overcome these limitations. Nanoformulations offer distinct advantages, significantly enhancing the solubility and bioavailability of drugs, particularly for the poorly soluble components of medicinal plants. These formulations effectively enhance solubility, thereby facilitating better absorption and utilization by the human body, which in turn improves drug efficacy. Furthermore, nanomedicine enables targeted drug delivery, ensuring precise administration to the lesion site and minimizing side effects on healthy tissues. Additionally, nanoformulations can regulate drug release rates, extend the duration of therapeutic action, and enhance the stability of treatment effects. However, nanoformulations present certain limitations and potential risks; their stability and safety require further investigation, particularly regarding the potential toxicity with long-term use. Nevertheless, nanomaterials demonstrate substantial potential in augmenting the efficacy of active pharmaceutical ingredients in medicinal plants, offering novel approaches and methodologies for their development and application.
Collapse
Affiliation(s)
- Yuhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China; (Y.C.); (Y.T.); (Y.L.)
- Tangshan Jinhai New Material Co., Ltd., Tangshan 063000, China
- Faculty of Resources and Environment, China Agricultural University, Shanghe County Baiqiao Town Science and Technology Courtyard, Jinan 250100, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Wu S, Li L, Liang Q, Gao H, Tang T, Tang Y. A DFT study of sulforaphane adsorption on the group III nitrides (B12N12, Al12N12 and Ga12N12) nanocages. J Biomol Struct Dyn 2023:1-12. [PMID: 37882329 DOI: 10.1080/07391102.2023.2272755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
In this paper, the adsorption behavior of group III nitrides (B12N12, Al12N12, and Ga12N12) nanocages to sulforaphane (SF) anticancer medicine were studied by density functional theory (DFT). The adsorption energy, solvation energy, desorption time and related quantum molecular descriptors were calculated in neutral and acidic solutions. When the drugs were adsorbed to nanocages, the structure of nanocages and drugs changed after adsorption, indicating that the process was effective adsorption. The adsorption energy and solvation energy of the complexes created after adsorption were negative values, which indicated that the structure of complexes formed by adsorption were stable. According to charge decomposition analysis (CDA) and natural bonding orbitals (NBO), drugs act as charge donors and nanocages act as charge acceptors, so that the charge flows from drugs to nanocages. Thermodynamic calculations demonstrate that drugs adsorption on nanocages is a spontaneous exothermic process. The calculation of quantum molecular descriptors confirmed that drugs adsorption on nanocages increased the chemical reactivity and solubility of drugs, which facilitated its transfer in biological fluids. Both interaction region index (IRI) and topological analysis of atom in molecule (AIM) revealed Van Der Waals interaction between drugs and nanocages. Protonation studies demonstrated that acidic circumstances could improve the polarity of complexes, increase the solvation effect, and boost drugs release in target cancer cells. The results of this work indicate that X12N12(X = B, Al, Ga) nanocages can be used as the delivery vehicle of SF drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- ShiQuan Wu
- School of Physics, Guizhou University, Guiyang, China
| | - Li Li
- School of Physics, Guizhou University, Guiyang, China
| | - QiQi Liang
- School of Physics, Guizhou University, Guiyang, China
| | - HuaXu Gao
- School of Physics, Guizhou University, Guiyang, China
| | - TianYu Tang
- School of Physics, Guizhou University, Guiyang, China
| | - YanLin Tang
- School of Physics, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Kumar Shukla M, Parihar A, Karthikeyan C, Kumar D, Khan R. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. NANOSCALE 2023; 15:14698-14716. [PMID: 37655476 DOI: 10.1039/d3nr03161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.
Collapse
Affiliation(s)
- Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Construction of a new dual-drug delivery system based on stimuli-responsive co-polymer functionalized D-mannose for chemotherapy of breast cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
6
|
Gandomi F, Rostami M, Ahmadi F, Mohammad Sorouri A, Badiei A, Fasihi-Ramandi M, Reza Ganjali M, Ehrlich H, Rahimi-Nasrabadi M. ROS, pH, and magnetically responsive ZnFe2O4@L-Cysteine@NGQDs nanocarriers as charge-reversal drug delivery system for controlled and targeted cancer chemo-sonodynamic therapy. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Chauhan N, Saxena K, Jain U. Smart Nanomaterials Employed Recently for Drug Delivery in Cancer Therapy: an Intelligent Approach. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Saeed U, Jilani A, Iqbal J, Al-Turaif H. Reduced graphene oxide-assisted graphitic carbon nitride@ZnO rods for enhanced physical and photocatalytic degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Abedini A, Rostami M, Banafshe HR, Rahimi-Nasrabadi M, SobhaniNasab A, Ganjali MR. Utility of Biogenic Iron and Its Bimetallic Nanocomposites for Biomedical Applications: A Review. Front Chem 2022; 10:893793. [PMID: 35844637 PMCID: PMC9283709 DOI: 10.3389/fchem.2022.893793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795–800; Bushra et al., Journal of hazardous materials, 2014, 264, 481–489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76–82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.
Collapse
Affiliation(s)
- Ali Abedini
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ali SobhaniNasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Ali SobhaniNasab,
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
10
|
Vélez-Peña E, Morales R, Reyes-Escobar C, Torres CC, Avello M, Marrugo KP, Manzo-Merino J, Alderete JB, Campos CH. Mesoporous mixed oxides prepared by hard template methodology as novel drug delivery carriers for methotrexate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Jampilek J, Kralova K. Advances in Biologically Applicable Graphene-Based 2D Nanomaterials. Int J Mol Sci 2022; 23:6253. [PMID: 35682931 PMCID: PMC9181547 DOI: 10.3390/ijms23116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Climate change and increasing contamination of the environment, due to anthropogenic activities, are accompanied with a growing negative impact on human life. Nowadays, humanity is threatened by the increasing incidence of difficult-to-treat cancer and various infectious diseases caused by resistant pathogens, but, on the other hand, ensuring sufficient safe food for balanced human nutrition is threatened by a growing infestation of agriculturally important plants, by various pathogens or by the deteriorating condition of agricultural land. One way to deal with all these undesirable facts is to try to develop technologies and sophisticated materials that could help overcome these negative effects/gloomy prospects. One possibility is to try to use nanotechnology and, within this broad field, to focus also on the study of two-dimensional carbon-based nanomaterials, which have excellent prospects to be used in various economic sectors. In this brief up-to-date overview, attention is paid to recent applications of graphene-based nanomaterials, i.e., graphene, graphene quantum dots, graphene oxide, graphene oxide quantum dots, and reduced graphene oxide. These materials and their various modifications and combinations with other compounds are discussed, regarding their biomedical and agro-ecological applications, i.e., as materials investigated for their antineoplastic and anti-invasive effects, for their effects against various plant pathogens, and as carriers of bioactive agents (drugs, pesticides, fertilizers) as well as materials suitable to be used in theranostics. The negative effects of graphene-based nanomaterials on living organisms, including their mode of action, are analyzed as well.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
12
|
Rostami M, Badiei A, Sorouri AM, Fasihi-Ramandi M, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. Cur-loaded magnetic ZnFe2O4@L-cysteine – Ox, N-rich mesoporous -gC3N4 nanocarriers as a targeted sonodynamic chemotherapeutic agent for enhanced tumor eradication. SURFACES AND INTERFACES 2022; 30:101900. [DOI: 10.1016/j.surfin.2022.101900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
13
|
Lin YS, Lin KS, Chen Y, Mdlovu NV. Synthesis, characterization, and application of gene conjugated polymerized nitrogen-doped graphene quantum dots carriers for in vivo bio-targeting in neuroblastoma treatment. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Hu ZT, Jin ZY, Gong SY, Wei X, Zhao J, Hu M, Zhao J, Chen Z, Pan Z, Li X. Supermagnetic Mn-substituted ZnFe 2O 4 with AB-site hybridization for the ultra-effective catalytic degradation of azoxystrobin. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00142j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic Zn0.25Mn0.75Fe2O4 was applied to the degradation of azoxystrobin in a Fenton-like system, and the performance was enhanced via crystal structure control.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| | - Zi-Yan Jin
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Si-Yan Gong
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Jia Zhao
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR
| | - Zhong Chen
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Xiaonian Li
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| |
Collapse
|
15
|
Naseri N, Kharrazi S, Abdi K, Alizadeh R. Fabrication of an SPME fiber based on ZnO@GA nanorods coated onto fused silica as a highly efficient absorbent for the analysis of cancer VOCs in water and urine. Anal Chim Acta 2021; 1183:338983. [PMID: 34627504 DOI: 10.1016/j.aca.2021.338983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 01/26/2023]
Abstract
Analysis of volatile organic compounds (VOCs) secreted in urine, blood, breath, etc. is a new method for monitoring the metabolism and biochemistry of the human body. However, due to the complexity of samples, a pre-concentration step is necessary before the final analysis with gas chromatography-mass spectroscopy (GC-MS). Therefore, miniaturized extraction methods such as solid-phase microextraction (SPME) can be a promising and simple pre-concentration technique. Different strategies have been adopted for the fabrication or modification of SPME fibers. This study presents the preparation and characterization of glass optical fibers coated with ZnO nanorods functionalized with gallic acid (ZnO@GA nanorod) as SPME adsorbent in GC-MS. ZnO@GA nanorods were synthesized separately and then coated onto the fibers. The coated fibers were characterized by using field emission scanning electron microscopy coupled with energy dispersive analysis of X-rays (FESEM/EDAX) and Fourier transform infrared spectroscopy (FTIR) techniques. Possessing a high surface to volume ratio of ZnO nanorods and functional groups of GA, the ZnO@GA nanorod-based SPME fibers exhibited good extraction performance for VOCs comparing with the commercial polydimethylsiloxane (PDMS) coated fibers. Under optimal conditions (NaCl concentration, 30% w/v; extraction time of 25 min; pH, 5-7 and stirring rate of 400 rpm) ZnO@GA nanorods coated fibers achieved low detection limits (0.32-4.8 μg/L), low quantification limits (1.8-16.3 μg/L) and good linearity (5-1000 μg/L) for selected VOCs. The repeatability (n = 3) for a single fiber was within the range of 4.1-7.9% (intra-day) and 5.7-9.6% (inter-day) while the reproducibility (n = 3) of fiber-to-fiber were in the range of 4.7% and 9.9%. This method was successfully used for the determination of six VOCs in water and urine with satisfactory recoveries of 90-112%. ZnO@GA nanorod coated fibers, despite possessing a much thinner coating compared to the commercial fibers, revealed a better overall extraction efficiency towards VOCs. These results indicated that the ZnO@GA provided a promising alternative in sample pretreatment and analysis in GC-MS.
Collapse
Affiliation(s)
- Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Khosrou Abdi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Alizadeh
- Department of Chemistry, Faculty of Science, Qom University, Qom, Iran
| |
Collapse
|
16
|
Abdel-Rafei MK, Thabet NM, Abdel Maksoud MIA, Abd Elkodous M, Kawamura G, Matsuda A, Ashour AH, El-Batal AI, El-Sayyad GS. Influence of Ce 3+ Substitution on Antimicrobial and Antibiofilm Properties of ZnCe xFe 2-xO 4 Nanoparticles (X = 0.0, 0.02, 0.04, 0.06, and 0.08) Conjugated with Ebselen and Its Role Subsidised with γ-Radiation in Mitigating Human TNBC and Colorectal Adenocarcinoma Proliferation In Vitro. Int J Mol Sci 2021; 22:10171. [PMID: 34576334 PMCID: PMC8466506 DOI: 10.3390/ijms221810171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023] Open
Abstract
Cancers are a major challenge to health worldwide. Spinel ferrites have attracted attention due to their broad theranostic applications. This study aimed at investigating the antimicrobial, antibiofilm, and anticancer activities of ebselen (Eb) and cerium-nanoparticles (Ce-NPs) in the form of ZnCexFe2-XO4 on human breast and colon cancer cell lines. Bioassays of the cytotoxic concentrations of Eb and ZnCexFe2-XO4, oxidative stress and inflammatory milieu, autophagy, apoptosis, related signalling effectors, the distribution of cells through the cell-cycle phases, and the percentage of cells with apoptosis were evaluated in cancer cell lines. Additionally, the antimicrobial and antibiofilm potential have been investigated against different pathogenic microbes. The ZOI, and MIC results indicated that ZnCexFe2-XO4; X = 0.06 specimen reduced the activity of a wide range of bacteria and unicellular fungi at low concentration including P. aeruginosa (9.5 mm; 6.250 µg/mL), S. aureus (13.2 mm; 0.390 µg/mL), and Candida albicans (13.5 mm; 0.195 µg/mL). Reaction mechanism determination indicated that after ZnCexFe2-xO4; X = 0.06 treatment, morphological differences in S.aureus were apparent with complete lysis of bacterial cells, a concomitant decrease in the viable number, and the growth of biofilm was inhibited. The combination of Eb with ZFO or ZnCexFe2-XO4 with γ-radiation exposure showed marked anti-proliferative efficacy in both cell lines, through modulating the oxidant/antioxidant machinery imbalance, restoring the fine-tuning of redox status, and promoting an anti-inflammatory milieu to prevent cancer progression, which may be a valuable therapeutic approach to cancer therapy and as a promising antimicrobial agent to reduce the pathogenic potential of the invading microbes.
Collapse
Affiliation(s)
- Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt;
| | - Noura M. Thabet
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt;
| | - M. I. A. Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (M.I.A.A.M.); (A.H.A.)
| | - M. Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - A. H. Ashour
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (M.I.A.A.M.); (A.H.A.)
| | - Ahmed I. El-Batal
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (A.I.E.-B.); (G.S.E.-S.)
| | - Gharieb S. El-Sayyad
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (A.I.E.-B.); (G.S.E.-S.)
| |
Collapse
|
17
|
Akbari M, Jafari H, Rostami M, Mahdavinia GR, Sobhani nasab A, Tsurkan D, Petrenko I, Ganjali MR, Rahimi-Nasrabadi M, Ehrlich H. Adsorption of Cationic Dyes on a Magnetic 3D Spongin Scaffold with Nano-Sized Fe 3O 4 Cores. Mar Drugs 2021; 19:512. [PMID: 34564174 PMCID: PMC8467319 DOI: 10.3390/md19090512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
The renewable, proteinaceous, marine biopolymer spongin is yet the focus of modern research. The preparation of a magnetic three-dimensional (3D) spongin scaffold with nano-sized Fe3O4 cores is reported here for the first time. The formation of this magnetic spongin-Fe3O4 composite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA) (TGA-DTA), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analyses. Field emission scanning electron microscopy (FE-SEM) confirmed the formation of well-dispersed spherical nanoparticles tightly bound to the spongin scaffold. The magnetic spongin-Fe3O4 composite showed significant removal efficiency for two cationic dyes (i.e., crystal violet (CV) and methylene blue (MB)). Adsorption experiments revealed that the prepared material is a fast, high-capacity (77 mg/g), yet selective adsorbent for MB. This behavior was attributed to the creation of strong electrostatic interactions between the spongin-Fe3O4 and MB or CV, which was reflected by adsorption mechanism evaluations. The adsorption of MB and CV was found to be a function of pH, with maximum removal performance being observed over a wide pH range (pH = 5.5-11). In this work, we combined Fe3O4 nanoparticles and spongin scaffold properties into one unique composite, named magnetic spongin scaffold, in our attempt to create a sustainable absorbent for organic wastewater treatment. The appropriative mechanism of adsorption of the cationic dyes on a magnetic 3D spongin scaffold is proposed. Removal of organic dyes and other contaminants is essential to ensure healthy water and prevent various diseases. On the other hand, in many cases, dyes are used as models to demonstrate the adsorption properties of nanostructures. Due to the good absorption properties of magnetic spongin, it can be proposed as a green and uncomplicated adsorbent for the removal of different organic contaminants and, furthermore, as a carrier in drug delivery applications.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan 8719657891, Iran;
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 5518183111, Iran; (H.J.); (G.R.M.)
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran 1983969411, Iran;
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 5518183111, Iran; (H.J.); (G.R.M.)
| | - Ali Sobhani nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan 8719657891, Iran;
- Core Research Lab, Kashan University of Medical Sciences, Kashan 8719657891, Iran
| | - Dmitry Tsurkan
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
| | - Iaroslav Petrenko
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1983969411, Iran;
- Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1983969411, Iran
| | - Mehdi Rahimi-Nasrabadi
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
| | - Hermann Ehrlich
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
18
|
Photoluminescent folic acid functionalized biocompatible and stimuli-responsive nanostructured polymer brushes for targeted and controlled delivery of doxorubicin. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|