1
|
Liu Y, Yang Z, Feng L, Xia Y, Wei G, Lu W. Advance in Nanomedicine for Improving Mucosal Penetration and Effective Therapy of Cervical Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303772. [PMID: 37340569 DOI: 10.1002/smll.202303772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Insufficient intratumor drug distribution and serious adverse effects are often associated with systemic chemotherapy for cervical cancer. Considering the location of cervical cancer, access to the cervix through the vagina may provide an alternative administration route for high drug amounts at the tumor site, minimal systemic exposure as well as convenience of non-invasive self-medication. Enormous progress has been made in nanomedicine to improve mucosal penetration and enhance the effectiveness of therapy for cervical cancer. This review article first introduce the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers. Based on introduction to the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers, both "first mucus-adhering then mucosal penetration" and "first mucus-penetrating then mucosal penetration" strategies are discussed with respect to mechanism, application condition, and examples. Finally, existing challenges and future directions are envisioned in the rational design, facile synthesis, and comprehensive utilization of nanomedicine for local therapy of cervical cancer. This review is expected to provide useful reference information for future research on nanomedicine for intravaginally administered formulations for topical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Ziyi Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Linglin Feng
- Shanghai Institute of Planned Parenthood Research, Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China
| | - Yu Xia
- Yangtze River Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| |
Collapse
|
2
|
Saha I, Halder J, Rajwar TK, Mahanty R, Pradhan D, Dash P, Das C, Rai VK, Kar B, Ghosh G, Rath G. Novel Drug Delivery Approaches for the Localized Treatment of Cervical Cancer. AAPS PharmSciTech 2024; 25:85. [PMID: 38605158 DOI: 10.1208/s12249-024-02801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.
Collapse
Affiliation(s)
- Ivy Saha
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Yadav R, Bhawale R, Kapoor DN, Singh SB, Mehra NK. Experimental design approach for development of carboplatin loaded chitosan modified liposomal formulation with improved topical vaginal therapeutic potential. Pharm Dev Technol 2024; 29:1-12. [PMID: 38015058 DOI: 10.1080/10837450.2023.2289133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
One of the most prevalent cancers affecting women globally is cervical cancer. Cervical cancer is thought to cause 570 000 new cases annually, and standard treatments can have serious side effects. In this work, the main aim is to design, fabrication, and evaluation of carboplatin loaded chitosan coated liposomal formulation (CCLF-I) for vaginal delivery in the treatment of cervical cancer. The particle size and polydispersity index of the CCLF-1 were observed at 269.33 ± 1.15 and 0.40 ± 0.002 nm, respectively. The in vitro mucin binding studies showed good adhesiveness of CCLF-I as compared to plain liposomes (CPLF-I), which was found at 23.49 and 10.80%, respectively. The ex-vivo percent drug permeation from plain liposomal formulation (CPLF-I) was found to be higher in comparison to chitosan coated liposomal formulation which was 56.33% while in CCLF-I it was observed 47.32% this is due to, higher retainability of delivery system (CCLF-I) on targeted site attained by coating of mucoadhesive polymer on liposomes. Ex vivo tissue retention studies exhibited 24.2% of CCLF-I in comparison to 10.34% from plain drug formulation (CPLF-I). The in vivo vaginal retention studies exhibited 14% of drug retention after 24 h from the novel formulation in comparison to 6% from the plain formulation. The developed CCLF-I formulation would open a new avenue in the cervical treatment.
Collapse
Affiliation(s)
- Rati Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rohit Bhawale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
4
|
Li H, Yang W, Wu X, Tian L, Zhang W, Tian H, Liang X, Huang L, Guo L, Li X, Gao W. Cationic fructan-based pH and intestinal flora dual stimulation nanoparticle with berberine for targeted therapy of IBD. Int J Biol Macromol 2024; 256:127987. [PMID: 37979767 DOI: 10.1016/j.ijbiomac.2023.127987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Inflammatory bowel disease (IBD) can cause intestinal microbial imbalance and aggravate intestinal inflammation. Mixed fructan is more easily fermented by colonic microorganisms and can be used as colonic drug delivery materials. Here, we constructed a mixed fructan based nanoparticle with dual targeted stimulation of pH and intestinal flora to effectively deliver berberine for the treatment of ulcerative colitis (UC). The complex of fructan based nanoparticle and berberine (BBRNPs) significantly ameliorated the inflammatory response of sodium dextran sulfate (DSS)-induced colitis in mice by inhibiting the activation of NF-κB/STAT-3 pathway and increasing tight junction protein expression in vivo. Importantly, BBRNPs improved the responsiveness of colitis microbiome and effectively regulated the relative homeostasis of harmful flora Enterobacteriaceae and Escherichia-shigolla, and beneficial flora Ruminococcaceae and Akkermansiaceae. This study provides a promising strategy for the effective treatment of UC and expands the application of branched fructan in pharmaceutics.
Collapse
Affiliation(s)
- Hongyu Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xiongzhi Wu
- Tianjin Hospital of Integrated Chinese and Western Medicine Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Luyao Tian
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Hongyue Tian
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xu Liang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
5
|
Miretti M, Prucca CG, Baumgartner MT, Martinelli M. Combining ZnPc-liposomes and chitosan on a hybrid matrix for enhanced photodynamic therapy. Int J Biol Macromol 2023; 253:127544. [PMID: 37866570 DOI: 10.1016/j.ijbiomac.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Photodynamic therapy is an alternative treatment for several pathologies, including cancer. This therapy uses a photosensitizer capable of producing reactive oxygen species through irradiation, promoting cellular death. A limitation of photosensitizers is their low solubility in aqueous media. Hence, developing a suitable carrier for photosensitizers for specific applications is a challenge. Cervical cancer is one of the most common cancers in women, and photodynamic therapy could be an attractive alternative therapeutic approach. In this work, we synthesized films composed of chitosan, polyvinylpyrrolidone, and liposomes containing Zn-phthalocyanine. Photophysical characterization of ZnPc incorporated into films was determined by UV-vis and fluorescence. Film properties such as swelling, mechanical properties, and water vapor permeability were performed. Finally, in vitro, photodynamic evaluation of these films was performed on HeLa cells. The results indicate that incorporating Zn-Pc-liposomes into films decreases cell viability by >95 %.
Collapse
Affiliation(s)
- Mariana Miretti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina
| | - César G Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - María T Baumgartner
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Córdoba, Argentina
| | - Marisa Martinelli
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina.
| |
Collapse
|
6
|
Fonseca-Santos B, Cazarin CA, da Silva PB, Dos Santos KP, da Rocha MCO, Báo SN, De-Souza MM, Chorilli M. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023:102689. [PMID: 37156330 DOI: 10.1016/j.nano.2023.102689] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Alzheimer's disease (AD) is an illness that affects people aged 65 or older and affects around 6.5 million in the United States. Resveratrol is a chemical obtained from natural products and it exhibits biological activity based on inhibiting the formation, depolymerization of the amyloid, and decreasing neuroinflammation. Due to the insolubility of this compound; its incorporation in surfactant-based systems was proposed to design an intranasal formulation. A range of systems has been produced by mixing oleic acid, CETETH-20 and water. Polarised light microscopy (PLM), small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) confirm the initial liquid formulation (F) presented as microemulsion (ME). After dilution, the gelled systems were characterized as hexagonal mesophase and they showed feasibility proprieties. Pharmacological assays performed after intranasal administration showed the ability to improve learning and memory in animals, as well as remission of neuroinflammation via inhibition of interleukin.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil; Federal University of Bahia (UFBA), Health Sciences Institute, Department of Biotechnology, Salvador, Bahia 40170-115, Brazil.
| | - Camila André Cazarin
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Kaio Pini Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil
| | - Márcia Cristina Oliveira da Rocha
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Márcia Maria De-Souza
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil.
| |
Collapse
|
7
|
Victorelli FD, Rodero CF, Lutz‐Bueno V, Chorilli M, Mezzenga R. Amyloid Fibrils Enhance the Topical Bio-Adhesivity of Liquid Crystalline Mesophase-Based Drug Formulations. Adv Healthc Mater 2023; 12:e2202720. [PMID: 36681654 PMCID: PMC11468793 DOI: 10.1002/adhm.202202720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Indexed: 01/23/2023]
Abstract
Despite their distinctive secondary structure based on cross β-strands, amyloid fibrils (AF) are stable fibrous protein aggregates with features similar to collagen, one of the main components of the extracellular matrix, and thus constitute a potential scaffold for enhancing cell adhesion for topical applications. Here, the contribution of AF to skin bio-adhesivity aiming toward topical treatments is investigated. Liquid crystalline mesophase (LCM) based on phytantriol is formulated, with the aqueous phase containing either water or a solution of 4 wt% amyloid fibrils. Then resveratrol is added as a model anti-inflammatory molecule. The developed LCM presents a double gyroid Ia3d mesophase. The incorporation of AF into the LCM increases its bio-adhesive properties. In vitro release and ex vivo permeation and retention confirm the controlled release property of the system, and that resveratrol is retained in epidermis and dermis, but is also permeated through the skin. All formulations are biocompatible with L929 cells. The in vivo assay confirms that systems with AF lead to a higher anti-inflammatory effect of resveratrol. These results confirm the hypothesis that the incorporation of AF in the LCM increases the bio-adhesiveness and efficiency of the system for topical treatment, and consequently, the therapeutical action of the encapsulated drug.
Collapse
Affiliation(s)
| | - Camila Fernanda Rodero
- Department of Drugs and MedicineSchool of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraSão Paulo14800‐903Brazil
| | | | - Marlus Chorilli
- Department of Drugs and MedicineSchool of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraSão Paulo14800‐903Brazil
| | - Raffaele Mezzenga
- Department of Health Sciences & TechnologyETH ZurichZurich8092Switzerland
- Department of MaterialsETH ZurichZurich8093Switzerland
| |
Collapse
|
8
|
Pahwa R, Ahuja M. Nanocellulose-gellan cross-linked scaffolds for vaginal delivery of fluconazole. Int J Biol Macromol 2023; 229:668-683. [PMID: 36592850 DOI: 10.1016/j.ijbiomac.2022.12.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The objective of this research is to formulate lyophilized fluconazole-loaded nanocellulose-gellan scaffolds cross-linked using trisodium trimetaphosphate as a vaginal drug delivery system. The effect of polymers (nanocellulose and gellan gum) and cross-linking agents on drug release and mucoadhesive strength were determined by approaching a two-factor three-level central composite experimental design. The optimal formulation of the fluconazole-loaded cross-linked rice or wheat nanocellulose-gellan based scaffolds comprised of the concentration of polymers (4.91 % w/v or 4.99 % w/v) and trisodium trimetaphosphate (16.43 % w/v or 15.83 % w/v), respectively. The infrared spectra confirmed the cross-linking of nanocellulose and gellan gum while the thermal graph revealed the higher thermal stability of cross-linked scaffolds. The diffractogram of the scaffolds unveiled their amorphous nature while the electron micrographs depict the porous nature of the fluconazole-loaded nanocellulose-gellan scaffolds. The phosphorylated cross-linked nanocellulose-gellan scaffolds represent more swelling (8-fold higher), porosity (>83 %), tensile strength (>34 MPa), and mucoadhesive strength (>1940 mN), and less enzymatic degradation rate over the non cross-linked scaffolds. The optimal batch of cross-linked nanocellulose-gellan scaffolds provided a sustained release of 99 % of fluconazole over 24 h with 1.19-fold higher ex-vivo vaginal permeation over the native scaffolds. In addition, the phosphorylated nanocellulose-gellan based scaffolds exhibit improved antifungal activity and non-cytotoxicity.
Collapse
Affiliation(s)
- Rimpy Pahwa
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Munish Ahuja
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
9
|
Reina BD, Santezi C, Malheiros SS, Calixto G, Rodero C, Victorelli FD, Chorilli M, Dovigo LN. Liquid crystal precursor system as a vehicle for curcumin-mediated photodynamic inactivation of oral biofilms. JOURNAL OF BIOPHOTONICS 2023; 16:e202200040. [PMID: 36169026 DOI: 10.1002/jbio.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Curcumin has great potential as a photosensitizer, but it has low solubility in aqueous solutions. This study reports the antimicrobial efficacy of photodynamic inactivation (PDI) mediated by a curcumin-loaded liquid crystal precursor (LCP) on in situ dental biofilms. Thirty volunteers used intraoral devices containing enamel samples for 48 hours for biofilm formation. The samples were then removed from the device and treated either with LCP with 160 μM of curcumin plus illumination at 18 J/cm2 (C + L+ group) or with LCP without curcumin in the dark (C - L - group). Following this, the biofilm from the samples was plated for quantifying the viable colonies at 37°C for 48 hours. Specific and nonspecific media were used for the presumptive isolation of Streptococcus mutans, Lactobacillus species/aciduric microorganisms, Candida species, and total microbiota. The C + L+ group showed a highly significant (P < .001) reduction in the log10 (colony forming units/mL) values as compared to the C - L - group for all culture media. Hierarchical linear regression indicated that there may be predictors at individual volunteer level explaining the difference in the PDI efficacy among different individuals (P = .001). The LCP system retained curcumin and released it slowly and continuously, thus protecting the drug from photodegradation. LCP with curcumin is considered effective for the photoinactivation of dental biofilms, but the PDI efficacy may differ based on the host's individual characteristics.
Collapse
Affiliation(s)
- Bárbara Donadon Reina
- Department of Social Dentistry, School of Dentistry-São Paulo State University (UNESP), Araraquara, Brazil
| | - Carolina Santezi
- Independent Researcher at the Moment of the Submission (Unaffiliated Researcher), São Carlos, Brazil
| | - Samuel Santana Malheiros
- Department of Social Dentistry, School of Dentistry-São Paulo State University (UNESP), Araraquara, Brazil
| | - Giovana Calixto
- Department of Biosciences, Piracicaba Dental School - University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Camila Rodero
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Francesca Damiani Victorelli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, School of Dentistry-São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
10
|
Pahwa R, Ahuja M. Design and Development of Fluconazole-Loaded Nanocellulose-Eudragit Vaginal Drug Delivery System. J Pharm Innov 2023. [DOI: 10.1007/s12247-022-09705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Rimpy, Ahuja M. Fluconazole-loaded TEOS-modified nanocellulose 3D scaffolds – Fabrication, characterization and its application as vaginal drug delivery system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. J Colloid Interface Sci 2022; 620:419-430. [DOI: 10.1016/j.jcis.2022.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
|
13
|
Luiz MT, Dutra JAP, Ribeiro TDC, Carvalho GC, Sábio RM, Marchetti JM, Chorilli M. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Jøraholmen MW, Damdimopoulou P, Acharya G, Škalko-Basnet N. Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginal TM Tissue Model. Pharmaceutics 2022; 14:pharmaceutics14061295. [PMID: 35745867 PMCID: PMC9231258 DOI: 10.3390/pharmaceutics14061295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The natural polyphenol resveratrol (RES) has shown great potential as an antimicrobial, including against microbes associated with vaginal infections. To fully exploit the activities of RES, an all-natural ingredients formulation for RES delivery at vaginal site has been developed, namely liposomes loaded with RES, incorporated into a chitosan hydrogel as secondary vehicle. Although considered non-toxic and safe on their own, the compatibility of the final formulation must be evaluated for its biocompatibility and non-irritancy to the vaginal mucosa. As a preclinical safety assessment, the impact of RES formulation on the tissue viability, the effect on barrier function and cell monolayer integrity, and cytotoxicity were evaluated using the cell-based vaginal tissue model, the EpiVaginal™ tissue. RES liposomes-in-hydrogel formulations neither affected the mitochondrial activity, nor the integrity of the cell monolayer in RES concentration up to 60 µg/mL. Moreover, the barrier function was maintained to a greater extent by RES in formulation, emphasizing the benefits of the delivery system. Additionally, none of the tested formulations expressed an increase in lactate dehydrogenase activity compared to the non-treated tissues. The evaluation of the RES delivery system suggests that it is non-irritant and biocompatible with vaginal tissue in vitro in the RES concentrations considered as therapeutic.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Correspondence: ; Tel.: +47-776-23376
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 38, 9019 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
| |
Collapse
|
15
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
16
|
Engineering drug delivery systems to overcome the vaginal mucosal barrier: Current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
do Prado AH, Duarte JL, Filippo LDD, Victorelli FD, de Abreu Fantini MC, Peccinini RG, Chorilli M. Bioadhesive liquid crystal systems for octyl methoxycinnamate skin delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Park C, Zuo J, Somayaji V, Lee BJ, Löbenberg R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int J Pharm 2021; 604:120766. [PMID: 34087415 DOI: 10.1016/j.ijpharm.2021.120766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a stable microemulsion (ME) for transdermal delivery of tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). The lipid-based vehicles were selected by screening cannabinoid solubility and the emulsifying ability of surfactants. Pseudo-ternary phase diagrams were constructed by formulation of cannabinoids with Capryol® 90 as oil phase, Tween® 80, Solutol® HS15, Procetyl® AWS, and Cremophor® RH40 as surfactants, ethanol as cosurfactant, and distilled water as the aqueous phase. A significant improvement in transmembrane flux (Jss), permeability coefficient (Kp), and enhancement ratio (ER) was found in one system compared to other formulations. This ME consisted of 1.0% (w/w) of cannabinoids, 5% (w/w) of Capryol® 90, 44% (w/w) Smix (2:1, Procetyl® AWS and Ethanol) and 50.0% (w/w) of distilled water. Additionally, the effects of pH on the permeation of the cannabinoids were investigated. Based on the pH value THCA and CBDA-loaded ME exhibited the highest permeation at pH 5.17 and pH 5.25. After storing the pH-adjusted P2 ME and the optimized P2 ME for 180 days at 4℃ and 25℃, the content of cannabinoids was over 95%. Consequently, the cannabinoid-loaded ME system is a promising option for solubilizing and stabilizing lipophilic drugs like cannabinoids and utilize them for transdermal delivery.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Vijay Somayaji
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
19
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
20
|
Araujo VHS, de Souza MPC, Carvalho GC, Duarte JL, Chorilli M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr Polym 2021; 261:117919. [PMID: 33766328 DOI: 10.1016/j.carbpol.2021.117919] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Vaginal administration is a promising route for the local treatment of infectious vaginal diseases since it can bypass the first-pass metabolism, drug interactions, and adverse effects. However, the commercial products currently available for topical vulvovaginal treatment have low acceptability and do not adequately explore this route. Mucoadhesive systems can optimize the efficacy of drugs administered by this route to increase the retention time of the drug in the vaginal environment. Several polymers are used to develop mucoadhesive systems, among them chitosan, a natural polymer that is highly biocompatible and technologically versatile. Thus, the present review aimed to analyze the studies that used chitosan to develop mucoadhesive systems for the treatment of local vaginal infections. These studies demonstrated that chitosan as a component of mucoadhesive drug delivery systems (DDS) is a promising device for the treatment of vaginal infectious diseases, due to the intrinsic antimicrobial activity of this biopolymer and because it does not interfere with the effectiveness of the drugs used for the treatment.
Collapse
Affiliation(s)
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|