1
|
Refat MS, Albogami B, Adam AMA, Saad HA, Alsuhaibani AM, Miyan L, Hegab MS. Charge-transfer chemistry of two corticosteroids used adjunctively to treat COVID-19. Part II: The CT reaction of hydrocortisone and dexamethasone donors with TCNQ and fluoranil acceptors in five organic solvents. J Mol Liq 2022; 363:119878. [PMID: 35880006 PMCID: PMC9300052 DOI: 10.1016/j.molliq.2022.119878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022]
Abstract
Hydrocortisone (termed as D1) and dexamethasone (termed as D2) are corticosteroids currently used to treat COVID-19. COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exploring additional chemical properties of drugs used in the treatment protocols for COVID-19 could help scientists alike improve these treatment protocols and potentially even the vaccines (i.e., Janssen, Moderna, AstraZeneca, Pfizer-BioNTech). In this work, the charge-transfer (CT) properties of these two corticosteroids (D1 and D2) with two universal acceptors: 7,8,8-tetracyanoquinodimethane (termed as TCNQ) and fluoranil (termed as TFQ) in five different solvents were investigated. The examined solvents were MeOH, EtOH, MeCN, CH2Cl2, and CHCl3. The CT interactions formed stable corticosteroid CT complexes in all examined solvents. Several spectroscopic parameters were derived, and the oscillator strength (f) and transition dipole moment (μe.g. ) values revealed that the interaction between the investigated corticosteroids with TCNQ acceptor is much stronger than their interaction with TFQ acceptor. The CT interactions were proposed to process via n → π* transition.
Collapse
Affiliation(s)
- Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Bander Albogami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lal Miyan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002(UP), India
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Interligand Charge-Transfer Processes in Zinc Complexes. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electron donor–acceptor (EDA) complexes are characterized by charge-transfer (CT) processes between electron-rich and electron-poor counterparts, typically resulting in a new absorption band at a higher wavelength. In this paper, we report a series of novel 2,6-di(imino)pyridine ligands with different electron-rich aromatic substituents and their 1:2 (metal/ligand) complexes with zinc(II) in which the formation of a CT species is promoted by the metal ion coordination. The absorption properties of these complexes were studied, showing the presence of a CT absorption band only in the case of aromatic substituents with donor groups. The nature of EDA interaction was confirmed by crystallographic studies, which disclose the electron-poor and electron-rich moieties involved in the CT process. These moieties mutually belong to both the ligands and are forced into a favorable spatial arrangement by the coordinative preferences of the metal ion.
Collapse
|
3
|
Adam AMA, Saad HA, Refat MS, Hegab MS. Charge-transfer chemistry of two corticosteroids used adjunctively to treat COVID-19. Part I: Complexation of hydrocortisone and dexamethasone donors with DDQ acceptor in five organic solvents. J Mol Liq 2022; 357:119092. [PMID: 35431374 PMCID: PMC8989686 DOI: 10.1016/j.molliq.2022.119092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
COVID-19 is the disease caused by a novel coronavirus (CoV) named the severe acute respiratory syndrome coronavirus 2 (termed SARS coronavirus 2 or SARS-CoV-2). Since the first case reported in December 2019, infections caused by this novel virus have led to a continuous global pandemic that has placed an unprecedented burden on health, economic, and social systems worldwide. In response, multiple therapeutic options have been developed to stop this pandemic. One of these options is based on traditional corticosteroids, however, chemical modifications to enhance their efficacy remain largely unexplored. Obtaining additional insight into the chemical and physical properties of pharmacologically effective drugs used to combat COVID-19 will help physicians and researchers alike to improve current treatments and vaccines (i.e., Pfizer-BioNTech, AstraZeneca, Moderna, Janssen). Herein, we examined the charge-transfer properties of two corticosteroids used as adjunctive therapies in the treatment of COVID-19, hydrocortisone and dexamethasone, as donors with 2,3-dichloro-5,6-dicyano-p-benzoquinone as an acceptor in various solvents. We found that the examined donors reacted strongly with the acceptor in CH2Cl2 and CHCl3 solvents to create stable compounds with novel clinical potential.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
4
|
Adam AMA, Saad HA, Atta A, Alsawat M, Hegab MS, Refat MS, Altalhi TA, Alosaimi E, Younes AA. Usefulness of charge-transfer interaction between urea and vacant orbital acceptors to generate novel adsorbent material for the adsorption of pesticides from irrigation water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Analysis of charge-transfer complexes caused by the interaction of the antihypertensive drug valsartan with several acceptors in CH2Cl2 and CHCl3 solvents and correlations between their spectroscopic parameters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Quinine Charge Transfer Complexes with 2,3-Dichloro-5,6-dicyano-benzoquinone and 7,7,8,8-Tetracyanoquinodimethane: Spectroscopic Characterization and Theoretical Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The molecular charge transfer reactions of quinine (Q) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a p-acceptor to form charge transfer (CT) complexes have been studied. The CT complexes were characterized by infrared spectra, NMR, mass spectrometry, conductometry and spectrometry. The Q-DDQ and Q-TCNQ charge transfer complexes were monitored at 480 and 843 nm, respectively. The results confirm the formation of CT complexes. The molar ratio of Q:DDQ and Q: TCNQ assessed using Job’s method was 1:1, which agrees with the results obtained by the Benesi-Hildebrand equation. The stability of the formed CT complexes was assessed by measuring different spectroscopic parameters such as oscillator strength, transition dipole moment, ionization potential, the energy of CT complex, resonance energy, dissociation energy and standard free energy change. The DFT geometry optimization of quinine, DDQ and TCNQ, its charge transfer complex, and UV theoretical vs. experimental comparative study were carried out. The theoretical and experimental results agreed. DFT/B3LYP/6-311++G(d,p) level of theory was used for the investigation of charge transfer between quinine as electron donor and (DDQ and TNCQ) as electron acceptors. The geometric structures, orbital energies, HOMO, LUMO and energy gaps were determined. The transition energies of the charge transfer complexes were computed using the TD-DFT/B3LYP/6-311++G(d,p) level of theory. The computed parameters were comparable to the experimental parameters, and the computational results aided in the analysis of the data.
Collapse
|
7
|
Utilization of charge-transfer complexation to generate carbon-based nanomaterial for the adsorption of pollutants from contaminated water: Reaction between urea and vacant orbital acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Adam AMA, Refat MS, Altalhi TA, Alsuhaibani KS. Charge-transfer complexation of TCNE with azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part IV: A comparison between solid and liquid interactions. J Mol Liq 2021; 340:117224. [PMID: 34393305 PMCID: PMC8354809 DOI: 10.1016/j.molliq.2021.117224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
Finding a cure or vaccine for the coronavirus disease (COVID-19) is the most pressing issue facing the world in 2020 and 2021. One of the more promising current treatment protocols is based on the antibiotic azithromycin (AZM) alone or in combination with other drugs (e.g., chloroquine, hydroxychloroquine). We believe gaining new insight into the charge-transfer (CT) chemistry of this antibiotic will help researchers and physicians alike to improve these treatment protocols. Therefore, in this work, we examine the CT interaction between AZM (donor) and tetracyanoethylene (TCNE, acceptor) in either solid or liquid forms. We found that, for both phases of starting materials, AZM reacted strongly with TCNE to produce a colored, stable complex with 1:2 AZM to TCNE stoichiometry via a n → π* transition (AZM → TCNE). Even though both methodologies yielded the same product, we recommend the solid-solid interaction since it is more straightforward, environmentally friendly, and cost- and time-effective.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tariq A Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | |
Collapse
|
9
|
Khalil A, Kashif M. Development of UV-visible spectrophotometric methods for the quantitative and in silico studies for cilazapril optimized by response surface methodology. Drug Dev Ind Pharm 2021; 47:1100-1111. [PMID: 34286656 DOI: 10.1080/03639045.2021.1957918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
For cilazapril (CLZ), analytical methods based on donor-acceptor phenomenon that are simple, rapid with broad linear dynamic range for the quantification of drug are not available in the literature. Considering the requirement for the methods, in this study, two economic, potent analytical methods based on the complexation of CLZ with π-acceptors, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (CA) were developed, validated, and studied spectrophotometrically. Various analytical data were discussed. The effects of experimental variables were optimized from the results of in silico technique, i.e. Box-Behnken design under response surface methodology. Linear dynamic range was significantly good in the range of 6-60 µg mL-1 and 20-260 µg mL-1 for DDQ and CA methods. Moreover, molecular docking studies corroborated the experimental results. Further, the methods were supplemented by the pharmaceutical and biological application for the quantitative assay of CLZ. Collectively, the results of the reported method of the analysis suggest that the developed approach is simple, sensitive, accurate and precise.
Collapse
Affiliation(s)
- Adila Khalil
- Department of Chemistry, Analytical Chemistry Section, Aligarh Muslim University, Aligarh, India
| | - Mohammad Kashif
- Department of Chemistry, Analytical Chemistry Section, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Adam AMA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part III: A green protocol for facile synthesis of complexes with TCNQ, DDQ, and TFQ acceptors. J Mol Liq 2021; 335:116250. [PMID: 33903781 PMCID: PMC8061087 DOI: 10.1016/j.molliq.2021.116250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Investigating the chemical properties of molecules used to combat the COVID-19 pandemic is of vital and pressing importance. In continuation of works aimed to explore the charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat COVID-19, the disease resulting from infection with the novel SARS-CoV-2 virus, in this work, a highly efficient, simple, clean, and eco-friendly protocol was used for the facile synthesis of charge-transfer complexes (CTCs) containing azithromycin and three π-acceptors: 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), and tetrafluoro-1,4-benzoquinone (TFQ). This protocol involves grinding bulk azithromycin as the donor (D) with the investigated acceptors at a 1:1 M ratio at room temperature without any solvent. We found that this protocol is environmentally benign, avoids hazardous organic solvents, and generates the desired CTCs with excellent yield (92-95%) in a straightforward means.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah M Alsuhaibani
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
11
|
Adam AMA, Altalhi TA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Correlations between spectroscopic data for charge-transfer complexes of two artificial sweeteners, aspartame and neotame, generated with several π-acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Al-Humaidi JY, El-Sayed MY, Refat MS, Altalhi TA, Eldaroti HH. Spectrophotometric studies on the charge transfer interactions between thiazolidine as a donor and three π-acceptors: p-Chloranil (CHL), DDQ and TCNQ. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Al-Humaidi JY, Refat MS. Solution, and solid investigations on the charge–transfer complexation between seproxetine as a selective serotonin reuptake inhibitor drug with six kinds of π–electron acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|