1
|
Yaghoubi S, Sadjadi S, Zhong X, Yuan P, Heravi MM. Clay-supported bio-based Lewis acid ionic liquid as a potent catalyst for the dehydration of fructose to 5-hydroxymthylfurfural. Sci Rep 2024; 14:82. [PMID: 38168002 PMCID: PMC10762215 DOI: 10.1038/s41598-023-50773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Caffeine and halloysite nanoclay mineral that are bio-based compounds were utilized to synthesize a novel Lewis acid heterogeneous catalyst. To this aim, halloysite was functionalized with 2,4,6-trichloro-1,3,5-triazine and reacted with caffeine, which was then converted to ionic liquid via a reaction with ZnCl2. The catalyst was applied for promoting the dehydration of fructose to 5-hydroxymethylfurfural. To investigate the effects of the reaction variables, response surface methodology was used. The product was achieved in 98.5% in 100 min using a catalyst loading of 30 wt% at 100 °C. Moreover, the catalyst was recyclable up to six runs with slight zinc leaching. Comparison of the catalytic activity of the catalyst with that of halloysite and a control catalyst with one caffeine-based Lewis acid ionic liquid confirmed the superior activity of the former and the important role of 2,4,6-trichloro-1,3,5-triazine for increasing the number of the grafted caffeine and thus the acidic sites of the catalyst. A plausible reaction mechanism was proposed, and the activity of the catalyst for other carbohydrates was also studied. According to the results, this catalyst catalyzed the reaction of other substrates to furnish 5-hydroxymethylfurfural in low to moderate yields. According to the kinetic studies, the activation energy was estimated to be 22.85 kJ/mol.
Collapse
Affiliation(s)
- Soheila Yaghoubi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Xuemin Zhong
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Peng Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran
| |
Collapse
|
2
|
Wu Y, Zhao W, Wang Y, Wang B, Fan M, Zhang R. Enhancing Catalytic Performance through Subsurface Chemistry: The Case of C 2H 2 Semihydrogenation over Pd Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56743-56757. [PMID: 36515505 DOI: 10.1021/acsami.2c16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Subsurface chemistry in heterogeneous catalysis plays an important role in tuning catalytic performance. Aiming to unravel the role of subsurface heteroatoms, C2H2 semihydrogenation on a series of Pd catalysts doped with subsurface heteroatom H, B, C, N, P, or S was fully investigated by density functional theory (DFT) calculations together with microkinetic modeling. The obtained results showed that catalytic performance toward C2H2 semihydrogenation was affected significantly by the type and coverage of subsurface heteroatoms. The Pd-B0.5 and Pd-C0.5 catalysts with 1/2 monolayer (ML) heteroatom coverage, as well as Pd-N, Pd-P, and Pd-S catalysts with 1/16 ML heteroatom coverage, were screened to not only obviously improve C2H4 selectivity and activity but also effectively suppress green oil. The essential reason for subsurface heteroatoms in tuning catalytic performance is attributed to the distinctive surface Pd electronic and geometric structures caused by subsurface heteroatoms. In the Pd-B0.5 and Pd-C0.5 catalysts, the Pd surface electronic and geometric effects play the dominant role, while the geometric effect plays a key role in the Pd-N, Pd-P, and Pd-S catalysts. The findings provide theoretically valuable information for designing high-performance metal catalysts in alkyne semihydrogenation through subsurface chemistry.
Collapse
Affiliation(s)
- Yueyue Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Wantong Zhao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Yuan Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming82071, United States
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| |
Collapse
|
3
|
Yousefi S, Bahri-Laleh N, Nekoomanesh M, Emami M, Sadjadi S, Amin Mirmohammadi S, Tomasini M, Bardají E, Poater A. An efficient initiator system containing AlCl3 and supported ionic-liquid for the synthesis of conventional grade polyisobutylene in mild conditions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Shaikh AR, Posada-Pérez S, Brotons-Rufes A, Pajski JJ, Vajiha, Kumar G, Mateen A, Poater A, Solà M, Chawla M, Cavallo L. Selective absorption of H2S and CO2 by azole based protic ionic liquids: A combined density functional theory and molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Tomasini M, Zhang J, Zhao H, Besalú E, Falivene L, Caporaso L, Szostak M, Poater A. A predictive journey towards trans-thioamides/amides. Chem Commun (Camb) 2022; 58:9950-9953. [PMID: 35983851 DOI: 10.1039/d2cc04228b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cis-trans isomerization of (thio)amides was studied by DFT calculations to get the model for the higher preference for the cis conformation by guided predictive chemistry, suggesting how to select the alkyl/aryl substituents on the C/N atoms that lead to the trans isomer. Multilinear analysis, together with cross-validation analysis, helped to select the best fitting parameters to achieve the energy barriers of the cis to trans interconversion, as well as the relative stability between both isomers. Double experimental check led to the synthesis of the best trans candidate with sterically demanding t-butyl substituents, confirming the utility of predictive chemistry, bridging organic and computational chemistry.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain. .,Dipartimento di Chimica e Biologia, Università di Salerno, Via Ponte don Melillo, 84084, Fisciano, Italy
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 6 Xuefu Road, Xi'an, 710021, China
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 6 Xuefu Road, Xi'an, 710021, China
| | - Emili Besalú
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Laura Falivene
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Ponte don Melillo, 84084, Fisciano, Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Ponte don Melillo, 84084, Fisciano, Italy
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
6
|
Asadi Z, Sadjadi S, Nekoomanesh‐Haghighi M, Posada‐Pérez S, Solà M, Bahri‐Laleh N, Poater A. Lubricant hydrogenation over a functionalized clay‐based Pd catalyst: A combined computational and experimental study. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Asadi
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals Iran Polymer and Petrochemical Institute Tehran Iran
| | | | - Sergio Posada‐Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Naeimeh Bahri‐Laleh
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| |
Collapse
|
7
|
Bayat A, Sadjadi S, Arabi H, Bahri-Laleh N. Catalytic hydrofinishing of polyalphaolefins under mild condition using Pd on amino acid-functionalized clay: study of the kinetic parameters. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ribas-Massonis A, Cicujano M, Duran J, Besalú E, Poater A. Free-Radical Photopolymerization for Curing Products for Refinish Coatings Market. Polymers (Basel) 2022; 14:polym14142856. [PMID: 35890631 PMCID: PMC9324147 DOI: 10.3390/polym14142856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
Even though there are many photocurable compositions that are cured by cationic photopolymerization mechanisms, UV curing generally consists of the formation of cross-linking covalent bonds between a resin and monomers via a photoinitiated free radical polymerization reaction, obtaining a three-dimensional polymer network. One of its many applications is in the refinish coatings market, where putties, primers and clear coats can be cured faster and more efficiently than with traditional curing. All these products contain the same essential components, which are resin, monomers and photoinitiators, the latter being the source of free radicals. They may also include additives used to achieve a certain consistency, but always taking into account the avoidance of damage to the UV curing—for example, by removing light from the innermost layers. Surface curing also has its challenges since it can be easily inhibited by oxygen, although this can be solved by adding scavengers such as amines or thiols, able to react with the otherwise inactive peroxy radicals and continue the propagation of the polymerization reaction. In this review article, we cover a broad analysis from the organic point of view to the industrial applications of this line of research, with a wide current and future range of uses.
Collapse
Affiliation(s)
- Aina Ribas-Massonis
- Department of Chemistry, Institute of Computational Chemistry and Catalysis, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain; (A.R.-M.); (J.D.); (E.B.)
| | - Magalí Cicujano
- Roberlo S.A., Ctra. N-II, km 706,5, Riudellots de la Selva, 17457 Girona, Spain;
| | - Josep Duran
- Department of Chemistry, Institute of Computational Chemistry and Catalysis, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain; (A.R.-M.); (J.D.); (E.B.)
| | - Emili Besalú
- Department of Chemistry, Institute of Computational Chemistry and Catalysis, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain; (A.R.-M.); (J.D.); (E.B.)
| | - Albert Poater
- Department of Chemistry, Institute of Computational Chemistry and Catalysis, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain; (A.R.-M.); (J.D.); (E.B.)
- Correspondence:
| |
Collapse
|
9
|
Bayat A, Sadjadi S, Arabi H, Bahri-Laleh N. Dual-task composite of halloysite and ionic liquid for the synthesis and hydrogenation of polyalphaolefins. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Shams A, Sadjadi S, Duran J, Simon S, Poater A, Bahri‐Laleh N. Effect of support hydrophobicity of halloysite based catalysts on the PAO hydrofinishing performance. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arash Shams
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals Iran Polymer and Petrochemical Institute Tehran Iran
| | - Josep Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Naeimeh Bahri‐Laleh
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| |
Collapse
|
11
|
Amiri Z, Malmir M, Hosseinnejad T, Kafshdarzadeh K, Heravi MM. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Establishment of Integrated Analysis Method for Probing and Reconstructing Hydrogenation Mechanism of a Model Reaction. Catalysts 2022. [DOI: 10.3390/catal12050499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hydrogenation of 4-nitrophenol (4-NP) has attracted much attention, since it is typically used as a model reaction for evaluating newly developed catalysts, but its mechanism is still debated. Herein, Co(OH)2-modified CuO catalyst (Co(OH)2/CuO) was used for the reduction of 4-NP to 4-aminophenol (4-AP) in an aqueous sodium borohydride (NaBH4) solution. The reaction mechanism was investigated by UV-Vis spectroscopy (UV-Vis), high-performance liquid chromatography (HPLC), HPLC-Q-orbitrap high-resolution mass spectrometry (LC-MS/MS), and 1HNMR spectroscopy (1HNMR) as an integrated technology at different concentrations of NaBH4. Samples were taken at specified time intervals and monitored using UV-Vis, HPLC, LC-MS/MS, and 1HNMR. With the help of comprehensive analysis, eight intermediates, including azo and azoxy compounds, were effectively captured, and the variation tendency of each intermediate was determined, revealing that the hydrogenation of 4-NP proceeds via a coexistence of the direct and condensation routes. The integrated analysis methods were powerful technical supports for the study of the catalysis mechanism.
Collapse
|
13
|
|
14
|
Sadjadi S, Koohestani F. Composite of magnetic carbon quantum dot-supported ionic liquid and Cu-BDC (CCDC no. 687690) MOF: A triple catalytic composite for chemical transformations. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Sadjadi S, Koohestani F. Pd on imidazolium ionic liquid modified halloysite: A potent catalyst for the hydrogenation of nitro-compounds under mild reaction condition. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Sadjadi S, Koohestani F, Heravi MM. A novel composite of ionic liquid-containing polymer and metal-organic framework as an efficient catalyst for ultrasonic-assisted Knoevenagel condensation. Sci Rep 2022; 12:1122. [PMID: 35064158 PMCID: PMC8783012 DOI: 10.1038/s41598-022-05134-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
1-Butyl-3-vinylimidazolium chloride was synthesized and polymerized with acrylamide to furnish an ionic liquid-containing polymer, which was then used for the formation of a composite with iron-based metal-organic framework. The resultant composite was characterized with XRD, TGA, FE-SEM, FTIR, EDS and elemental mapping analyses and its catalytic activity was appraised for ultrasonic-assisted Knoevenagel condensation. The results confirmed that the prepared composite could promote the reaction efficiently to furnish the corresponding products in high yields in very short reaction times. Moreover, the composite exhibited high recyclability up to six runs. It was also established that the activity of the composite was higher compared to pristine metal-organic framework or polymer.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
| |
Collapse
|
17
|
|
18
|
Sadjadi S, Abedian-Dehaghani N, Koohestani F, Heravi MM. Halloysite functionalized with Cu (II) Schiff base complex containing polymer as an efficient catalyst for chemical transformation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Neekzad N, Kowsari E, Najafi MD, Reza Naderi H, Chinnappan A, Ramakrishna S, Haddadi-Asl V. Pseudocapacitive performance of surface functionalized halloysite nanotubes decorated green additive ionic liquid modified with ATP and POAP for efficient symmetric supercapacitors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|