1
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Sharoyko VV, Berdichevsky GM, Vasina LV, Shemchuk OS, Maystrenko DN, Molchanov OE, Abdelhalim AOE, Nashchekin AV, Nerukh DA, Tochilnikov GV, Murin IV, Semenov KN. Covalent conjugates based on nanodiamonds with doxorubicin and a cytostatic drug from the group of 1,3,5-triazines: Synthesis, biocompatibility and biological activity. Biochim Biophys Acta Gen Subj 2023:130384. [PMID: 37209777 DOI: 10.1016/j.bbagen.2023.130384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
We report the synthesis of covalent conjugates of nanodiamonds with doxorubicin and a cytostatic drug from the class of 1,3,5-triazines. The obtained conjugates were identified using a number of physicochemical methods (IR-spectroscopy, NMR-spectroscopy, XRD, XPS, TEM). As a result of our study, it was found that ND-СONH-Dox and ND-COO-Diox showed good hemocompatibility, since they did not affect plasma coagulation hemostasis, platelet functional activity, and erythrocyte membrane. The ND-COO-Diox conjugates are also capable of binding to human serum albumin due to the presence of ND in their composition. In the study of the cytotoxic properties of ND-СONH-Dox and ND-COO-Diox in the T98G glioblastoma cell line, indicating that ND-СONH-Dox and ND-COO-Diox demonstrate greater cytotoxicity at lower concentrations of Dox and Diox in the composition of the conjugates compared to individual drugs; the cytotoxic effect of ND-COO-Diox was statistically significantly higher than that of ND-СONH-Dox at all concentrations studied. Greater cytotoxicity at lower concentrations of Dox and Diox in the composition of conjugates compared to individual cytostatics makes it promising to further study the specific antitumor activity and acute toxicity of these conjugates in models of glioblastoma in vivo. Our results demonstrated that ND-СONH-Dox and ND-COO-Diox enter HeLa cells predominantly via a nonspecific actin-dependent mechanism, while for ND-СONH-Dox a clathrin-dependent endocytosis pathway. All data obtained provide that the synthesized nanomaterials show a potential application as the agents for intertumoral administration.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| | - Grigory M Berdichevsky
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russia
| | - Dmitriy N Maystrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia
| | - Abdelsattar O E Abdelhalim
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russia; Environmental Research Department, National Center for Social and Criminological Research (NCSCR), 4 Agouza, Giza, 11561, Egypt
| | - Alexey V Nashchekin
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytekhnicheskaya 194021, Saint Petersburg, Russia
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, Birmingham B4 7ET, UK
| | - Grigorii V Tochilnikov
- Petrov Research Institute of Oncology, 68 Leningradskaia Street, Pesochny, Saint Petersburg 197758, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russia; Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| |
Collapse
|
3
|
Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers (Basel) 2022; 14:polym14204448. [PMID: 36298026 PMCID: PMC9611646 DOI: 10.3390/polym14204448] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications.
Collapse
Affiliation(s)
- Pavel Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
- Correspondence:
| | - Alexander Bobrov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
| | - Yuriy Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
- Pacific National University, 136 Tikhookeanskaya Street, 680035 Khabarovsk, Russia
| |
Collapse
|
4
|
Bhogale D, Mazahir F, Yadav AK. Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders. Mol Neurobiol 2022; 59:4806-4824. [PMID: 35618981 DOI: 10.1007/s12035-022-02882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
The aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrate the blood brain barrier. On long-term use, they may cause CNS toxicity due to accumulation in the brain. So nanodiamonds could prove as a promising approach in the brain targeting of the bioactive and to treat many neurological disorders such as Alzheimer's disease, Parkinson's disease, brain tumor (glioblastoma), HIV, amyotrophic multiple sclerosis, Huntington disease, stroke (cerebrovascular attack), batten disease, schizophrenia, epilepsy, and bacterial infections (encephalitis, sepsis, and meningitis) due to their ability to penetrate the blood-brain barrier and owing to their excellent surface properties, i.e., nano size and high surface area, ease of functionalization, multiple drug binding, and biocompatibility; they can be useful for brain targeted drug delivery with minimal side effects.
Collapse
Affiliation(s)
- Deepali Bhogale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|