1
|
Salahshoori I, Namayandeh Jorabchi M, Sadat Mirnezami SM, Golriz M, Darestani M, Barzin J, Khonakdar HA. Exploring the potential of beta-cyclodextrin-based MIL-101(Cr) for pharmaceutical removal from wastewater: A combined density functional theory and molecular simulations study. ENVIRONMENTAL RESEARCH 2024; 263:120189. [PMID: 39433238 DOI: 10.1016/j.envres.2024.120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Pharmaceutical contaminants pose significant risks to ecosystems and human health, necessitating effective removal strategies. This research focuses on developing advanced adsorbents for removing pharmaceutical pollutants from the environment. Metal-organic frameworks (MOFs), specifically MIL-101(Cr) functionalized with biodegradable beta-cyclodextrin (β-CDex), were investigated as potential nanocomposite adsorbents for the removal of ketorolac (KTRK), naproxen (NPXN), and tramadol (TRML). The study employed molecular simulations and density functional theory (DFT) calculations to explore the interactions between the pollutants and adsorbents. Analyses of DFT results, including electrostatic potential, ionization energy, density of states, and molecular orbital analysis, provided insights into the reactivity of pollutants and adsorbents. Additionally, the structural properties of the adsorbents, such as fractional free volume, radius of gyration, and system energies, were thoroughly examined. Molecular dynamics (MD) and Monte Carlo (MC) simulations were used to evaluate the adsorption capacities of MIL-101(Cr) for the target pharmaceutical pollutants. The results demonstrated the superior adsorption performance of the nanocomposite adsorbent, particularly for KTRK, with an adsorption energy of -1934 kcal/mol, compared to the pristine MIL-101(Cr), which had an adsorption energy of -1916 kcal/mol. This enhanced adsorption is attributed to the optimal molecular fit, guest-host solid interactions, and the selective encapsulation capabilities of β-CDex. This research highlights the potential of MOF-based nanocomposites as effective and sustainable solutions for pharmaceutical pollution. By advancing the understanding of molecular interactions through simulations, this study contributes to developing innovative adsorbents for wastewater treatment and the protection of water resources.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran.
| | | | | | - Mahdi Golriz
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| | - Mariam Darestani
- School of Engineering, Design and Built Environment, Western Sydney University, Australia
| | - Jalal Barzin
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| |
Collapse
|
2
|
Salahshoori I, Wang Q, Nobre MAL, Mohammadi AH, Dawi EA, Khonakdar HA. Molecular simulation-based insights into dye pollutant adsorption: A perspective review. Adv Colloid Interface Sci 2024; 333:103281. [PMID: 39214024 DOI: 10.1016/j.cis.2024.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Growing concerns about environmental pollution have highlighted the need for efficient and sustainable methods to remove dye contamination from various ecosystems. In this context, computational methods such as molecular dynamics (MD), Monte Carlo (MC) simulations, quantum mechanics (QM) calculations, and machine learning (ML) methods are powerful tools used to study and predict the adsorption processes of dyes on various adsorbents. These methods provide detailed insights into the molecular interactions and mechanisms involved, which can be crucial for designing efficient adsorption systems. MD simulations, detailing molecular arrangements, predict dyes' adsorption behaviour and interaction energies with adsorbents. They simulate the entire adsorption process, including surface diffusion, solvent layer penetration, and physisorption. QM calculations, especially density functional theory (DFT), determine molecular structures and reactivity descriptors, aiding in understanding adsorption mechanisms. They identify stable adsorption configurations and interactions like hydrogen bonding and electrostatic forces. MC simulations predict equilibrium properties and adsorption energies by sampling molecular configurations. ML methods have proven highly effective in predicting and optimizing dye adsorption processes. These models offer significant advantages over traditional methods, including higher accuracy and the ability to handle complex datasets. These methods optimize adsorption conditions, clarify adsorbent functionalization roles, and predict dye removal efficiency under various conditions. This research explores MD, MC, QM, and ML approaches to connect molecular interactions with macroscopic adsorption phenomena. Probing these techniques provides insights into the dynamics and energetics of dye pollutants on adsorption surfaces. The findings will aid in developing and optimizing new materials for dye removal. This review has significant implications for environmental remediation, offering a comprehensive understanding of adsorption at various scales. Merging microscopic data with macroscopic observations enhances knowledge of dye pollutant adsorption, laying the groundwork for efficient, sustainable removal technologies. Addressing the growing challenges of ecosystem protection, this study contributes to a cleaner, more sustainable future.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Qilin Wang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, 2007, Australia
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Elmuez A Dawi
- College of Humanities and Sciences, Department of Mathematics, and Science, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| |
Collapse
|
3
|
Liu Y, Zhang J, Li J, Zhao Y, Zhang M. Impact of SiO 2 doping on the structure and oil-water separation properties of a PVDF membrane: insights from molecular dynamics simulation. RSC Adv 2024; 14:23910-23920. [PMID: 39086518 PMCID: PMC11289665 DOI: 10.1039/d4ra03807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Hybrid inorganic particles combined with polymers are widely used to modify the properties of polymer membranes. However, the mechanism by which particles affect membranes remains unclear. This study investigates SiO2-hybridized PVDF membranes through molecular dynamic simulation, focusing on the interaction between SiO2 clusters and PVDF chains. It examines the impact of varying SiO2 concentrations (3.5 wt%, 6.8 wt%, 9.9 wt%, 12.8 wt%, and 15.5 wt%) on membrane stability and structure. The results indicate that adding SiO2 can inhibit PVDF chain mobility in the membrane with minimal effect on fractional free volume (FFV), except for altering interactions between PVDF-PVDF, PVDF-SiO2, and SiO2-SiO2, thereby affecting the structure of hybrid membranes. The adsorption and diffusion behavior of water and oil molecules on these membranes were also studied. It was observed that the adsorption energy and diffusion coefficient initially increase and then decrease with increasing SiO2 concentration, reaching an optimum between 6.8 wt% and 12.8 wt%. This phenomenon is attributed to the ability of optimal SiO2 concentrations to create hydrophilic channels in PVDF membranes, enhancing water affinity and reducing oil affinity. Consequently, water permeation through the hybrid membrane is promoted, improving the efficiency of oil/water separation compared to pure PVDF membranes. This research contributes to understanding the function of adding inorganic particles to polymer membranes and provides insights for designing advanced functional hybrid membranes.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
- Center of Membrane Materials and Engineering Technology, Tianjin University of Technology Tianjin 300384 China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
- Center of Membrane Materials and Engineering Technology, Tianjin University of Technology Tianjin 300384 China
| | - Jiale Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
- Center of Membrane Materials and Engineering Technology, Tianjin University of Technology Tianjin 300384 China
| | - Yuxing Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
- Center of Membrane Materials and Engineering Technology, Tianjin University of Technology Tianjin 300384 China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
- Center of Membrane Materials and Engineering Technology, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
4
|
Salahshoori I, Namayandeh Jorabchi M, Mazaheri A, Mirnezami SMS, Afshar M, Golriz M, Nobre MAL. Tackling antibiotic contaminations in wastewater with novel Modified-MOF nanostructures: A study of molecular simulations and DFT calculations. ENVIRONMENTAL RESEARCH 2024; 252:118856. [PMID: 38599447 DOI: 10.1016/j.envres.2024.118856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The contamination of wastewater with antibiotics has emerged as a critical global challenge, with profound implications for environmental integrity and human well-being. Adsorption techniques have been meticulously investigated and developed to mitigate and alleviate their effects. In this study, we have investigated the adsorption behaviour of Erythromycin (ERY), Gentamicin (GEN), Levofloxacin (LEVO), and Metronidazole (MET) antibiotics as pharmaceutical contaminants (PHCs) on amide-functionalized (RC (=O)NH2)/MIL-53 (Al) (AMD/ML53A), using molecular simulations and density functional theory (DFT) calculations. Based on our DFT calculations, it becomes apparent that the adsorption tendencies of antibiotics are predominantly governed by the presence of AMD functional groups on the adsorbent surface. Specifically, hydrogen bonding (HB) and van der Waals (vdW) interactions between antibiotics and AMD groups serve as the primary mechanisms facilitating adsorption. Furthermore, we have observed that the adsorption behaviors of these antibiotics are influenced by their respective functional groups, molecular shapes, and sizes. Our molecular simulations delved into how the AMD/ML53A surfaces interact with antibiotics as PHCs. Moreover, various chemical quantum descriptors based on Frontier Molecular Orbitals (FMO) were explored to elucidate the extent of AMD/ML53A adsorption and to assess potential alterations in their electronic properties throughout the adsorption process. Monte Carlo simulation showed that ERY molecules adsorb stronger to the adsorbent in acidic and basic conditions than other contaminants, with high energies: -404.47 kcal/mol in acidic and -6375.26 kcal/mol in basic environments. Molecular dynamics (MD) simulations revealed parallel orientation for the ERY molecule's adsorption on AMD/ML53A with 80% rejection rate. In conclusion, our study highlighted the importance of modeling in developing practical solutions for removing antibiotics as PHCs from wastewater. The insights gained from our calculations can facilitate the design of more effective adsorption materials, ultimately leading to a more hygienic and sustainable ecosystem.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Majid Namayandeh Jorabchi
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Afsaneh Mazaheri
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | | | - Mahdis Afshar
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Golriz
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Energy Storage, Institute of Mechanics, Shiraz, Iran
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
5
|
Salahshoori I, Vaziri A, Jahanmardi R, Mohseni MM, Khonakdar HA. Molecular Simulation Studies of Pharmaceutical Pollutant Removal (Rosuvastatin and Simvastatin) Using Novel Modified-MOF Nanostructures (UIO-66, UIO-66/Chitosan, and UIO-66/Oxidized Chitosan). ACS APPLIED MATERIALS & INTERFACES 2024; 16:26685-26712. [PMID: 38722359 DOI: 10.1021/acsami.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Ali Vaziri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Reza Jahanmardi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Mehdi Moayed Mohseni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran 14977-13115, Iran
| |
Collapse
|
6
|
Yuan T, Sarkisov L. How 2D Nanoflakes Improve Transport in Mixed Matrix Membranes: Insights from a Simple Lattice Model and Dynamic Mean Field Theory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8184-8195. [PMID: 38308600 PMCID: PMC10875652 DOI: 10.1021/acsami.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Mixed matrix membranes (MMMs), incorporating graphene and graphene oxide structural fragments, have emerged as promising materials for challenging gas separation processes. What remains unclear is the actual molecular mechanism responsible for the enhanced permeability and perm-selectivity of these materials. With the fully atomistic models still unable to handle the required time and length scales, here, we employ a simple qualitative model based on the lattice representation of the physical system and dynamic mean field theory. We demonstrate that the performance enhancement results from the flux-regularization impact of the 2D nanoflakes and that this effect sensitively depends on the orientation of the nanoflakes and the properties of the interface between the nanoflakes and the polymer.
Collapse
Affiliation(s)
- Tianmu Yuan
- Department of Chemical Engineering,
Engineering Building A, The University of
Manchester, Manchester M13 9PL, U.K.
| | - Lev Sarkisov
- Department of Chemical Engineering,
Engineering Building A, The University of
Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Ganjali Koli M, Eshaghi Malekshah R, Hajiabadi H. Insights from molecular dynamics and DFT calculations into the interaction of 1,4-benzodiazepines with 2-hydroxypropyl-βCD in a theoretical study. Sci Rep 2023; 13:9866. [PMID: 37332009 DOI: 10.1038/s41598-023-36385-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
This study delves into the interaction between benzodiazepine (BZD) drugs and 2-hydroxypropyl-β-cyclodextrin (2HPβCD), a cyclodextrin (CD) known to improve drug delivery and enhance therapeutic outcomes. We find that the 2HPβCD's atoms become more rigid in the presence of chlordiazepoxide (CDP), clonazepam (CLZ), and diazepam (DZM), whereas they become more flexible in the presence of nordazepam (NDM) and nitrazepam (NZP). We also investigated the structure of 2HPβCD and found that loading these drugs increases both the area and volume of the 2HPβCD cavity, making it more suitable for drug delivery. Moreover, this research found that all drugs exhibited negative values for the binding free energy, indicating thermodynamic favorability and improved solubility. The binding free energy order of the BZDs was consistent in both molecular dynamics and Monte Carlo methods, with CDP and DZM having the highest affinity for binding. We also analyzed the contribution of different interaction energies in binding between the carrier and the drugs and found that Van der Waals energy is the primary component. Our results indicate that the number of hydrogen bonds between 2HPβCD/water slightly decreases in the presence of BZDs, but the hydrogen bond's quality remains constant.
Collapse
Affiliation(s)
- Mokhtar Ganjali Koli
- InSilicoSci Computational Research Centre, Nikopardazesh Ltd., Karaj, Iran
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran
| | | | - Hossein Hajiabadi
- InSilicoSci Computational Research Centre, Nikopardazesh Ltd., Karaj, Iran
| |
Collapse
|
8
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
9
|
Salahshoori I, Mohseni A, Namayandeh Jorabchi M, Ghasemi S, Afshar M, Wohlrab S. Study of modified PVDF membranes with high-capacity adsorption features using Quantum mechanics, Monte Carlo, and Molecular Dynamics Simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF. A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation. CHEMOSPHERE 2023; 311:136936. [PMID: 36273613 DOI: 10.1016/j.chemosphere.2022.136936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Polysulfone (PSF) based mixed matrix membranes (MMMs) are one of the most broadly studied polymeric materials used for CO2/CH4 separation. The performance of existing PSF membranes encounters a bottleneck for widespread expansion in industrial applications due to the trade-off amongst permeability and selectivity. Membrane performance has been postulated to be enhanced via functionalization of filler at different weight percentages. Nonetheless, the preparation of functionalized MMMs without defects and its empirical study that exhibits improved CO2/CH4 separation performance is challenging at an experimental scale that needs prior knowledge of the compatibility between the filler and polymer. Molecular simulation approaches can be used to explore the effect of functionalization on MMM's gas transport properties at an atomic level without the challenges in the experimental study, however, they have received less scrutiny to date. In addition, most of the research has focused on pure gas studies while mixed gas transport properties that reflect real separation in functionalized silica/PSF MMMs are scarcely available. In this work, a molecular simulation computational framework has been developed to investigate the structural, physical properties and gas transport behavior of amine-functionalized silica/PSF-based MMMs. The effect of varying weight percentages (i.e., 15-30 wt.%) of amine-functionalized silica and gas concentrations (i.e., 30% CH4/CO2, 50% CH4/CO2, and 70% CH4/CO2) on physical and gas transport characteristics in amine-functionalized silica/PSF MMMs at 308.15 K and 1 atm has been investigated. Functionalization of silica nanoparticles was found to increase the diffusion and solubility coefficients, leading to an increase in the percentage enhancement of permeability and selectivity for amine-functionalized silica/PSF MMM by 566% and 56%, respectively, compared to silica/PSF-based MMMs at optimal weight percentage of 20 wt.%. The model's permeability differed by 7.1% under mixed gas conditions. The findings of this study could help to improve real CO2/CH4 separation in the future design and concept of functionalized MMMs using molecular simulation and empirical modeling strategies.
Collapse
Affiliation(s)
- Khadija Asif
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Syed Ali Ammar Taqvi
- Department of Chemical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Norwahyu Jusoh
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia
| |
Collapse
|
11
|
The effect of filler loading and APTES treatment on the performance of PSf/SBA-15 mixed matrix membranes. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The fabrication of mixed matrix membranes (MMMs) is of particular importance due to their advantages over neat membranes. The performance of MMMs is a function of the type and fraction of the nanoparticles in the membrane. Moreover, the proper interaction of the polymer and nanoparticles affects the MMMs performance. In this study polysulfone (PSf)/SBA-15 mesoporous silicas MMMs were prepared and their performance was evaluated for CO2/CH4 gas separation. SBA-15 mesoporous silicas were previously synthesized and functionalized with 3-aminopropyltriethoxysilane by post-synthesis treatment. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, N2 adsorption–desorption, and Brunauer–Emmett–Teller analysis was applied to examine the functional groups, morphology, and textural properties of the unmodified and modified mesoporous silica in the prepared membrane, respectively. The effects of modified and unmodified SBA-15 particle loading were investigated for the gas separation performance of PSf/SBA-15 membranes. The experimental results illustrate that a higher modified mesoporous silica loading leads to an increase in gas permeance and gas pair selectivity. The highest increase in permeability and selectivity was related to the incorporation of S2 and AP-S2 into the PSf matrix, respectively.
Collapse
|
12
|
Evaluation of the Properties of PHB Composite Filled with Kaolin Particles for 3D Printing Applications Using the Design of Experiment. Int J Mol Sci 2022; 23:ijms232214409. [PMID: 36430886 PMCID: PMC9698972 DOI: 10.3390/ijms232214409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method "Design of Experiment" (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.
Collapse
|
13
|
Yee CY, Lim LG, Lock SSM, Jusoh N, Yiin CL, Chin BLF, Chan YH, Loy ACM, Mubashir M. A systematic review of the molecular simulation of hybrid membranes for performance enhancements and contaminant removals. CHEMOSPHERE 2022; 307:135844. [PMID: 35952794 DOI: 10.1016/j.chemosphere.2022.135844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Number of research on molecular simulation and design has emerged recently but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This paper aims to review the development, structural, physical properties and separation performance of hybrid membranes using molecular simulation approach. The hybrid membranes under review include ionic liquid membrane, mixed matrix membrane, and functionalized hybrid membrane for understanding of the transport mechanism of molecules through the different structures. The understanding of molecular interactions, and alteration of pore sizes and transport channels at atomistic level post incorporation of different components in hybrid membranes posing impact to the selective transport of desired molecules are also covered. Incorporation of molecular simulation of hybrid membrane in related fields such as carbon dioxide (CO2) removal, wastewater treatment, and desalination are also reviewed. Despite the limitations of current molecular simulation methodologies, i.e., not being able to simulate the membrane operation at the actual macroscale in processing plants, it is still able to demonstrate promising results in capturing molecule behaviours of penetrants and membranes at full atomic details with acceptable separation performance accuracy. From the review, it was found that the best performing ionic liquid membrane, mixed matrix membrane and functionalized hybrid membrane can enhance the performance of pristine membrane by 4 folds, 2.9 folds and 3.3 folds, respectively. The future prospects of molecular simulation in hybrid membranes are also presented. This review could provide understanding to the current advancement of molecular simulation approach in hybrid membranes separation. This could also provide a guideline to apply molecular simulation in the related sectors.
Collapse
Affiliation(s)
- Cia Yin Yee
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Lam Ghai Lim
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Norwahyu Jusoh
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, 94300, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Investigations of Thermal, Mechanical, and Gas Barrier Properties of PA11-SiO2 Nanocomposites for Flexible Riser Application. Polymers (Basel) 2022; 14:polym14204260. [PMID: 36297838 PMCID: PMC9610365 DOI: 10.3390/polym14204260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Acidic gas penetration through the internal pressure sheath of a flexible riser tends to cause a corrosive environment in the annulus, reducing the service life of the flexible riser. Nanoparticles can act as gas barriers in the polymer matrix to slow down the gas permeation. Herein, we prepared PA11/SiO2 composites by the melt blending method. The effect of adding different amounts of SiO2 to PA11 on its gas barrier properties was investigated by conducting CO2 permeation tests between 20 °C and 90 °C. As the temperature increased, the lowest value of the permeability coefficient that could be achieved for the PA11 with different contents of SiO2 increased. The composites PA/0.5% SiO2 and PA/1.5% SiO2 had the lowest permeation coefficients in the glassy state (20 °C) and rubbery state (≥50 °C). We believe that this easy-to-produce industrial PA/SiO2 composite can be used to develop high-performance flexible riser barrier layers. It is crucial for understanding riser permeation behavior and enhancing barrier qualities.
Collapse
|
15
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Salahshoori I, Namayandeh Jorabchi M, Valizadeh K, Yazdanbakhsh A, Bateni A, Wohlrab S. A deep insight of solubility behavior, mechanical quantum, thermodynamic, and mechanical properties of Pebax-1657 polymer blends with various types of vinyl polymers: A mechanical quantum and molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Power AJ, Papananou H, Rissanou AN, Labardi M, Chrissopoulou K, Harmandaris V, Anastasiadis SH. Dynamics of Polymer Chains in Poly(ethylene oxide)/Silica Nanocomposites via a Combined Computational and Experimental Approach. J Phys Chem B 2022; 126:7745-7760. [PMID: 36136347 DOI: 10.1021/acs.jpcb.2c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polymer chains in poly(ethylene oxide)/silica (PEO/SiO2) nanoparticle nanohybrids have been investigated via a combined computational and experimental approach involving atomistic molecular dynamics simulations and dielectric relaxation spectroscopy (DRS) measurements. The complementarity of the approaches allows us to study systems with different polymer molecular weights, nanoparticle radii, and compositions across a broad range of temperatures. We study the effects of spatial confinement, which is induced by the nanoparticles, and chain adsorption on the polymer's structure and dynamics. The investigation of the static properties of the nanocomposites via detailed atomistic simulations revealed a heterogeneous polymer density layer at the vicinity of the PEO/SiO2 interface that exhibited an intense maximum close to the inorganic surface, whereas the bulk density was reached for distances ∼1-1.2 nm away from the nanoparticle. For small volume fractions of nanoparticles, the polymer dynamics, probed by the atomistic simulations of low-molecular-weight chains at high temperatures, are consistent with the presence of a thin adsorbed layer that exhibits slow dynamics, with the dynamics far away from the nanoparticle being similar to those in the bulk. However, for high volume fractions of nanoparticles (strong confinement), the dynamics of all polymer chains were predicted slower than that in the bulk. On the other hand, similar dynamics were found experimentally for both the local β-process and the segmental dynamics for high-molecular-weight systems measured at temperatures below the melting temperature of the polymer, which were probed by DRS. These differences can be attributed to various parameters, including systems of different molecular weights and nanoparticle states of dispersion, the different temperature range studied by the different methods, the potential presence of a reduced-mobility PEO/SiO2 interfacial layer that does not contribute to the dielectric spectrum, and the presence of amorphous-crystalline interfaces in the experimental samples that may lead to a different dynamical behaviors of the PEO chains.
Collapse
Affiliation(s)
- Albert J Power
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Hellen Papananou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Chemistry, University of Crete, P.O. Box 2208, Heraklion 71003, Greece
| | - Anastassia N Rissanou
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Massimiliano Labardi
- CNR-IPCF, c/o Physics Department, University of Pisa, Largo Pontecorvo 3, Pisa 56127, Italy
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Spiros H Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Chemistry, University of Crete, P.O. Box 2208, Heraklion 71003, Greece
| |
Collapse
|
18
|
Xu H, Chen Y, Liu N, Chen X, Wu D, Ju B, Shao M. Foam optimization evaluation for enhanced oil recovery based on hydrophilic SiO2/SDS dispersions. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Tang Y, Cai Z, Sun X, Chong C, Yan X, Li M, Xu J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers (Basel) 2022; 14:2004. [PMID: 35631886 PMCID: PMC9144434 DOI: 10.3390/polym14102004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Water purification and water desalination via membrane technology are generally deemed as reliable supplementaries for abundant potable water. Electrospun nanofiber-based membranes (ENMs), benefitting from characteristics such as a higher specific surface area, higher porosity, lower thickness, and possession of attracted broad attention, has allowed it to evolve into a promising candidate rapidly. Here, great attention is placed on the current status of ENMs with two categories according to the roles of electrospun nanofiber layers: (i) nanofiber layer serving as a selective layer, (ii) nanofiber layer serving as supporting substrate. For the nanofiber layer's role as a selective layer, this work presents the structures and properties of conventional ENMs and mixed matrix ENMs. Fabricating parameters and adjusting approaches such as polymer and cosolvent, inorganic and organic incorporation and surface modification are demonstrated in detail. It is crucial to have a matched selective layer for nanofiber layers acting as a supporting layer. The various selective layers fabricated on the nanofiber layer are put forward in this paper. The fabrication approaches include inorganic deposition, polymer coating, and interfacial polymerization. Lastly, future perspectives and the main challenges in the field concerning the use of ENMs for water treatment are discussed. It is expected that the progress of ENMs will promote the prosperity and utilization of various industries such as water treatment, environmental protection, healthcare, and energy storage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.T.); (Z.C.); (X.S.); (C.C.); (X.Y.); (M.L.)
| |
Collapse
|
20
|
RSM Modeling and Optimization of CO2 Separation from High CO2 Feed Concentration over Functionalized Membrane. Polymers (Basel) 2022; 14:polym14071371. [PMID: 35406245 PMCID: PMC9003211 DOI: 10.3390/polym14071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
The challenges in developing high CO2 gas fields are governed by several factors such as reservoir condition, feed gas composition, operational pressure and temperature, and selection of appropriate technologies for bulk CO2 separation. Thus, in this work, we report an optimization study on the separation of CO2 from CH4 at high CO2 feed concentration over a functionalized mixed matrix membrane using a statistical tool, response surface methodology (RSM) statistical coupled with central composite design (CCD). The functionalized mixed matrix membrane containing NH2-MIL-125 (Ti) and 6FDA-durene, fabricated in our previous study, was used to perform the separation performance under three operational parameters, namely, feed pressure, temperature, and CO2 feed concentration, ranging from 3.5–12.5 bar, 30.0–50.0 °C and 15–70 mol%, respectively. The CO2 permeability and CO2/CH4 separation factor obtained from the experimental work were varied from 293.2–794.4 Barrer and 5.3–13.0, respectively. In addition, the optimum operational parameters were found at a feed pressure of 12.5 bar, a temperature of 34.7 °C, and a CO2 feed concentration of 70 mol%, which yielded the highest CO2 permeability of 609.3 Barrer and a CO2/CH4 separation factor of 11.6. The average errors between the experimental data and data predicted by the model for CO2 permeability and CO2/CH4 separation factor were 5.1% and 3.3%, respectively, confirming the validity of the proposed model. Overall, the findings of this work provide insights into the future utilization of NH2-MIL-125 (Ti)/6FDA-based mixed matrix membranes in real natural gas purification applications.
Collapse
|
21
|
Thermally cross-linked ultra-robust membranes for plasticization resistance and permeation enhancement – A combined theoretical and experimental study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Valizadeh K, Heydarinasab A, Hosseini SS, Bazgir S. Fabrication of modified PVDF membrane in the presence of PVI polymer and evaluation of its performance in the filtration process. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Salahshoori I, Ramezani Z, Cacciotti I, Yazdanbakhsh A, Hossain MK, Hassanzadeganroudsari M. Cisplatin uptake and release assessment from hydrogel synthesized in acidic and neutral medium: An experimental and molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Improvement efficiency of the of poly (ether-block-amide) -Cellulose acetate (Pebax-CA) blend by the addition of nanoparticles (MIL-53 and NH2-MIL-53): A molecular dynamics study. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02577-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|