1
|
Dai X, Li Y, Zhang Y, Zou Y, Yuan S, Gao F. pH/H 2O 2 dual-responsive macrophage-targeted chitosaccharides nanoparticles to combat intracellular bacterial infection. Colloids Surf B Biointerfaces 2024; 248:114465. [PMID: 39709940 DOI: 10.1016/j.colsurfb.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Antibiotic resistance combined with bacteria internalization result in recurrent infections that seriously threaten human health. To overcome these problems, a pH/H2O2 dual-responsive nanoparticle (COSBN@CFS@PS) that can target macrophages, exhibiting synergistic antibiotic and β-lactamase inhibitor activity, is reported. Chitosaccharides (COS) is covalently bound with benzenboronic acid pinacol ester and assemble with cefoxitin sodium salt (CFS) to form COSBN@CFS nanoparticles. Then, COSBN@CFS was encapsulated with phosphatidylserine (PS), which aimed to targeted uptake by macrophages. After the uptake, the pH/H2O2 dual-responsive nanoparticle could effectively inhibit β-lactamase activity by release boronic acid (β-lactamase inhibitor), and then reinforced the antibacterial activity of CFS. Meanwhile, the resultant nanoparticles could significantly inhibit the growth of CFS-resistant bacteria. Furthermore, these nanoparticles could eliminate intracellular bacteria in vivo through the synergistic activities of antibiotic and β-lactamase inhibitor. The excellent biocompatibility and outstanding bactericidal activity promise COSBN@CFS@PS have great potential for diverse intracellular bacterial infection therapy.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yongjie Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yuqin Zou
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Siyuan Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
2
|
Saeed S, Farooq M, Arshad R, Adnan S, Ahmad H, Masood Z, Malik A, Saeed A, Tabish TA. Responding to Hitch in Fighting Mycobacterium Tuberculosis Through Arginine Multi Functionalized Mucoadhesive SNEDDS of Rifampicin. Macromol Biosci 2024; 24:e2400288. [PMID: 39319685 DOI: 10.1002/mabi.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Indexed: 09/26/2024]
Abstract
The study aimed to develop thiolated pluronic-based self-emulsifying drug delivery system (SNEDDS) targeted delivery of Rifampicin coated by arginine for enhanced drug loading, mucoadhesion, muco penetration, site-specific delivery, stabilized delivery against intracellular mycobacterium tuberculosis (M. tb), decreased bacterial burden and production by intracellular targeting. Oleic oil, PEG 200 and Tween 80 are selected as oil, co-surfactant and surfactant based on solubilizing capacity and pseudo ternary diagram region. Coating of thiolated polymer on SNEDDS with ligand arginine (Arg-Th-F407 SNEDDDS) decreased bacterial burden and production by intracellular targeting in macrophages. Formulation are evaluated through scanning electron microscope (SEM), EDAX analysis, diffraction laser scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and thermal analysis (DSC & TGA). Hydrodynamic diameter of thiolated polymeric SNEDDS (Th-F407 SNEDDS) and Arg-Th-F407 SNEDDS is observed to be 148.4 and 188.5 nm with low PDI of 0.4 and 0.3, respectively. Invitro drug release study from Arg-Th-F407 SNEDDS indicates 80% sustained release in 72 h under controlled conditions. Arg-Th-F407 SNEDDDS shows excellent capability of killing M.tb strains in macrophages even at low dose as compared to traditional rifampicin (RIF) and is found biocompatible, non-cytotoxic, and hemocompatible. Therefore, Arg-Th-F407 SNEDDDS of RIF proved ideal for targeting and treating M.tb strains within macrophages.
Collapse
Affiliation(s)
- Sana Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- Adjunct Faculty at Equator University of Science and Technology, Kampala, 21353, Uganda
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51040, Pakistan
| | - Hammad Ahmad
- Sialkot Institute of Science and Technology, Sialkot, 51070, Pakistan
| | - Zeeshan Masood
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ayesha Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Paliwal H, Nakpheng T, Kumar Paul P, Prem Ananth K, Srichana T. Development of a self-microemulsifying drug delivery system to deliver delamanid via a pressurized metered dose inhaler for treatment of multi-drug resistant pulmonary tuberculosis. Int J Pharm 2024; 655:124031. [PMID: 38521375 DOI: 10.1016/j.ijpharm.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Tuberculosis (TB) is a serious health issue that contributes to millions of deaths throughout the world and increases the threat of serious pulmonary infections in patients with respiratory illness. Delamanid is a novel drug approved in 2014 to deal with multi-drug resistant TB (MDR-TB). Despite its high efficiency in TB treatment, delamanid poses delivery challenges due to poor water solubility leading to inadequate absorption upon oral administration. This study involves the development of novel formulation-based pressurized metered dose inhalers (pMDIs) containing self-microemulsifying mixtures of delamanid for efficient delivery to the lungs. To identify the appropriate self-microemulsifying formulations, ternary diagrams were plotted using different combinations of surfactant to co-surfactant ratios (1:1, 2:1, and 3:1). The combinations used Cremophor RH40, Poly Ethylene Glycol 400 (PEG 400), and peppermint oil, and those that showed the maximum microemulsion region and rapid and stable emulsification were selected for further characterization. The diluted self-microemulsifying mixtures underwent evaluation of dose uniformity, droplet size, zeta potential, and transmission electron microscopy. The selected formulations exhibited uniform delivery of the dose throughout the canister life, along with droplet sizes and zeta potentials that ranged from 24.74 to 88.99 nm and - 19.27 to - 10.00 mV, respectively. The aerosol performance of each self-microemulsifying drug delivery system (SMEDDS)-pMDI was assessed using the Next Generation Impactor, which indicated their capability to deliver the drug to the deeper areas of the lungs. In vitro cytotoxicity testing on A549 and NCI-H358 cells revealed no significant signs of toxicity up to a concentration of 1.56 µg/mL. The antimycobacterial activity of the formulations was evaluated against Mycobacterium bovis using flow cytometry analysis, which showed complete inhibition by day 5 with a minimum bactericidal concentration of 0.313 µg/mL. Moreover, the cellular uptake studies showed efficient delivery of the formulations inside macrophage cells, which indicated the potential for intracellular antimycobacterial activity. These findings demonstrated the potential of the Delamanid-SMEDDS-pMDI for efficient pulmonary delivery of delamanid to improve its effectiveness in the treatment of multi-drug resistant pulmonary TB.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon 423603, Maharashtra, India
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Department of Pharmacy, Gono Bishwabidyalay (University), Dhaka 1344, Bangladesh
| | - K Prem Ananth
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
4
|
Harada A, Xu W, Ono K, Tsutsuki H, Yahiro K, Sawa T, Niidome T. Modification of Silver Nanoplates with Cell-Binding Subunit of Bacterial Toxin and Their Antimicrobial Activity against Intracellular Bacteria. ACS APPLIED BIO MATERIALS 2023; 6:3387-3394. [PMID: 36972339 DOI: 10.1021/acsabm.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Intracellular bacteria are able to survive and grow in host cells and often cause serious infectious diseases. The B subunit of the subtilase cytotoxin (SubB) found in enterohemorrhagic Escherichia coli O113:H21 recognizes sialoglycans on cell surfaces and triggers the uptake of cytotoxin by the cells, meaning that Sub B is a ligand molecule that is expected to be useful for drug delivery into cells. In this study, we conjugated SubB to silver nanoplates (AgNPLs) for use as an antibacterial drug and examined their antimicrobial activity against intracellularly infecting Salmonella typhimurium (S. typhimurium). The modification of AgNPLs with SubB improved their dispersion stability and antibacterial activity against planktonic S. typhimurium. The SubB modification enhanced the cellular uptake of AgNPLs, and intracellularly infecting S. typhimurium were killed at low concentrations of AgNPLs. Interestingly, larger amounts of SubB-modified AgNPLs were taken up by infected cells compared with uninfected cells. These results suggest that the S. typhimurium infection activated the uptake of the nanoparticles into the cells. SubB-modified AgNPLs are expected to be useful bactericidal systems for intracellularly infecting bacteria.
Collapse
Affiliation(s)
- Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
5
|
Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8899596. [PMID: 37727836 PMCID: PMC10506869 DOI: 10.1155/2023/8899596] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella is a foodborne zoonotic pathogen causing diarrhoeal disease to humans after consuming contaminated water, animal, and plant products. The bacterium is the third leading cause of human death among diarrhoeal diseases worldwide. Therefore, human salmonellosis is of public health concern demanding integrated interventions against the causative agent, Salmonella enterica. The prevention of salmonellosis in humans is intricate due to several factors, including an immune-stable individual infected with S. enterica continuing to shed live bacteria without showing any clinical signs. Similarly, the asymptomatic Salmonella animals are the source of salmonellosis in humans after consuming contaminated food products. Furthermore, the contaminated products of plant and animal origin are a menace in food industries due to Salmonella biofilms, which enhance colonization, persistence, and survival of bacteria on equipment. The contaminated food products resulting from bacteria on equipment offset the economic competition of food industries and partner institutions in international business. The most worldwide prevalent broad-range Salmonella serovars affecting humans are Salmonella Typhimurium and Salmonella Enteritidis, and poultry products, among others, are the primary source of infection. The broader range of Salmonella serovars creates concern over multiple strategies for preventing and controlling Salmonella contamination in foods to enhance food safety for humans. Among the strategies for preventing and controlling Salmonella spread in animal and plant products include biosecurity measures, isolation and quarantine, epidemiological surveillance, farming systems, herbs and spices, and vaccination. Other measures are the application of phages, probiotics, prebiotics, and nanoparticles reduced and capped with antimicrobial agents. Therefore, Salmonella-free products, such as beef, pork, poultry meat, eggs, milk, and plant foods, such as vegetables and fruits, will prevent humans from Salmonella infection. This review explains Salmonella infection in humans caused by consuming contaminated foods and the interventions against Salmonella contamination in foods to enhance food safety and quality for humans.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| |
Collapse
|
6
|
Arshad R, Razlansari M, Maryam Hosseinikhah S, Tiwari Pandey A, Ajalli N, Ezra Manicum AL, Thorat N, Rahdar A, Zhu Y, Tabish TA. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications. Drug Discov Today 2023; 28:103673. [PMID: 37331691 DOI: 10.1016/j.drudis.2023.103673] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa.
| | - Nanasaheb Thorat
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
7
|
Arshad R, Arshad MS, Malik A, Alkholief M, Akhtar S, Tabish TA, Moghadam AA, Rahdar A, Díez-Pascual AM. Mannosylated preactivated hyaluronic acid-based nanostructures for bacterial infection treatment. Int J Biol Macromol 2023; 242:124741. [PMID: 37156311 DOI: 10.1016/j.ijbiomac.2023.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Salmonella Typhi is an intracellular bacterium causing a variety of enteric diseases, being typhoid fever the most common. Current modalities for treating S. typhi infection are subjected to multi-drug resistance. Herein, a novel macrophage targeting approach was developed via coating bioinspired mannosylated preactivated hyaluronic acid (Man-PTHA) ligands on a self-nanoemulsifying drug delivery system (SNEDDS) loaded with the anti-bacterial drug ciprofloxacin (CIP). The shake flask method was used to determine the drug solubility in the different excipients (oil, surfactants and co-surfactants). Man-PTHA were characterized by physicochemical, in vitro, and in vivo parameters. The mean droplet size was 257 nm, with a PDI of 0.37 and zeta potential of -15 mV. In 72 h, 85 % of the drug was released in a sustained manner, and the entrapment efficiency was 95 %. Outstanding biocompatibility, mucoadhesion, muco-penetration, anti-bacterial action and hemocompatibility were observed. Intra-macrophage survival of S. typhi was minimal (1 %) with maximum nanoparticle uptake, as shown by their higher fluorescence intensity. Serum biochemistry evaluation showed no significant changes or toxicity, and histopathological evaluation confirmed the entero-protective nature of the bioinspired polymers. Overall, results confirm that Man-PTHA SNEDDS can be employed as novel and effective delivery systems for the therapeutic management of S. typhi infection.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan.
| | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA.
| | - Tanveer A Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|
8
|
Arshad R, Arshad MS, Tabish TA, Shah SNH, Afzal S, Shahnaz G. Amidated Pluronic Decorated Muco-Penetrating Self-Nano Emulsifying Drug Delivery System (SNEDDS) for Improved Anti- Salmonella typhi Potential. Pharmaceutics 2022; 14:2433. [PMID: 36365252 PMCID: PMC9694248 DOI: 10.3390/pharmaceutics14112433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 12/20/2023] Open
Abstract
The enteric system residing notorious Salmonella typhimurium (S. typhi) is an intracellular, food-borne, and zoonotic pathogen causing typhoid fever. Typhoid fever is one of the leading causes of mortality and morbidity in developing and underdeveloped countries. It also increased the prevalence of multidrug resistance globally. Currently, available anti-bacterial modalities are unable to penetrate into the intracellular compartments effectively for eradicating S. typhi infection. Therefore, in this study, we developed nanostructured lipid-based carriers in the form of a self-nanoemulsifying drug delivery system (SNEDDS) for targeted delivery of ciprofloxacin (CIP) into the S. typhi intracellular reservoirs. Capryol 90, Tween 80, and Span 20 were finalized as suitable oil, surfactant, and co-surfactant, respectively, according to the pseudoternary phase diagram emulsifying region. Targeting capability and mucopenetration of the SNEDDS was attributed to the inclusion of amidated pluronic (NH2-F127). Developed NH2-F127 SNEDDS were characterized via physicochemical, in vitro, ex vivo, and in vivo evaluation parameters. The size of the SNEDDS was found to be 250 nm, having positively charged zeta potential. In vitro dissolution of SNEDDS showed 80% sustained release of CIP in 72 h with maximum entrapment efficiency up to 90% as well as good hemocompatibility by showing less than 0.2% hemolysis and 90% biocompatibility. The survival rate of S. typhi in macrophages (RAW 264.7) was minimal, i.e., only 2% in the case of NH2-F127 SNEDDS. Macrophage uptake assay via nanostructures confirmed the maximum cellular uptake as evidenced by the highest fluorescence. Biofilm dispersion assay showed rapid eradication of developed resistant biofilms on the gall bladder. In vivo pharmacokinetics showed improved bioavailability by showing an increased area under the curve (AUC) value. Taken together, NH2-F127-SNEDDS can be utilized as an alternative and efficient delivery system for the sustained release of therapeutic amounts of CIP for the treatment of S. typhi.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Saira Afzal
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Quad-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
9
|
Biocompatible formulation of cationic antimicrobial peptide Polylysine (PL) through nanotechnology principles and its potential role in food preservation — A review. Int J Biol Macromol 2022; 222:1734-1746. [DOI: 10.1016/j.ijbiomac.2022.09.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
10
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
12
|
Mohammed M, Devnarain N, Elhassan E, Govender T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1799. [PMID: 35485247 PMCID: PMC9539990 DOI: 10.1002/wnan.1799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA‐based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA. These nanoparticles are able to selectively deliver antibacterial drugs or diagnostic molecules into the site of infections. In addition, HA can bind with overexpressed cluster of differentiation 44 (CD44) receptors in macrophages and also can be degraded by a family of enzymes called hyaluronidase (HAase) to release drugs or molecules. By binding with these receptors or being degraded at the infection site by HAase, HA‐based nanoparticles allow enhanced and targeted antibacterial delivery. Herein, we present a comprehensive and up‐to‐date review that highlights various techniques of preparation of HA‐based nanoparticles that have been reported in the literature. Furthermore, we also discuss and critically analyze numerous types of HA‐based nanoparticles that have been employed in antibacterial delivery to date. This article offers a critical overview of the potential of HA‐based nanoparticles to overcome the challenges of conventional antibiotics in the treatment of bacterial infections. Moreover, this review identifies further avenues of research for developing multifunctional and biomimetic HA‐based nanoparticles for the treatment, prevention, and/or detection of pathogenic bacteria. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
14
|
Jahan F, Zaman SU, Akhtar S, Arshad R, Ibrahim IM, Shahnaz G, Rahdar A, Pandey S. Development of mucoadhesive thiomeric chitosan nanoparticles for the targeted ocular delivery of vancomycin against Staphylococcus aureus resistant strains. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aims to formulate mucoadhesive vancomycin loaded thiolated chitosan (TCS) nanoparticles. These nanoparticles are mucoadhesive and enhance the retention of the drug at the ocular site. For this purpose, TCS loaded vancomycin nanoparticles were prepared by the ion-gelation method and were characterized for their size, shape, polydispersity index, mucoadhesion, cellular uptake and anti-inflammatory activity. The average size of the synthesized nanoparticles was found to be 288 nm with positive zeta potential. Moreover, 85% vancomycin was successfully encapsulated in TCS nanoparticles by using this method. A 2-fold increase in mucoadhesion was found as compared to non-thiolated vancomycin formulation (p < 0.05). Zone of inhibition of vancomycin loaded TCS was also significantly improved compared to non-thiolated chitosan nanoparticles and vancomycin alone. In-vivo anti-inflammatory evaluation via histopathology resulted in ocular healing. Based on the results, it is inferred that TCS nanoparticles are a promising drug delivery carrier system for ocular delivery of vancomycin.
Collapse
Affiliation(s)
- Faryal Jahan
- Department of Pharmaceutics, Riphah institute of pharmaceutical sciences , Riphah International University Islamabad , 46000 , Pakistan
| | - Shahiq uz Zaman
- Department of Pharmaceutics, Riphah institute of pharmaceutical sciences , Riphah International University Islamabad , 46000 , Pakistan
| | - Sohail Akhtar
- Department of Entomology, Faculty of Agriculture & Environment , Islamia University of Bahawalpur , 63100 , Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy , University of Lahore , Lahore , 54000 , Pakistan
| | - Ibrahim Muhammad Ibrahim
- Department of Pharmacology , College of Medicine, King Abdul Aziz University , Jeddah , 22252 , Saudi Arabia
| | - Gul Shahnaz
- Department of Pharmacy , Quaid-i azam University , Islamabad , 45320 , Pakistan
| | - Abbas Rahdar
- Department of Physics, Faculty of Science , University of Zabol , Zabol , 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science , Yeungnam University , 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
15
|
Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3330. [PMID: 34947679 PMCID: PMC8708502 DOI: 10.3390/nano11123330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer. RNA-conjugated nanomaterials appear to be the gold standard for preventing various malignant tumors through focused diagnosis and delivering to a specific tissue, resulting in cancer cells going into programmed death. The latest advances in RNA nanotechnology applications for cancer diagnosis and treatment are summarized in this review.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan;
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | | | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| |
Collapse
|
16
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
17
|
Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel) 2021; 10:981. [PMID: 34439031 PMCID: PMC8388863 DOI: 10.3390/antibiotics10080981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles has become a significant public health problem globally. The management of this issue using conventional antimicrobial preparations frequently results in an increase in pathogen resistance and a shortage of effective antimicrobials for future use against the same pathogens. In this review, we discuss the emergence of AMR and argue for the importance of addressing this issue by discovering novel synthetic or naturally occurring antibacterial compounds and providing insights into the application of various drug delivery approaches, delivered through numerous routes, in comparison with conventional delivery systems. In addition, we discuss the effectiveness of these delivery systems in different types of infectious diseases associated with antimicrobial resistance. Finally, future considerations in the development of highly effective antimicrobial delivery systems to combat antimicrobial resistance are presented.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Nana Juniarti Natsir Djide
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Qonita Kurnia Anjani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Institute of Pharmaceutical Science, King’s College of London, London SE1 9NH, UK
| | - Nur Rahma Rumata
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|