1
|
Gavazov KB, Racheva PV, Saravanska AD, Genc F, Delchev VB. Mono- and Binuclear Complexes in a Centrifuge-Less Cloud-Point Extraction System for the Spectrophotometric Determination of Zinc(II). Molecules 2024; 29:4511. [PMID: 39339505 PMCID: PMC11434516 DOI: 10.3390/molecules29184511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
The hydrophobic reagent 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR) was investigated as part of a cloud-point extraction (CPE) system for the spectrophotometric determination of Zn(II). In the system, complexes with different stoichiometries, including 1:1 and 2:2 (Zn:HTAR), are formed. Their ground-state equilibrium geometries were optimized at the B3LYP/6-31G level of theory. The obtained structures were then used to calculate vertical excitation energies in order to generate theoretical UV/Vis absorption spectra. The comparison between theoretical and experimental spectra demonstrated that, under optimal conditions, a binuclear complex containing oxygen-bridging atoms is the dominant species. The absorbance was found to be linearly dependent on the concentration of Zn(II) within the range of 15.7 to 209 ng mL-1 (R2 = 0.9996). The fraction extracted (%E), logarithm of the conditional extraction constant (log Kex), and molar absorption coefficient (ε) at λmax = 553 nm were calculated to be 98.3%, 15.9, and 4.47 × 105 L mol-1 cm-1, respectively. The method developed is characterized by simplicity, convenience, profitability, sensitivity, and ecological friendliness. It has been successfully applied to the analysis of pharmaceutical and industrial samples.
Collapse
Affiliation(s)
- Kiril B. Gavazov
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (A.D.S.)
| | - Petya V. Racheva
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (A.D.S.)
| | - Antoaneta D. Saravanska
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (A.D.S.)
| | - Fatma Genc
- Faculty of Pharmacy, Istanbul Yeni Yüzyıl Üniversitesi, 26 Yılanlı Ayazma Caddesi, 34010 Istanbul, Turkey;
| | - Vassil B. Delchev
- Faculty of Chemistry, University of Plovdiv ‘Paisii Hilendarskii’, 24 Tsar Assen St., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
2
|
Mortada WI, Zedan HE, Khalifa ME. Spectrophotometric determination of trace vanadium in fresh fruit juice samples by ion pair-based surfactant-assisted microextraction procedure with solidification of floating organic drop. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123107. [PMID: 37418905 DOI: 10.1016/j.saa.2023.123107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
An ion pair-based surfactant-assisted dispersive liquid-liquid microextraction with solidification of floating organic drop (IP-SA-DLLME-SFOD) was developed for extraction of vanadium followed by spectrophotometric determination. Tannic acid (TA) and cetyl trimethylammonium bromide (CTAB) were utilized as complexing and ion-pairing agents, respectively. Using ion-pairing, TA-vanadium complex became more hydrophobic and quantitatively extracted into 1-undecanol. Some factors that influence extraction efficiency were studied. Under optimized circumstances, the detection and quantification limits were 1.8 μg L-1 and 5.9 μg L-1, respectively. The method was linear up to 1000 μg L-1 and the enrichment factors was 19.8. For 100 μg L-1 vanadium, the intra-day, and inter-days relative standard deviations (n = 8) were 1.4% and 1.8%, respectively. The suggested IP-SA-DLLME-SFOD procedure has been effectively implemented for spectrophotometric quantification of vanadium in fresh fruit juice samples. Finally, the greenness of the approach was estimated using Analytical Greenness Calculator (AGREE), which proved its environmental friendliness and safety.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt.
| | - Hanan E Zedan
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Magdi E Khalifa
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Gavazov KB, Racheva PV, Saravanska AD, Toncheva GK, Delchev VB. Extractive Spectrophotometric Determination and Theoretical Investigations of Two New Vanadium(V) Complexes. Molecules 2023; 28:6723. [PMID: 37764499 PMCID: PMC10536437 DOI: 10.3390/molecules28186723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Two new vanadium (V) complexes involving 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR) and tetrazolium cation were studied. The following commercially available tetrazolium salts were used as the cation source: tetrazolium red (2,3,5-triphenyltetrazol-2-ium;chloride, TTC) and neotetrazolium chloride (2-[4-[4-(3,5-diphenyltetrazol-2-ium-2-yl)phenyl]phenyl]-3,5-diphenyltetrazol-2-ium;dichloride, NTC). The cations (abbreviated as TT+ and NTC+) impart high hydrophobicity to the ternary complexes, allowing vanadium to be easily extracted and preconcentrated in one step. The complexes have different stoichiometry. The V(V)-HTAR-TTC complex dimerizes in the organic phase (chloroform) and can be represented by the formula [(TT+)[VO2(HTAR)]]2. The other complex is monomeric (NTC+)[VO2(HTAR)]. The cation has a +1 charge because one of the two chloride ions remains undissociated: NTC+ = (NT2+Cl-)+. The ground-state equilibrium geometries of the constituent cations and final complexes were optimized at the B3LYP and HF levels of theory. The dimer [(TT+)[VO2(HTAR)]]2 is more suitable for practical applications due to its better extraction characteristics and wider pH interval of formation and extraction. It was used for cheap and reliable extraction-spectrophotometric determination of V(V) traces in real samples. The absorption maximum, molar absorptivity coefficient, limit of detection, and linear working range were 549 nm, 5.2 × 104 L mol-1 cm-1, 4.6 ng mL-1, and 0.015-2.0 μg mL-1, respectively.
Collapse
Affiliation(s)
- Kiril B. Gavazov
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria
| | - Petya V. Racheva
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria
| | - Antoaneta D. Saravanska
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria
| | - Galya K. Toncheva
- Faculty of Chemistry, University of Plovdiv ‘Paisii Hilendarskii’, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria (V.B.D.)
| | - Vasil B. Delchev
- Faculty of Chemistry, University of Plovdiv ‘Paisii Hilendarskii’, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria (V.B.D.)
| |
Collapse
|
4
|
Wlazłowska E, Grabarczyk M. Adsorptive Stripping Voltammetry for Determination of Vanadium: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103646. [PMID: 37241271 DOI: 10.3390/ma16103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The main purpose of this review is to present methods of adsorptive stripping voltammetry that can be used to determine trace amounts of VO2(+) in various types of samples. The detection limits achieved using different working electrodes are presented. The factors influencing the obtained signal, including the selection of the complexing agent and the selection of the working electrode, are shown. For some methods, in order to increase the range of applied concentrations in which vanadium can be detected, a catalytic effect is introduced to adsorptive stripping voltammetry. The influence of the foreign ions and organic matter contained in natural samples on the vanadium signal is analyzed. This paper presents methods of elimination associated with the presence of surfactants in the samples. The methods of adsorptive stripping voltammetry for the simultaneous determination of vanadium with other metal ions are also characterized below. Finally, the practical use of the developed procedures, mainly for the analysis of food and environmental samples, is summarized in a tabular version.
Collapse
Affiliation(s)
- Edyta Wlazłowska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|
5
|
Kirova GK, Velkova ZY, Delchev VB, Gavazov KB. Vanadium-Containing Anionic Chelate for Spectrophotometric Determination of Hydroxyzine Hydrochloride in Pharmaceuticals. Molecules 2023; 28:molecules28062484. [PMID: 36985455 PMCID: PMC10051179 DOI: 10.3390/molecules28062484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Four azo dyes known to form anionic complexes with V(V) were investigated as potential liquid–liquid extraction–spectrophotometric reagents for the antihistamine medication hydroxyzine hydrochloride (HZH). A stable ion-association complex suitable for analytical purposes was obtained with 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR). The molar absorption coefficient, limit of detection, linear working range, and relative standard deviation in the analysis of real pharmaceutical samples (tablets and syrup) were 3.50 × 104 L mol−1 cm−1, 0.13 μg mL−1, 0.43–12.2 μg mL−1, and ≤2.7%, respectively. After elucidating the molar ratio in the extracted ion-association complex (HZH:V = 1:1), the ground-state equilibrium geometries of the two constituent ions—HZH+ and [VO2(HTAR)]−—were optimized at the B3LYP level of theory using 6-311++G** basis functions. The cation and anion were then paired in four different ways to find the most likely structure of the extracted species. In the lowest-energy structure, the VO2 group interacts predominantly with the heterochain of the cation. A hydrogen bond is present (V–O···H–O; 1.714 Å) involving the terminal oxygen of this chain.
Collapse
Affiliation(s)
- Gergana Kirilova Kirova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria
| | - Zdravka Yancheva Velkova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria
| | - Vassil Borisov Delchev
- Faculty of Chemistry, University of Plovdiv ‘Paisii Hilendarskii’, 24 Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Kiril Blazhev Gavazov
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
6
|
Cloud point extraction coupled with ultrasonic-assisted back-extraction for the determination of metalaxyl, fludioxonil and fenarimol in fruits by gas chromatography with flame ionization detection. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gavazov KB, Racheva PV, Milcheva NP, Divarova VV, Kiradzhiyska DD, Genç F, Saravanska AD. Use of a Hydrophobic Azo Dye for the Centrifuge-Less Cloud Point Extraction-Spectrophotometric Determination of Cobalt. Molecules 2022; 27:4725. [PMID: 35897901 PMCID: PMC9332315 DOI: 10.3390/molecules27154725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
The hydrophobic azo dye 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR, H2L) was studied as part of a system for the centrifuge-less cloud point extraction (CL-CPE) and spectrophotometric determination of traces of cobalt. The extracted 1:2 (Co:HTAR) complex, [CoIII(HL-)(L2-)]0, shows an absorption maximum at 553 nm and contains HTAR in two different acid-base forms. Optimum conditions for its formation and CL-CPE were found as follows: 1 × 10-5 mol L-1 of HTAR, 1.64% of Triton X-114, pH of 7.8, incubation time of 20 min at ca. 50 °C, and cooling time of 30 min at ca. -20 °C. The linear range, limit of detection, and apparent molar absorptivity coefficient were 5.4-189 ng mL-1, 1.64 ng mL-1, and 2.63 × 105 L mol-1 cm-1, respectively. The developed procedure does not use any organic solvents and can be described as simple, cheap, sensitive, convenient, and environmentally friendly. It was successfully applied to the analysis of artificial mixtures and real samples, such as steel, dental alloy, rainwater, ampoules of vitamin B12, and saline solution for intravenous infusion.
Collapse
Affiliation(s)
- Kiril Blazhev Gavazov
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (V.V.D.); (D.D.K.); (A.D.S.)
| | - Petya V. Racheva
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (V.V.D.); (D.D.K.); (A.D.S.)
| | - Nikolina P. Milcheva
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (V.V.D.); (D.D.K.); (A.D.S.)
| | - Vidka V. Divarova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (V.V.D.); (D.D.K.); (A.D.S.)
| | - Denitsa Dimitrova Kiradzhiyska
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (V.V.D.); (D.D.K.); (A.D.S.)
| | - Fatma Genç
- Faculty of Pharmacy, İstanbul Yeni Yüzyıl Üniversitesi, 26 Yılanlı Ayazma Caddesi, 34010 İstanbul, Turkey;
| | - Antoaneta D. Saravanska
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 120 Buxton Bros Str., 4004 Plovdiv, Bulgaria; (P.V.R.); (V.V.D.); (D.D.K.); (A.D.S.)
| |
Collapse
|
8
|
Micro-PAD for assessment of vanadium in foodstuff utilizing CIE-L*a*b* color space. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Mortada WI, El-defrawy MM, Erfan E, Elasmy HA. Cloud point extraction coupled with back-extraction for speciation of inorganic vanadium in water and determination of total vanadium in food samples by ICP-OES. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Racheva PV, Milcheva NP, Genc F, Gavazov KB. A centrifuge-less cloud point extraction-spectrophotometric determination of copper(II) using 6-hexyl-4-(2-thiazolylazo)resorcinol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120106. [PMID: 34214740 DOI: 10.1016/j.saa.2021.120106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
A simple, cheap, and environmentally friendly centrifuge-less cloud point extraction procedure was developed for the preconcentration of traces of Cu(II) before its spectrophotometric determination. It is based on a complexation reaction with the hydrophobic azo reagent 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR), in which a complex with a stoichiometric ratio of 1:1 and an absorption maximum at 535 nm is formed. The experimental conditions for Cu(II) determination were found: HTAR concentration (8 × 10-6 mol mL-1), mass fraction of the surfactant Triton X-114 (2.2%), pH (5.9, ammonium acetate buffer), and incubation time (10 min at 60 °C). The linear range, limit of detection, molar absorption coefficient and preconcentration factor were calculated to be 4.5-254 ng mL-1, 1.34 ng mL-1, 2.54 × 105 L mol-1 cm-1, and 10, respectively. The effect of foreign ions was studied, and the proposed procedure was applied to the analysis of water samples and a saline solution for intravenous infusion.
Collapse
Affiliation(s)
- Petya V Racheva
- Medical University of Plovdiv, Faculty of Pharmacy, Department of Chemical Sciences, 120 Buxton Bros Str., Plovdiv, Bulgaria
| | - Nikolina P Milcheva
- Medical University of Plovdiv, Faculty of Pharmacy, Department of Chemical Sciences, 120 Buxton Bros Str., Plovdiv, Bulgaria
| | - Fatma Genc
- İstanbul Yeni Yüzyıl Üniversitesi, Faculty of Pharmacy, 26 Yılanlı Ayazma Caddesi, İstanbul, Turkey
| | - Kiril B Gavazov
- Medical University of Plovdiv, Faculty of Pharmacy, Department of Chemical Sciences, 120 Buxton Bros Str., Plovdiv, Bulgaria.
| |
Collapse
|