1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Sadat Afi Kheljani S, Didehban K, Atai M, Zou C, Ahmadjo S, Rodríguez-Pizarro M, Bahri-Laleh N, Poater A. In-situ photo-crosslinkable elastomer based on polyalphaolefin/halloysite nanohybrid. J Colloid Interface Sci 2024; 659:751-766. [PMID: 38211492 DOI: 10.1016/j.jcis.2023.12.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
In this research, new injectable and in situ photocurable elastomeric nanohybrids have been fabricated from polyalphaolefin (PAO) resins and halloysite nanofiller. In this regard, the co-oligomerization of long α-olefin monomers (C6, C8 and C10) with alkenol counterparts was carried out via a simple cationic route to provide OH-functionalized PAOs. The newly formed PAO type copolymer resins as well as halloysite nanoclay were then equipped with photocurable CC bonds containing an acrylate moiety. After the characterization of the final chemical substances and also of the intermediate structures, experimentally and computationally by means of Density Functional Theory (DFT) calculations, the neat treated PAO and PAO/halloysite nanohybrids were subjected to a curing process by visible light irradiation (λ ∼ 475 nm, blue light). The crosslinking efficiency of the neat resins and the formed nanohybrid was evaluated using shrinkage strain-time curves and equilibrium swelling method. The suggested nanohybrid is not only biocompatible (96 % in the MTT assay), and hydrophilic (with a water contact angle of 61°), but also exhibits an easy, fast and robust curing process with great potential for coating and sealing technologies for medical devices.
Collapse
Affiliation(s)
| | - Khadijeh Didehban
- Department of Chemistry, Payame Noor University, P.O. Box 19395-36972 Tehran, Iran
| | - Mohammad Atai
- Iran Polymer and Petrochemical Institute (IPPI), P. O. Box: 14965/115 Tehran, Iran
| | - Chen Zou
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Saeid Ahmadjo
- Iran Polymer and Petrochemical Institute (IPPI), P. O. Box: 14965/115 Tehran, Iran
| | - Montserrat Rodríguez-Pizarro
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/ Mª Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P. O. Box: 14965/115 Tehran, Iran; Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan.
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, c/ Mª Aurèlia Capmany 69, Girona, Catalonia 17003, Spain.
| |
Collapse
|
3
|
Nifant’ev IE, Komarov PD, Kostomarova OD, Kolosov NA, Ivchenko PV. MAO- and Borate-Free Activating Supports for Group 4 Metallocene and Post-Metallocene Catalysts of α-Olefin Polymerization and Oligomerization. Polymers (Basel) 2023; 15:3095. [PMID: 37514483 PMCID: PMC10384419 DOI: 10.3390/polym15143095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Modern industry of advanced polyolefins extensively uses Group 4 metallocene and post-metallocene catalysts. High-throughput polyolefin technologies demand the use of heterogeneous catalysts with a given particle size and morphology, high thermal stability, and controlled productivity. Conventional Group 4 metal single-site heterogeneous catalysts require the use of high-cost methylalumoxane (MAO) or perfluoroaryl borate activators. However, a number of inorganic phases, containing highly acidic Lewis and Brønsted sites, are able to activate Group 4 metal pre-catalysts using low-cost and affordable alkylaluminums. In the present review, we gathered comprehensive information on MAO- and borate-free activating supports of different types and discussed the surface nature and chemistry of these phases, examples of their use in the polymerization of ethylene and α-olefins, and prospects of the further development for applications in the polyolefin industry.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel D. Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
| | | | - Nikolay A. Kolosov
- NIOST LLC, Kuzovlevsky Tr. 2-270, 634067 Tomsk, Russia; (O.D.K.); (N.A.K.)
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
4
|
Nifant’ev IE, Vinogradov AA, Vinogradov AA, Bagrov VV, Kiselev AV, Minyaev ME, Samurganova TI, Ivchenko PV. Heterocene Catalysts and Reaction Temperature Gradient in Dec-1-ene Oligomerization for the Production of Low Viscosity PAO Base Stocks. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Rahbar A, Falcone B, Pareras G, Nekoomanesh-Haghighi M, Bahri-Laleh N, Poater A. Chain Walking in the AlCl 3 Catalyzed Cationic Polymerization of α-Olefins. Chempluschem 2023; 88:e202200432. [PMID: 36592006 DOI: 10.1002/cplu.202200432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Continuing efforts aimed at performing the 1-decene polymerization to low viscosity polyalphaolefins (PAO)s using a less hazardous AlCl3 catalyst than boron-based analogs, the basic mechanisms of this system were revealed in this research. In this aspect, neat AlCl3 and AlCl3 /toluene were carried out to perform 1-decene polymerizations. Microstructure analyses of the as-synthesized oils revealed low molecular weight (708 vs. 1529 g/mol), kinematic viscosity (KV100 =6.4 vs. 22.2 cSt), and long chain branching (82.1 vs. 84.7) of PAO from the system containing toluene solvent. Furthermore, NMR analysis confirmed various types of short chain branch (SCB) with the inclusion of toluene ring in the structure of final PAO chains. Then, to shed light on the basic mechanisms of cationic polymerization of 1-decene including: i) chain initiation, ii) chain transfer to the monomer, iii) isomerization of the carbocation via a chain walking mechanism (causes different SCB length), and iv) binding of toluene ring to the propagating PAO chain (to yield aromatic containing oligomers), molecular modeling at the DFT level was employed. The energies obtained confirmed the ease of carbocation isomerization and chain transfer mechanisms in toluene medium, which well confirms the highly branched structure experimentally obtained for related PAO.
Collapse
Affiliation(s)
- Amene Rahbar
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Bruno Falcone
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- School of Chemistry, University College Cork, College Road, T12 K8AF, Cork, Ireland
| | - Gerard Pareras
- School of Chemistry, University College Cork, College Road, T12 K8AF, Cork, Ireland
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Mª Aurèlia Capmany 69, 17003, Girona, Spain
| | - Mehdi Nekoomanesh-Haghighi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Naeimeh Bahri-Laleh
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Mª Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
6
|
Yousefi S, Bahri-Laleh N, Nekoomanesh M, Emami M, Sadjadi S, Amin Mirmohammadi S, Tomasini M, Bardají E, Poater A. An efficient initiator system containing AlCl3 and supported ionic-liquid for the synthesis of conventional grade polyisobutylene in mild conditions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Effect of different chain transfer agents in the coordinative chain transfer oligomerization of dec-1-ene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Eutectic solvents containing Al-compounds: new benign alternatives to BF3 co-initiator in producing low viscosity polyalphaolefin oils. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
|