1
|
Wang C, Liu J, Gui B, Li C, Shu J, An S, Zhao C, Zhai J, Liu N, Lan T. Unravelling the nature differences of halide anions affecting the sorption of U(VI) by hydrous titanium dioxide supported waste polyacrylonitrile fibers in the presence of carbonates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175771. [PMID: 39191322 DOI: 10.1016/j.scitotenv.2024.175771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The co-occurrence of halides and carbonates with uranium in the natural water poses a challenge to the uranium recovery for nuclear power due to the potential complexation. Hydrated titanium dioxide (HTD) contains a lot of surface hydroxyl (-OH) groups and waste polyacrylonitrile fiber (WPANF) has the advantages of both weather and chemical resistances. Herein, the nature differences of halide anions affecting the sorption of U(VI) by WPANF/HTD was investigated in the presence of carbonates. The sorption capacity (qe) decreased with the increases of initial pH, total carbonates, and halides but increased at high temperature and initial U(VI) concentration. The U(VI) sorption was a spontaneous chemisorption, which mainly involved surface sorption rather than intra-particle diffusion. The order of inhibitory ability on U(VI) sorption for the four halides was F > I ∼ Br > Cl. The aqueous F- was shown to be the most strongly inhibited with the lowest qe value of 17.2 mg·g-1, due to the formation of U(VI)-F complex anions. The characteristic peaks with weakened relative intensity after U(VI) sorption for the surface -OH groups on HTD (HTD-OH), together with the results from DFT calculations, demonstrated a key role of HTD-OH in U(VI) sorption by WPANF/HTD via the coordination with U(VI) complex anions. This work unravels the nature differences of halide anions affecting U(VI) sorption in the presence of carbonates and provides a valuable reference for the U(VI) extraction toward halogen-rich natural uranium-containing water.
Collapse
Affiliation(s)
- Cheng Wang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jun Liu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Bingtao Gui
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chao Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Junxiang Shu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuwen An
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, PR China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Juan Zhai
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
2
|
Behera AK, Shadangi KP, Sarangi PK. Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability. CHEMOSPHERE 2024; 354:141702. [PMID: 38490618 DOI: 10.1016/j.chemosphere.2024.141702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Removal of toxic dyes such as Rhodamine B is essential as it pollutes aqueous and soil streams as well. This comprehensive study explores the potential of Calophyllum inophyllum seed char as an efficient bio-adsorbent based on their characteristic properties and a comparative study between various carbon-based adsorbents on the adsorption capacity of Rhodamine B dye. In this study, the char was prepared from Calophyllum inophyllum seed using a slow pyrolysis process (298 K/min) at an optimum temperature of 823 K and used as an adsorbent for the removal of Rhodamine B from water. The resulting char was mesoporous and had 155.389 m2/g surface areas (BET) and 0.628 cc/g pore volume. The formation of pores was observed from the SEM analysis. The adsorption studies were tested and optimized through various parameters such as solution pH, adsorbent dosage, initial dye concentration, stirring speed, contact time, and solution temperature. Maximum 95.5 % removal of Rhodamine B was possible at the pH: 2, stirring speed: 100 rpm, time: 25 min, temperature 308 K, and dose: 1.2 g/L. The highest adsorption capacity at equilibrium was determined to be 169.5 (mg/g) through Langmuir adsorption isotherm studies and followed pseudo 2nd order kinetics. The thermodynamics study confirmed the adsorption processes were spontaneous (ΔG°=-0.735 kJ/mol) and endothermic (ΔH° = 4.1 kJ/mol) processes. The reusability study confirmed that the mesoporous char can be reused as an efficient adsorbent for up to 3 cycles for environmental remediation.
Collapse
Affiliation(s)
- Amit Kumar Behera
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768017, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768017, India.
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur 795004, India
| |
Collapse
|
3
|
Kuang J, Cai T, Dai J, Yao L, Liu F, Liu Y, Shu J, Fan J, Peng H. High strength chitin/chitosan-based aerogel with 3D hierarchically macro-meso-microporous structure for high-efficiency adsorption of Cu(II) ions and Congo red. Int J Biol Macromol 2023; 230:123238. [PMID: 36641015 DOI: 10.1016/j.ijbiomac.2023.123238] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
A high-strength aerogel with a 3D hierarchically macro-meso-microporous structure (HPS-aerogel) was designed based on biological macromolecules of chitin and chitosan. The macropores can be created within HPS-aerogel after CaCO3 removal, and meso-micropores resulting from water sublimation during freeze-drying. The macro-meso-microporous structure endowed HPS-aerogel with high porosity, good mechanical properties, and excellent compression strength (1472 kPa at strain of 80 %). The HPS-aerogel exposed many adsorption sites and was used as an adsorbent to simultaneously remove Cu(II) and Congo red (CR) from water for the first time. The adsorption capability for Cu(II) and CR was 59.21 mg/g and 2074 mg/g at 303 K, respectively, and the adsorption processes matched Pseudo-second-order and Langmuir models with spontaneous and endothermic nature. Additionally, HPS-aerogel showed good anti-interference ability for coexisting pollutant. Importantly, HPS-aerogel exhibited an effective fixed-bed column adsorption performance for dynamic Cu(II) and CR with superior reusability and stability. Furthermore, HPS-aerogel showed outstanding adsorption efficiencies for Cu(II) and CR in real samples. The main adsorption mechanism for Cu(II) was attributed to the electrostatic attraction and chelation, and which was electrostatic attraction, Schiff base, and hydrogen bonding for CR. Therefore, HPS-aerogel should to be a promising adsorbent for removing both heavy-metal ions and dyes from wastewater.
Collapse
Affiliation(s)
- Jie Kuang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Taimei Cai
- School of life science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiangbei Dai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lihua Yao
- School of life science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Feifan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jieping Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hailong Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Ultra-high adsorption of CR from aqueous solution using LDHs decorated magnetic hydrochar: Selectivity and Anti-interference exploration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Gollakota AR, Munagapati VS, Liao SW, Shu CM, Shadangi KP, Sarangi PK, Wen JC. Ionic liquid [bmim] [TFSI] templated Na-X zeolite for the adsorption of (Cd 2+, Zn 2+), and dyes (AR, R6). ENVIRONMENTAL RESEARCH 2023; 216:114525. [PMID: 36243055 DOI: 10.1016/j.envres.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
1-butyl-3-methylimidazolium bis(triflouromethylsufonyl)imide functionalization to Na-X zeolite (IFZ) is the primary goal of this study in order to evaluate its ability to remove heavy metals (Cd2+), (Zn2+), dyes Rhodamine 6G (R6), and Alizarin Red S (AR) from aqueous streams. IFZ was thoroughly examined using analytical techniques XRD, BET, FE-SEM, and FTIR, to better understand its physical and chemical properties. The surface area and the volume of pores (IFZ; 19.93 m2/g, 0.0544 cm3/g) were reduced in comparison to the parent zeolite (Na-X; 63.92 m2/g, 0.0884 cm3/g). According to SEM, the crystal structure of the zeolite (Na-X) has not been significantly altered by XRD analysis. The mechanism, kinetics, isotherms, and thermodynamic properties of adsorption were all studied using batch adsorption experiments under various operating conditions. IFZ adsorbs dyes (AR; 76.33 mg/g, R6; 65.85 mg/g) better than metal ions (Cd2+; 30.68 mg/g, Zn2+; 41.53 mg/g) in acidic conditions. The Langmuir isotherm and pseudo-second order models were found to be the most accurate models for equilibrium data. Adsorption is endothermic and spontaneous, as revealed by the thermodynamics of the process. The IFZ can be used in three (Cd2+), two (Zn2+), four (AR), and five (R6) cycles of desorption and regeneration. For these reasons, IL-modified zeolite can be used to remove multiple types of pollutants from water in one simple step.
Collapse
Affiliation(s)
- Anjani Rk Gollakota
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou, 64002, Taiwan, ROC
| | - Sheng-Wei Liao
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan.
| | - Krushna Prasad Shadangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India; Department of Chemical Engineering, VSS University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Prakash K Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India.
| | - Jet-Chau Wen
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan; Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou, 64002, Taiwan, ROC
| |
Collapse
|
6
|
Yuan N, Tan K, Zhang X, Zhao A, Guo R. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag. CHEMOSPHERE 2022; 303:134839. [PMID: 35537628 DOI: 10.1016/j.chemosphere.2022.134839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Since the human consumption of coal is increasingly growing and coal-based solid wastes are discharged in large quantities, the resource utilization of coal-based solid wastes has been paid more attention. In the present work, for the first time, the coal gasification fine slag is subjected to prepare ZSM-5 zeolites with ultra-low n(SiO2)/n(Al2O3) ratios (less than 20) and hierarchical pore structures. The increase in the concentration of the alkaline extract leads to the decrease of the crystallinity, the irregularity of the microscopic morphology, and the decrease of the specific surface area, resulting in the in-situ generation of mesopores within ZSM-5. Moreover, adsorption experiments demonstrate that ZSM-5-2M exhibits the best methylene blue adsorption performance at the pH of 9 with a removal rate of up to 82.07%, and it also has good adsorption performance in simulated real water samples. Furthermore, the adsorption performance of ZSM-5-2M on the malachite green, Rhodamine B, Congo red, and methyl orange has been investigated and it is found to be very effective for the adsorption of cationic dyes, and its adsorption performance for methylene blue and malachite green is reduced in the presence of anions.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Aijing Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Rui Guo
- School of Economics and Management, Qilu Normal University, Jinan, 250013, China
| |
Collapse
|
7
|
Liu J, Shi S, Shu J, Li C, He H, Xiao C, Dong X, He Y, Liao J, Liu N, Lan T. Synthesis and characterization of waste commercially available polyacrylonitrile fiber-based new composites for efficient removal of uranyl from U(VI)-CO 3 solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153507. [PMID: 35101504 DOI: 10.1016/j.scitotenv.2022.153507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The existing species of uranium determines the design of novel sorbents towards uranium extraction from the natural waters. Herein, three composites based on waste commercially available polyacrylonitrile fiber (WPANF), namely WPANF/TiO2·xH2O, WPANF/CTAB-bentonite, and WPANF/NZVI, were first prepared and employed for the removal of U(VI) from the carbonate coexisted aqueous solutions. Among them, the WPANF/TiO2·xH2O exhibited the optimum sorption capacity of ~40.6 mg·g-1 (pH 8.0, C0 = 50 mg·L-1, and [CO3]Total = 2 mmol·L-1), which is significantly greater than the WPANF/CTAB-bentonite (~12.6 mg·g-1) and WPANF/NZVI (~10.3 mg·g-1). All sorption capacities decreased with the increases of initial pH, [NaCl], and [CO3]Total, due to the species transformation from UO2(CO3)22- and (UO2)2CO3(OH)3- to UO2(CO3)34- that enhanced the electrostatic repulsion and the competitive sorption. The XPS analysis and DFT calculations indicated that in the composites, WPANF was a role in strengthening the mechanical properties of composites rather than the main sorption sites for uranyl carbonates. The sorption mechanisms were mainly involved in -OH group coordination, Br- anions exchanges, and redox reactions. Desorption, reusability and U(VI) sorption test in the simulated seawater demonstrated that WPANF/TiO2·xH2O could be an alternative candidate for acquiring uranium resource. This work has screened the potential composites for U(VI) extraction from the natural waters, especially based on the practical U(VI) speciation, and provides a novel research approach for the removal of U(VI) towards U(VI)-CO3 systems.
Collapse
Affiliation(s)
- Jun Liu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Shilong Shi
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Junxiang Shu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Chao Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Hanyi He
- National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610005, P. R. China
| | - Chuyan Xiao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangqian Dong
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Yuhua He
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
8
|
Gollakota AR, Subbaiah Munagapati V, Shu CM, Wen JC. Adsorption of Cr (VI), and Pb (II) from aqueous solution by 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide functionalized biomass Hazel Sterculia (Sterculia Foetida L.). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|