1
|
Al Adawiah R, Zaenal Mustopa A, Budiarti S, Nur Umami R, Hertati A, Irawan H, Ikramullah MC, Arwansyah A, Mamangkey J, Kartikasari I, Salahudin Darusman H. Molecular dynamics simulation and purification of chimeric L1/L2 protein from human papillomavirus type 52 expressed in Escherichia coli BL21 (DE3). J Immunoassay Immunochem 2024; 45:395-414. [PMID: 38965835 DOI: 10.1080/15321819.2024.2376034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The available prophylactic vaccines for human papillomavirus (HPV) in the market are only effective against specific types of HPV, rendering them ineffective for other types of HPV infections. The objective of this research is to investigate the stability of the recombinant protein constructed, namely chimeric L1/L2 protein from HPV type 52, with improved cross-neutralization ability. The 3D model, predicted using Alphafold, Robetta, I-Tasser, and refined with Galaxy Refinement, is validated using Ramachandran plot analysis. The stability is verified through molecular dynamics simulations, considering parameters such as RMSD, RMSF, Rg, and SASA, where stable conditions are observed. The chimeric L1/L2 protein from HPV type 52 is purified using affinity chromatography, and the His-tag is cleaved using SUMO protease to obtain pure chimeric protein with the size of ~ 55 kDa. Western blot analysis confirms binding to anti-L1 HPV type 52 polyclonal antibody. The obtained vaccine candidate can be utilized as an effective prophylactic vaccine against HPV.
Collapse
Affiliation(s)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Sri Budiarti
- Department of Biology, IPB University, Bogor, Indonesia
| | - Rifqiyah Nur Umami
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Ai Hertati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Herman Irawan
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Muh Chaeril Ikramullah
- Biotechnology Study Program, Postgraduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Jendri Mamangkey
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
- Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | - Huda Salahudin Darusman
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine and Biomedical, IPB University Indonesia,Bogor
- Primate Animal Study Center, Research Institution and Community Service (LPPM), IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
Biswas R, Swetha RG, Basu S, Roy A, Ramaiah S, Anbarasu A. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 2024; 87:101782. [PMID: 39003966 DOI: 10.1016/j.biologicals.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Human cytomegalovirus (HCMV) is accountable for high morbidity in neonates and immunosuppressed individuals. Due to the high genetic variability of HCMV, current prophylactic measures are insufficient. In this study, we employed a pan-genome and reverse vaccinology approach to screen the target for efficient vaccine candidates. Four proteins, envelope glycoprotein M, UL41A, US23, and US28, were shortlisted based on cellular localization, high solubility, antigenicity, and immunogenicity. A total of 29 B-cell and 44 T-cell highly immunogenic and antigenic epitopes with high global population coverage were finalized using immunoinformatics tools and algorithms. Further, the epitopes that were overlapping among the finalized B-cell and T-cell epitopes were linked with suitable linkers to form various combinations of multi-epitopic vaccine constructs. Among 16 vaccine constructs, Vc12 was selected based on physicochemical and structural properties. The docking and molecular simulations of VC12 were performed, which showed its high binding affinity (-23.35 kcal/mol) towards TLR4 due to intermolecular hydrogen bonds, salt bridges, and hydrophobic interactions, and there were only minimal fluctuations. Furthermore, Vc12 eliciting a good response was checked for its expression in Escherichia coli through in silico cloning and codon optimization, suggesting it to be a potent vaccine candidate.
Collapse
Affiliation(s)
- Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Rayapadi G Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, 761008, Odisha, India
| | - Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Nguyen TL, Kim H. Immunoinformatics and computational approaches driven designing a novel vaccine candidate against Powassan virus. Sci Rep 2024; 14:5999. [PMID: 38472237 PMCID: PMC10933373 DOI: 10.1038/s41598-024-56554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Powassan virus (POWV) is an arthropod-borne virus (arbovirus) capable of causing severe illness in humans for severe neurological complications, and its incidence has been on the rise in recent years due to climate change, posing a growing public health concern. Currently, no vaccines to prevent or medicines to treat POWV disease, emphasizing the urgent need for effective countermeasures. In this study, we utilize bioinformatics approaches to target proteins of POWV, including the capsid, envelope, and membrane proteins, to predict diverse B-cell and T-cell epitopes. These epitopes underwent screening for critical properties such as antigenicity, allergenicity, toxicity, and cytokine induction potential. Eight selected epitopes were then conjugated with adjuvants using various linkers, resulting in designing of a potentially stable and immunogenic vaccine candidate against POWV. Moreover, molecular docking, molecular dynamics simulations, and immune simulations revealed a stable interaction pattern with the immune receptor, suggesting the vaccine's potential to induce robust immune responses. In conclusion, our study provided a set of derived epitopes from POWV's proteins, demonstrating the potential for a novel vaccine candidate against POWV. Further in vitro and in vivo studies are warranted to advance our efforts and move closer to the goal of combatting POWV and related arbovirus infections.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- eGnome, Inc., Seoul, 05836, Republic of Korea.
| |
Collapse
|
4
|
Bano N, Kumar A. Immunoinformatics study to explore dengue (DENV-1) proteome to design multi-epitope vaccine construct by using CD4+ epitopes. J Genet Eng Biotechnol 2023; 21:128. [PMID: 37987878 PMCID: PMC10663418 DOI: 10.1186/s43141-023-00592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Immunoinformatics is an emerging interdisciplinary field which integrates immunology, bioinformatics, and computational biology to study the immune system. In this study, we apply immunoinformatics approaches to explore the dengue proteome in order to design a multi-epitope vaccine construct. METHODS We used existing databases and algorithms to predict potential epitopes on dengue proteins and used a bioinformatics approach to identify the most promising epitopes. We then used molecular modelling to develop a multi-epitope construct which could be used as a potential vaccine. The results of this study demonstrate that immunoinformatics is a powerful tool for exploring and designing potential vaccines for infectious diseases like dengue. RESULTS Here, we found four CD4+ epitopes NLKYSVIVTVHTGDQ, ANPIVTDKEKPVNIE, LDPVVYDAKFEKQL, and VGAIALDFKPGTSGS that were used to design vaccine construct. The vaccine construct docked with TLR5. RMSD values suggest that docked complex of TLR5 and vaccine construct have putative stable interaction to induce immunogenic effects on host. CONCLUSIONS Furthermore, our study provides a proof of concept for the use of immunoinformatics approaches in DENV vaccine design. This vaccine can be effective in treating patients infected with DENV virus.
Collapse
Affiliation(s)
- Nishat Bano
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India.
| |
Collapse
|
5
|
Nguyen TL, Samuel Leon Magdaleno J, Rajjak Shaikh A, Choowongkomon K, Li V, Lee Y, Kim H. Designing a multi-epitope candidate vaccine by employing immunoinformatics approaches to control African swine fever spread. J Biomol Struct Dyn 2023; 41:10214-10229. [PMID: 36510707 DOI: 10.1080/07391102.2022.2153922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The African swine fever virus has been circulating for decades and is highly infectious, often fatal to farmed and wild pigs. There is currently no approved vaccine or treatment for the disease, making prevention even more difficult. Therefore, vaccine development is necessary and urgent to limit the consequences of ASF and ensure the food chain and sustainability of the swine industry. This research study was conducted to design a multi-epitope vaccine for controlling veterinary diseases caused by the African swine fever virus. We employed the immunoinformatics approaches to reveal 37 epitopes from different viral proteins of ASFV. These epitopes were linked to adjuvants and linkers to form a full-fledged immunogenic vaccine construct. The tertiary structure of the final vaccine was predicted using a deep-learning approach. The molecular docking and molecular dynamics predicted stable interactions between the vaccine and immune receptor TLR5 of Sus scrofa (Pig). The MD simulation studies reflect that the calculated parameters like RMSD, RMSF, number of hydrogen bonds, and finally, the buried interface surface area for the complex remained stable throughout the simulation time. This analysis suggests the stability of interface interactions between the TLR5 and the multi-epitope vaccine construct. Further, the physiochemical analysis demonstrated that our designed vaccine construct was expected to have high stability and prolonged half-life time in mammalian cells. Traditional vaccine design experiments require significant time and financial input from the development stage to the final product. Studies like this can assist in accelerating vaccine development while minimizing the cost.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jorge Samuel Leon Magdaleno
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Vladimir Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Youngho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
| |
Collapse
|
6
|
Joshi A, Akhtar N, Sharma NR, Kaushik V, Borkotoky S. MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology. J Biomol Struct Dyn 2023; 41:12464-12479. [PMID: 36935104 DOI: 10.1080/07391102.2023.2191137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/03/2023] [Indexed: 03/20/2023]
Abstract
MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using in silico immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and in silico cloning analysis showed that the candidate vaccine could be expressed in the Escherichia coli K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, Kalinga University, Raipur, India
| | - Nahid Akhtar
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Immunoinformatics-Aided Design of a Peptide Based Multiepitope Vaccine Targeting Glycoproteins and Membrane Proteins against Monkeypox Virus. Viruses 2022; 14:v14112374. [PMID: 36366472 PMCID: PMC9693848 DOI: 10.3390/v14112374] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Monkeypox is a self-limiting zoonotic viral disease and causes smallpox-like symptoms. The disease has a case fatality ratio of 3-6% and, recently, a multi-country outbreak of the disease has occurred. The currently available vaccines that have provided immunization against monkeypox are classified as live attenuated vaccinia virus-based vaccines, which pose challenges of safety and efficacy in chronic infections. In this study, we have used an immunoinformatics-aided design of a multi-epitope vaccine (MEV) candidate by targeting monkeypox virus (MPXV) glycoproteins and membrane proteins. From these proteins, seven epitopes (two T-helper cell epitopes, four T-cytotoxic cell epitopes and one linear B cell epitopes) were finally selected and predicted as antigenic, non-allergic, interferon-γ activating and non-toxic. These epitopes were linked to adjuvants to design a non-allergic and antigenic candidate MPXV-MEV. Further, molecular docking and molecular dynamics simulations predicted stable interactions between predicted MEV and human receptor TLR5. Finally, the immune-simulation analysis showed that the candidate MPXV-MEV could elicit a human immune response. The results obtained from these in silico experiments are promising but require further validation through additional in vivo experiments.
Collapse
|
8
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
9
|
Design of a multi-epitope vaccine against the pathogenic fungi Candida tropicalis using an in silico approach. J Genet Eng Biotechnol 2022; 20:140. [PMID: 36175808 PMCID: PMC9521867 DOI: 10.1186/s43141-022-00415-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022]
Abstract
Background Candida tropicalis causes tropical invasive fungal infections, with a high mortality. This fungus has been found to be resistant to antifungal classes such as azoles, echinocandins, and polyenes in several studies. As a result, it is vital to identify novel approaches to prevent and treat C. tropicalis infections. In this study, an in silico technique was utilized to deduce and evaluate a powerful multivalent epitope-based vaccine against C. tropicalis, which targets the secreted aspartic protease 2 (SAP2) protein. This protein is implicated in virulence and host invasion. Results By focusing on the Sap2 protein, 11 highly antigenic, non-allergic, non-toxic, and conserved epitopes were identified. These were subsequently paired with RS09 and flagellin adjuvants, as well as a pan HLA DR-binding epitope (PADRE) sequence to create a vaccine candidate that elicited both cell-mediated and humoral immune responses. It was projected that the vaccine design would be soluble, stable, antigenic, and non-allergic. Ramachandran plot analysis was applied to validate the vaccine construct’s 3-dimensional model. The vaccine construct was tested (at 100 ns) using molecular docking and molecular dynamics simulations, which demonstrated that it can stably connect with MHC-I and Toll-like receptor molecules. Based on in silico studies, we have shown that the vaccine construct can be expressed in E. coli. We surmise that the vaccine design is unrelated to any human proteins, indicating that it is safe to use. Conclusions The vaccine design looks to be an effective option for preventing C. tropicalis infections, based on the outcomes of the studies. A fungal vaccine can be proposed as prophylactic medicine and could provide initial protection as sometimes diagnosis of infection could be challenging. However, more in vitro and in vivo research is needed to prove the efficacy and safety of the proposed vaccine design.
Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00415-3.
Collapse
|
10
|
An Immunoinformatic Study on Exploration of Membrane Proteins to Develop Epitope Based Vaccine Against Streptococcus pneumoniae. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Sanami S, Rafieian-Kopaei M, Dehkordi KA, Pazoki-Toroudi H, Azadegan-Dehkordi F, Mobini GR, Alizadeh M, Nezhad MS, Ghasemi-Dehnoo M, Bagheri N. In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinformatics 2022; 23:311. [PMID: 35918631 PMCID: PMC9344258 DOI: 10.1186/s12859-022-04784-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical cancer is the fourth most common cancer affecting women and is caused by human Papillomavirus (HPV) infections that are sexually transmitted. There are currently commercially available prophylactic vaccines that have been shown to protect vaccinated individuals against HPV infections, however, these vaccines have no therapeutic effects for those who are previously infected with the virus. The current study's aim was to use immunoinformatics to develop a multi-epitope vaccine with therapeutic potential against cervical cancer. RESULTS In this study, T-cell epitopes from E5 and E7 proteins of HPV16/18 were predicted. These epitopes were evaluated and chosen based on their antigenicity, allergenicity, toxicity, and induction of IFN-γ production (only in helper T lymphocytes). Then, the selected epitopes were sequentially linked by appropriate linkers. In addition, a C-terminal fragment of Mycobacterium tuberculosis heat shock protein 70 (HSP70) was used as an adjuvant for the vaccine construct. The physicochemical parameters of the vaccine construct were acceptable. Furthermore, the vaccine was soluble, highly antigenic, and non-allergenic. The vaccine's 3D model was predicted, and the structural improvement after refinement was confirmed using the Ramachandran plot and ProSA-web. The vaccine's B-cell epitopes were predicted. Molecular docking analysis showed that the vaccine's refined 3D model had a strong interaction with the Toll-like receptor 4. The structural stability of the vaccine construct was confirmed by molecular dynamics simulation. Codon adaptation was performed in order to achieve efficient vaccine expression in Escherichia coli strain K12 (E. coli). Subsequently, in silico cloning of the multi-epitope vaccine was conducted into pET-28a ( +) expression vector. CONCLUSIONS According to the results of bioinformatics analyses, the multi-epitope vaccine is structurally stable, as well as a non-allergic and non-toxic antigen. However, in vitro and in vivo studies are needed to validate the vaccine's efficacy and safety. If satisfactory results are obtained from in vitro and in vivo studies, the vaccine designed in this study may be effective as a therapeutic vaccine against cervical cancer.
Collapse
Affiliation(s)
- Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Muhammad Sadeqi Nezhad
- Department of Clinical Laboratory Science, Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgān, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
12
|
Atapour A, Vosough P, Jafari S, Sarab GA. A multi-epitope vaccine designed against blood-stage of malaria: an immunoinformatic and structural approach. Sci Rep 2022; 12:11683. [PMID: 35804032 PMCID: PMC9266094 DOI: 10.1038/s41598-022-15956-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Malaria is a complex disease caused by parasites of the genus Plasmodium and is the leading cause of morbidity and mortality worldwide. The most severe form of malaria disease is caused by Plasmodium falciparum. Thus, a combination of different approaches is needed to control malaria. Resistance to first-line drugs and insecticides, on the other hand, makes the need for an effective vaccination more urgent than ever. Because erythrocyte parasites cause the most clinical symptoms, developing a vaccination for this stage of infection might be highly beneficial. In this research, we employed various bioinformatics methods to create an efficient multi-epitope vaccine that induces antibodies against the blood stage of malaria infection. For this purpose, we selected the malaria PfGARP protein as the target here. The B, HTL epitopes, and epitope conservation were predicted. The predicted epitopes (including 5 B and 5 HTL epitopes) were connected using suitable linkers, and the flagellin molecule was used as an adjuvant to improve its immunogenicity. The final construct vaccine with 414 amino acids long was designed. The vaccine's allergenicity, antigenicity, solubility, physicochemical characteristics, 2D and 3D structure modeling, molecular docking, molecular dynamics simulation, in silico cloning, and immunological simulation were tested. In silico immune simulation results showed significantly elevated IgG1 and IgM and T helper cells, INF γ, IL 2, and B-cell populations after the injection of the designed vaccine. These significant computational analyses indicated that our proposed vaccine candidate might activate suitable immune responses against malaria. However, in vitro and in vivo studies are essential for further validation.
Collapse
Affiliation(s)
- Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Jabin D, Kumar A. T-cell epitope-based vaccine prediction against Aspergillus fumigatus: a harmful causative agent of aspergillosis. J Genet Eng Biotechnol 2022; 20:72. [PMID: 35575941 PMCID: PMC9110580 DOI: 10.1186/s43141-022-00364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among the most common causes of invasive aspergillosis and acute bronchopulmonary aspergillosis is Aspergillus fumigatus. Transmission with A. fumigatus produces aggressive aspergillosis in allogeneic haematopoietic stem cell transplant recipients, HIV patients, and cancer patients. Asthmatics and cystic fibrosis patients are allergic to A. fumigatus. MHC class-II binding epitopes can initiate immunogenic responses in patients. In this study, we deployed immunoinformatic study to reveal epitopes from fungal proteins. RESULTS In modern research, we found multiple epitopes ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD from crucial proteins of A. fumigatus 5,8-linoleate diol synthase (ACO55067.2) and ChainB-chitinase A1 (2XVN_B). RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes interact with HLA-DRB01_0101, while ITLKLLHRYSYKLAG and KLVLRAFPNHFRGDS epitopes interact with HLA-DRB01_1501. Molecular docking analysis reveals atomic contact energy (ACE) value for these five epitopes shown below -5 Kcal/mol in docked state. CONCLUSIONS The invasive aspergillosis and acute bronchopulmonary aspergillosis are caused by harmful fungal pathogen Aspergillus fumigatus. Our modern immunoinformatic research shows ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes could bind to MHC-II HLA allelic determinants and can initiate immunogenic response in patients affected by Aspergillus fumigatus.
Collapse
Affiliation(s)
- Darakshan Jabin
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| |
Collapse
|
14
|
Alizadeh M, Amini-Khoei H, Tahmasebian S, Ghatrehsamani M, Ghatreh Samani K, Edalatpanah Y, Rostampur S, Salehi M, Ghasemi-Dehnoo M, Azadegan-Dehkordi F, Sanami S, Bagheri N. Designing a novel multi‑epitope vaccine against Ebola virus using reverse vaccinology approach. Sci Rep 2022; 12:7757. [PMID: 35545650 PMCID: PMC9094136 DOI: 10.1038/s41598-022-11851-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Ebola virus (EBOV) is a dangerous zoonotic infectious disease. To date, more than 25 EBOV outbreaks have been documented, the majority of which have occurred in Central Africa. The rVSVG-ZEBOV-GP vaccine (ERVEBO), a live attenuated vaccine, has been approved by the US Food and Drug Administration (FDA) to combat EBOV. Because of the several drawbacks of live attenuated vaccines, multi-epitope vaccines probably appear to be safer than live attenuated vaccines. In this work, we employed immunoinformatics tools to design a multi-epitope vaccine against EBOV. We collected sequences of VP35, VP24, VP30, VP40, GP, and NP proteins from the NCBI database. T-cell and linear B-cell epitopes from target proteins were identified and tested for antigenicity, toxicity, allergenicity, and conservancy. The selected epitopes were then linked together in the vaccine's primary structure using appropriate linkers, and the 50S ribosomal L7/L12 (Locus RL7 MYCTU) sequence was added as an adjuvant to the vaccine construct's N-terminal. The physicochemical, antigenicity, and allergenicity parameters of the vaccine were all found to be satisfactory. The 3D model of the vaccine was predicted, refined, and validated. The vaccine construct had a stable and strong interaction with toll-like receptor 4 (TLR4) based on molecular docking and molecular dynamic simulation (MD) analysis. The results of codon optimization and in silico cloning revealed that the proposed vaccine was highly expressed in Escherichia coli (E. coli). The findings of this study are promising; however, experimental validations should be carried out to confirm these findings.
Collapse
Affiliation(s)
- Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yadolah Edalatpanah
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Susan Rostampur
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
15
|
An Immunoinformatic Strategy to Develop New Mycobacterium tuberculosis Multi-epitope Vaccine. Int J Pept Res Ther 2022; 28:99. [PMID: 35573911 PMCID: PMC9086656 DOI: 10.1007/s10989-022-10406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Mycobacterium tuberculosis causes a life-threatening disease known as tuberculosis (TB). In 2021, tuberculosis was the second cause of death after COVID-19 among infectious diseases. Latent life cycle and development of multidrug resistance in one hand and lack of an effective vaccine in another hand have made TB a global health issue. Here, a multi-epitope vaccine have been designed against TB using five new antigenic protein and immunoinformatic tools. To do so, immunodominant MHC-I/MHC-II binding epitopes of Rv2346, Rv2347, Rv3614, Rv3615 and Rv2031 antigenic proteins have been selected using advanced computational procedures. The vaccine was designed by linking ten epitopes from the antigenic proteins and flagellin and TpD as adjuvant. Three-dimensional (3D) structure of the vaccine was modeled, was refined and was evaluated using bioinformatics tools. The 3D structure of the vaccine was docked into the toll-like-receptors (TLR3, 4, 8) to evaluate potential interaction between the vaccine and TLRs. Evaluation of immunological and physicochemical properties of the constructed vaccine have demonstrated the vaccine construct can induce significant humoral and cellular immune responses, the vaccine is non-allergenic and can be recognized by TLR proteins. The immunoinformatic results reported in the present study demonstrates that it is worth following the designed vaccine by experimental investigations.
Collapse
|
16
|
Gupta S, Kumar A. Design of an Epitope-Based Peptide Vaccine Against Dengue Virus Isolate from Eastern Uttar Pradesh, India. Int J Pept Res Ther 2022; 28:91. [PMID: 35463186 PMCID: PMC9014403 DOI: 10.1007/s10989-022-10402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Siddharth Gupta
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, G.T. Road, Kanpur, 209217 India
| |
Collapse
|
17
|
T-Cell Epitopes Based Vaccine Candidate’s Prediction for Treatment Against Burkholderia pseudomallei: Causative Agent of Melioidosis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10400-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Immunogenic Epitope-Based Vaccine Prediction from Surface Glycoprotein of MERS-CoV by Deploying Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:77. [PMID: 35313444 PMCID: PMC8924944 DOI: 10.1007/s10989-022-10382-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused a high mortality rate since its emergence in 2012 in the Middle East. Currently, no effective drug or vaccine is available for MERS-CoV. Supportive care and prevention are the only ways to manage infection. In this study, we identified an epitope-based vaccine that could be an optimal solution for the prevention of MERS-CoV infection. By deploying an immunoinformatics approach, we predicted a subunit vaccine based on the surface glycoprotein (S protein) of MERS-CoV. For this purpose, the proteome of the MERS-CoV spike protein was obtained from the NCBI GenBank database. Then, it was subjected to a check for allergenicity using the Allergen FP v.1.0 tool. The Vaxijen v.2.0 tool was used to conduct antigenicity tests for binding with major histocompatibility complex class I and II molecules. The solidity of the predicted epitope-allele docked complex was evaluated by a molecular dynamics simulation. After docking a total of eight epitopes from the MERS-CoV S protein, further analyses predicted their non-toxicity and therapeutic immunogenic properties. These epitopes have potential utility as vaccine candidates against MERS-CoV, to be validated by wet-lab testing.
Collapse
|
19
|
Joshi A, Krishnan S, Kaushik V. Codon usage studies and epitope-based peptide vaccine prediction against Tropheryma whipplei. J Genet Eng Biotechnol 2022; 20:41. [PMID: 35254546 PMCID: PMC8899776 DOI: 10.1186/s43141-022-00324-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Background The Tropheryma whipplei causes acute gastroenteritis to neuronal damages in Homo sapiens. Genomics and codon adaptation studies would be helpful advancements of disease evolution prediction, prevention, and treatment of disease. The codon usage data and codon usage measurement tools were deployed to detect the rare, very rare codons, and also synonymous codons usage. The higher effective number of codon usage values indicates the low codon usage bias in T. whipplei and also in the 23S and 16S ribosomal RNA genes. Results In T. whipplei, it was found to hold low codon biasness in genomic sets. The synonymous codons possess the base content in 3rd position that was calculated as A3S% (24.47 and 22.88), C3S% (20.99 and 22.88), T3S% (21.47 and 19.53), and G3S% (33.08 and 34.71) for 23s and 16s rRNA, respectively. Conclusion Amino acids like valine, aspartate, leucine, and phenylalanine hold high codon usage frequency and also found to be present in epitopes KPSYLSALSAHLNDK and FKSFNYNVAIGVRQP that were screened from proteins excinuclease ABC subunit UvrC and 3-oxoacyl-ACP reductase FabG, respectively. This method opens novel ways to determine epitope-based peptide vaccines against different pathogenic organisms.
Collapse
Affiliation(s)
- Amit Joshi
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sunil Krishnan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
20
|
Gandhamaneni BS, Krishnamoorthy HR, Veerappapillai S, Mohapatra SR, Karuppasamy R. Envelope Glycoprotein based multi-epitope vaccine against a co-infection of Human Herpesvirus 5 and Human Herpesvirus 6 using in silico strategies. Glycoconj J 2022; 39:711-724. [PMID: 36227524 PMCID: PMC9557995 DOI: 10.1007/s10719-022-10083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
The Human Betaherpesviruses HHV-5 and HHV-6 are quite inimical in immunocompromised hosts individually. A co-infection of both has been surmised to be far more disastrous. This can be attributed to a synergetic effect of their combined pathologies. While there have been attempts to develop a vaccine against each virus, no efforts were made to contrive an effective prophylaxis for the highly detrimental co-infection. In this study, an ensemble of viral envelope glycoproteins from both the viruses was utilized to design a multi-epitope vaccine using immunoinformatics tools. A collection of bacterial protein toll-like receptor agonists (BPTAs) was screened to identify a highly immunogenic adjuvant for the vaccine construct. The constructed vaccine was analysed using an array of methodologies ranging from World population coverage analysis to Immune simulation, whose results indicate high vaccine efficacy and stability. Furthermore, codon optimization and in silico cloning analysis were performed to check for efficient expression in a bacterial system. Collectively, these findings demonstrate the potential of the constructed vaccine to elicit an immune response against HHV-5 and HHV-6, thus supporting the viability of in vitro and in vivo studies.
Collapse
Affiliation(s)
- Bharath Sai Gandhamaneni
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Soumya R Mohapatra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to Be University, Bhubaneswar, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
21
|
T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 11:2. [PMID: 34900515 PMCID: PMC8649322 DOI: 10.1007/s13721-021-00339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Orthohantavirus, a zoonotic virus responsible for causing human cardio-pulmonary disease, is proven to be a fatal disease. Due to the paucity of regimens to cure the disease and efficient management to eradicate this deadly virus, there is a constant need to expand in-silico approaches belonging to immunology domain to formulate best feasible peptide-based vaccine against it. In lieu of that, we have predicted and validated an epitope of nine-residue-long sequence “MIGLLSSRI”. The predicted epitope has shown best interactions with HLA alleles of MHC Class II proteins, namely HLA DRB1_0101, DRB1_0401, DRB1_0405, DRB1_0701, DRB1_0901, DRB1_1302, and DRB1_1501. The structure of the epitope was modeled by deploying PEPFOLD 3.5 and verified by Ramachandran plot analysis. Molecular docking and simulation studies reveal that this epitope has satisfactory binding scores, ACE value and global energies for docked complexes along with selectable range of RMSD and RMSF values. Also, the predicted epitope “MIGLLSSRI” exhibits population coverage of more than 62% in world population and maximum of 70% in the United States of America. In this intensive study, we have used many tools like AllergenFP, NETMHCII 3.2, VaxiJen, ToxinPred, PEPFOLD 3.5, DINC, IEDB-Population coverage, MHCPred and JCat server. Most of these tools are based on modern innovative statistical algorithms like HMM, ANN, ML, etc. that help in better predictions of putative candidates for vaccine crafting. This innovative methodology is facile, cost-effective and time-efficient, which could facilitate designing of a vaccine against this virus.
Collapse
|
22
|
Joshi A, Solanki DS, Gehlot P, Singh J, Kaushik V. In-Silico Validation of Prosopis ciniraria Therapeutic Peptides Against Fungal Cell Wall: Better Treatment Strategy for Fungal Diseases. Int J Pept Res Ther 2021; 28:15. [PMID: 34873397 PMCID: PMC8636789 DOI: 10.1007/s10989-021-10330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/02/2022]
Abstract
Prosopis cineraria commonly known as Druce are valuable herb that holds antibacterial role, antifungal properties. We identified different peptides from this plant by deploying CADD (Computer-aided-drug-designing) approaches, these peptide sequences are as follows seq1 (RHDEEEEKAKV),seq3(KSNSTVEISQNVQSVDSSKM),seq4(KQVAEMNKPAVGSKTSDANHDLKS),seq5(KTKSAGNDSIQSTKPVPSALTVDKA),seq6(RELEDSNIHHVAASVVLESKSSRT), and seq8(LYSKVELHPFGLHNLGNSCYANAVFSV), these peptides holds therapeutic properties as shows interaction with chitin, a major constituent of fungal cell wall. Molecular docking was conducted by using AutoDock-Vina tool and the results were found to be promising where all binding energies were found in the range of - 9.1 to - 7.5 kcal/mol, it indicates strong binding of peptide sequences with chitin molecule. Even the toxicity analysis supports the considered peptide sequences to hold therapeutic role against fungus with non-toxic effect on humans. These peptides were successfully predicted as important therapeutic agents of P. cinerariaseed that can initiate chitin breakdown, due to their possible strong interaction with fungal cell wall and it also suggests this medicinal plant holds the key for multiple fungal disease treatments. This study will open new research dimensions and integration of computational biology with microbial pathology that will assist scientific and medical community to develop rapid disease prevention strategies against fungal pathogenesis.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Bioinformatics, Lovely Professional University, Phagwara, Punjab India 144011
- Department of Biotechnology, Invertis University, Bareilly, U.P India 243123
| | | | - Praveen Gehlot
- Department of Botany, Jai Narain Vyas University, Jodhpur, India 342001
| | - Joginder Singh
- Department of Bioinformatics, Lovely Professional University, Phagwara, Punjab India 144011
| | - Vikas Kaushik
- Department of Bioinformatics, Lovely Professional University, Phagwara, Punjab India 144011
| |
Collapse
|
23
|
Jain P, Joshi A, Akhtar N, Krishnan S, Kaushik V. An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. J Genet Eng Biotechnol 2021; 19:121. [PMID: 34406518 PMCID: PMC8371590 DOI: 10.1186/s43141-021-00220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Pankaj Jain
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amit Joshi
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nahid Akhtar
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sunil Krishnan
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|