1
|
Salahshoori I, Namayandeh Jorabchi M, Sadat Mirnezami SM, Golriz M, Darestani M, Barzin J, Khonakdar HA. Exploring the potential of beta-cyclodextrin-based MIL-101(Cr) for pharmaceutical removal from wastewater: A combined density functional theory and molecular simulations study. ENVIRONMENTAL RESEARCH 2024; 263:120189. [PMID: 39433238 DOI: 10.1016/j.envres.2024.120189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Pharmaceutical contaminants pose significant risks to ecosystems and human health, necessitating effective removal strategies. This research focuses on developing advanced adsorbents for removing pharmaceutical pollutants from the environment. Metal-organic frameworks (MOFs), specifically MIL-101(Cr) functionalized with biodegradable beta-cyclodextrin (β-CDex), were investigated as potential nanocomposite adsorbents for the removal of ketorolac (KTRK), naproxen (NPXN), and tramadol (TRML). The study employed molecular simulations and density functional theory (DFT) calculations to explore the interactions between the pollutants and adsorbents. Analyses of DFT results, including electrostatic potential, ionization energy, density of states, and molecular orbital analysis, provided insights into the reactivity of pollutants and adsorbents. Additionally, the structural properties of the adsorbents, such as fractional free volume, radius of gyration, and system energies, were thoroughly examined. Molecular dynamics (MD) and Monte Carlo (MC) simulations were used to evaluate the adsorption capacities of MIL-101(Cr) for the target pharmaceutical pollutants. The results demonstrated the superior adsorption performance of the nanocomposite adsorbent, particularly for KTRK, with an adsorption energy of -1934 kcal/mol, compared to the pristine MIL-101(Cr), which had an adsorption energy of -1916 kcal/mol. This enhanced adsorption is attributed to the optimal molecular fit, guest-host solid interactions, and the selective encapsulation capabilities of β-CDex. This research highlights the potential of MOF-based nanocomposites as effective and sustainable solutions for pharmaceutical pollution. By advancing the understanding of molecular interactions through simulations, this study contributes to developing innovative adsorbents for wastewater treatment and the protection of water resources.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran.
| | | | | | - Mahdi Golriz
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| | - Mariam Darestani
- School of Engineering, Design and Built Environment, Western Sydney University, Australia
| | - Jalal Barzin
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
| |
Collapse
|
2
|
Grouli A, Chraka A, Bachra Y, Elkouali M, Chtita S, Berrada M. An investigation of the adsorption of Congo red dye on two naturally occurring adsorbents Hydroxyapatite and Bentonite: An Experimental Analysis, DFT calculations, and Monte Carlo simulation. Heliyon 2024; 10:e39884. [PMID: 39583844 PMCID: PMC11584581 DOI: 10.1016/j.heliyon.2024.e39884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Congo Red (CR) dye is classified as a toxic and carcinogenic substance, posing significant health and environmental risks. To address this issue, the adsorption efficiency of CR on natural bentonite and hydroxyapatite (HA) was systematically studied. The adsorbents were successfully characterized by XRD, FTIR, and SEM analysis. Optimization through the Box-Behnken method identified the optimal conditions (pH = 6.5, initial dye concentration = 150 mg/L, and adsorbent mass = 1.5 g/L), resulting in maximum removal of CR of 95 % for HA and 84 % for bentonite. 2.6.2. Monte Carlo (MC) simulations provided insights into the spontaneous and favorable adsorption behavior, particularly under acidic conditions, driven by van der Waals interactions. Kinetic studies revealed that the adsorption followed a pseudo-second-order model (R2 = 0.99). Furthermore, regeneration tests demonstrated that HA and bentonite retained 75 % and 60 % of their adsorption capacities, respectively, after five cycles, indicating their potential for sustainable reuse in dye removal. The exceptional adsorption efficiency and reusability of these natural adsorbents make them promising candidates for environmental remediation, contributing to a deeper understanding of the underlying adsorption mechanisms.
Collapse
Affiliation(s)
- Ayoub Grouli
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Anas Chraka
- Materials and Interfacial Systems Laboratory, ERESI Team. Department of Chemistry, Faculty of Sciences, Abdelmalek Essaâdi, Tetouan University, Morocco
| | - Yahya Bachra
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - M'hammed Elkouali
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Mohammed Berrada
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| |
Collapse
|
3
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
4
|
Khan P, Saha R, Halder G. Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170723. [PMID: 38340867 DOI: 10.1016/j.scitotenv.2024.170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Antibiotics are widely prioritized pharmaceuticals frequently adopted in medication for addressing numerous ailments of humans and animals. However, the non-judicious disposal of ciprofloxacin (CIP) with concentration levels exceeding threshold limit in an aqueous environment has been the matter of growing concern nowadays. CIP is found in various waterways with appreciable mobility due to its limited decay in solidified form. Hence, the effective eradication strategy of this non-steroidal anti-inflammatory antibiotic from aqueous media is pivotal for preventing the users and the biosphere from their hazardous impacts. Reportedly several customary techniques like reverse osmosis, precipitation, cross-filtration, nano-filtration, ion exchange, microbial remediation, and adsorption have been employed to eliminate CIP from water. Out of them, adsorption is ascertained to be a potential method because of lesser preliminary investment costs, ease of operation, greater efficiency, less energy usage, reduced chemical and biological slurry production, and ready availability of precursor materials. Towards remediation of ciprofloxacin-laden water, plenty of researchers have used different adsorbents. However, the present-day challenge is opting the promising sorbent and its application towards industrial scale-up which is vital to get reviewed. In this article, adsorbents of diverse origins are reviewed in terms of their performances in CIP removal. The review stresses the impact of various factors on sorptive assimilation of CIP, adsorption kinetics, isotherms, mechanism of ionic interaction, contrivances for CIP detection, cost estimation and reusability assessments of adsorbents also that may endorse the next-generation investigators to decide the efficacious, environmental appealing and cost-competitive adsorbents for effective riddance of CIP from wastewater.
Collapse
Affiliation(s)
- Priyanka Khan
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Rajnarayan Saha
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Gopinath Halder
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
5
|
Mumtaz N, Akram N, Zia KM, Saeed M, Usman M. Fabrication, Thermo-Mechanical, and Morphological Characterization of Hydroxyapatite-Reinforced Polyurethane Biocomposites as Dye Adsorbent for Effluent. ACS OMEGA 2023; 8:33310-33320. [PMID: 37744844 PMCID: PMC10515338 DOI: 10.1021/acsomega.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Petrochemical costs, limited fossil fuel reserves, and concerns about greenhouse gas emissions have raised interest in developing renewable approaches for synthesizing biobased polyurethanes. This study aims to solve these problems by making nanocrystalline hydroxyapatite (HA) reinforcement from waste chicken eggshells and adding it to polyurethane synthesis through in situ polymerization. The novelty of the research lies in the utilization of HA as a reinforcement material and renewable resources for polyurethane production. The results confirm that HA was successfully added to the polyurethane backbone. Fourier transform infrared (FTIR) analysis confirmed that the NCO groups were changed to urethane linkages. TGA examination demonstrated that the samples exhibited thermal stability up to 457 °C with a mass loss of 61%, indicating enhanced thermal stability. DMA measurements showed improved mechanical properties of the synthesized polyurethanes, with storage modulus (E'), complex modulus (E*), and compliance complex (D*) values of 0.177, 22.522, and 0.660 MPa-1, respectively. SEM analysis confirmed the homogeneous surface and well-dispersed HA reinforcement. Swelling characteristics revealed an optimum absorption of 30% H2O, 35% CH3OH, and 45% CCl4. Polyurethane composites exhibited significant chemical resistance and hydrolytic stability in acidic and basic media. Additionally, the composites demonstrated efficient adsorption of methyl orange from wastewater, with the PUHCI series achieving a maximum adsorption capacity of 85.50 mg/g under optimal conditions of 0.030 g/mL dose, 45 °C temperature, 2.5 h contact time, and pH 6.0..
Collapse
Affiliation(s)
- Nida Mumtaz
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Saeed
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government
College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Yu M, Feng L, Hua Y, Tang A, Yang H. Understanding the Nanoscale Affinity between Dissolved Organic Matter and Noncrystalline Mineral with the Implication for Water Treatment. Inorg Chem 2023; 62:13130-13139. [PMID: 37532281 DOI: 10.1021/acs.inorgchem.3c02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In recent decades, the concentration of dissolved organic matter (DOM) in aquatic ecosystems has gradually increased, leading to water pollution problems. Understanding the interfacial chemical processes of DOM on natural minerals is important to the exploration of high-efficiency absorbents. However, studying DOM chemical processes and adsorption mechanisms are still challenging due to the complex DOM structure and environmental system. Hence, we characterized the microstructure changes after the formation of amorphous calcium phosphate (ACP) at the interface of montmorillonite (Mt) minerals in a simulated environment system. Combined with atomic force microscopy and density functional theory (DFT) simulation, the mechanism of interfacial interaction between Mt-ACP and DOM was characterized at the molecular level. Moreover, we further evaluated the adsorption behavior of Mt-ACP as a potential adsorbent for organic matter. The comprehensive investigation of humic acid adsorption, intermolecular force, and DFT simulation is conducive to our understanding of the interfacial interaction mechanism between organic matter and noncrystalline minerals in aquatic environments and provides new perspectives on the application of clay-based mineral materials in pollutant removal under exposure from DOM.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Li Feng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Shamsabadipour A, Pourmadadi M, Rashedi H, Yazdian F, Navaei-Nigjeh M. Nanoemulsion carriers of porous γ-alumina modified by polyvinylpyrrolidone and carboxymethyl cellulose for pH-sensitive delivery of 5-fluorouracil. Int J Biol Macromol 2023; 233:123621. [PMID: 36773864 DOI: 10.1016/j.ijbiomac.2023.123621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method. The fabricated emulsion has been employed as the 5-FU carrier to investigate its effects on drug half-life, side effects, drug loading efficiency (DLE), and drug entrapment efficiency (DEE). Analyzing the FTIR and XRD indicated the successful loading of 5-FU into the nanocarrier and affirmed the synthesized nanocomposite's chemical bonding and crystalline features. Furthermore, by using DLS and Zeta potential assessment, size and undersize distribution, as well as the stability of the drug-loaded nanocomposite were determined, which demonstrated the monodisperse and stable nanoparticles. Moreover, the nanocomposites with spherical shapes and homogeneous surfaces were shown in FE-SEM, which indicated good compatibility for the constituents of the nanocomposites. Moreover, by employing BET analysis the porosity has been investigated. Drug release pattern was studied, which indicated a controlled drug release behavior with above 96 h drug retention. Besides, the loading and entrapment efficiencies were obtained 44 % and 86 %, respectively. Furthermore, the curve fitting technique has been employed and the predominant release mechanism has been determined to evaluate the best-fitted kinetic models. MTT assay and flow cytometry assessment has been carried out to investigate the cytotoxic effects of the fabricated drug-loaded nanocomposite on MCF-7 and normal cells. The results showed enhanced cytotoxicity and late apoptosis for the PVP/CMC/γ-alumina/5-FU. Based on the MTT assay outcomes on normal cell lines (L929), which indicated above 90 % cell viability, the biocompatibility and biosafety of the synthesized nanocarrier have been confirmed. Moreover, due to the porosity of the PVP/CMC/γ-alumina, this nanocarrier can exploit from high specific surface area and be more sensitive to environmental conditions such as pH. These outcomes propose that the novel pH-sensitive PVP/CMC/γ-alumina nanocomposite can be a potential candidate for drug delivery applications, especially for cancer therapy.
Collapse
Affiliation(s)
- Amin Shamsabadipour
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Suseela MNL, Viswanadh MK, Mehata AK, Priya V, Setia A, Malik AK, Gokul P, Selvin J, Muthu MS. Advances in solid-phase extraction techniques: Role of nanosorbents for the enrichment of antibiotics for analytical quantification. J Chromatogr A 2023; 1695:463937. [PMID: 37019063 DOI: 10.1016/j.chroma.2023.463937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023]
Abstract
Antibiotics are life-saving medications for treating bacterial infections; however it has been discovered that resistance developed by bacteria against these incredible agents is the primary contributing factor to rising global mortality rates. The fundamental cause of the emergence of antibiotic resistance in bacteria is the presence of antibiotic residues in various environmental matrices. Although antibiotics are present in diluted form in environmental matrices like water, consistent exposure of bacteria to these minute levels is enough for the resistance to develop. So, identifying these tiny concentrations of numerous antibiotics in various and complicated matrices will be a crucial step in controlling their disposal in those matrices. Solid phase extraction, a popular and customizable extraction technology, was developed according to the aspirations of the researchers. It is a unique alternative technique that could be implemented either alone or in combination with other approaches at different stages because of the multitude of sorbent varieties and techniques. Initially, sorbents are utilized for extraction in their natural state. The basic sorbent has been modified over time with nanoparticles and multilayer sorbents, which have indeed helped to accomplish the desired extraction efficiencies. Among the current traditional extraction techniques such as liquid-liquid extraction, protein precipitation, and salting out techniques, solid-phase extractions (SPE) with nanosorbents are most productive because, they can be automated, selective, and can be integrated with other extraction techniques. This review aims to provide a broad overview of advancements and developments in sorbents with a specific emphasis on the applications of SPE techniques used for antibiotic detection and quantification in various matrices in the last two decades.
Collapse
Affiliation(s)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522302, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Patharaj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
9
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Essekri A, Laabd M, Fatni A, Addi AA, Lakhmiri R, Albourine A. The use of raw and modified acacia leaves for adsorptive removal of crystal violet from water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Ghate P, Prabhu S D, Murugesan G, Goveas LC, Varadavenkatesan T, Vinayagam R, Lan Chi NT, Pugazhendhi A, Selvaraj R. Synthesis of hydroxyapatite nanoparticles using Acacia falcata leaf extract and study of their anti-cancerous activity against cancerous mammalian cell lines. ENVIRONMENTAL RESEARCH 2022; 214:113917. [PMID: 35931186 DOI: 10.1016/j.envres.2022.113917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This study deals with the synthesis of hydroxyapatite nanoparticles (HAPnps) mediated by Acacia falcata leaf extract. Aggregates of needle-shaped crystalline nanostructures were confirmed by FE-SEM and TEM analysis. Well-defined rings in the SAED patterns corroborated the polycrystalline nature of the HAPnps. Individual elements present in the HAPnps were attested by the specific signals for Ca, P, and O in the EDS and XPS analyses. The distinct peaks observed in the XRD spectrum matched well with the HAP hexagonal patterns with a mean crystallite size of 55.04 nm. The FTIR study unveiled the coating of the nanoparticles with the biomolecules from Acacia falcata leaves. The suspension HAPnps exhibited polydispersity (0.446) and remarkable stability (zeta potential: - 31.9 mV) as evident from DLS studies. The pore diameter was 25.7 nm as obtained from BET analysis, suggesting their mesoporous nature. The HAPnps showed the cytotoxic effect on A549 lung and MDA-MB231 breast carcinoma cell lines, with an IC50 value of 55 μg/mL. The distortion of the cell membrane and cell morphology, along with the chromatin condensation and cell necrosis on treatment with HAPnps were detected under fluorescence microscopy post acridine orange/ethidium bromide dye staining. This study reports the anti-cancerous potential of non-drug-loaded plant-mediated HAPnps. Therefore, the HAPnps obtained in this investigation could play a vital role in the biomedical field of cancer therapy.
Collapse
Affiliation(s)
- Prachi Ghate
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deepali Prabhu S
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Louella Concepta Goveas
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to Be University), Nitte, Karnataka, 574110, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Imgharn A, Aarab N, Hsini A, Naciri Y, Elhoudi M, Haki MA, Laabd M, Lakhmiri R, Albourine A. Application of calcium alginate-PANI@sawdust wood hydrogel bio-beads for the removal of orange G dye from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60259-60268. [PMID: 35419690 DOI: 10.1007/s11356-022-20162-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
This work aims to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate bio-beads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), and Fourier transforms infrared (FT-IR) spectroscopy and used to remove orange G dye from aqueous water. Batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions, and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm perfectly fit the entire experimental data. Additionally, the prepared composite exhibited an excellent regeneration capacity and reusability for OG dye removal. The results revealed that the as-prepared Alg-PANI@SD bio-beads have the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.
Collapse
Affiliation(s)
- Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- National Higher School of Chemistry (NHSC), University Ibn Tofail, BP. 133, 14000, Kenitra, Morocco
- Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Science, Ibn Tofail University, BP 133, 14000, Kenitra, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohammed Elhoudi
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ait Haki
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Resource Development, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
13
|
Sodhani H, Hedaoo S, Murugesan G, Pai S, Vinayagam R, Varadavenkatesan T, Bharath G, Haija MA, Nadda AK, Govarthanan M, Selvaraj R. Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract. CHEMOSPHERE 2022; 299:134752. [PMID: 35513083 DOI: 10.1016/j.chemosphere.2022.134752] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, - Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.
Collapse
Affiliation(s)
- Hriday Sodhani
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shantanu Hedaoo
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - G Bharath
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
14
|
Fabrication of Biologically Active Fish Bone Derived Hydroxyapatite and Montmorillonite Blended Sodium Alginate Composite for In-Vitro Drug Delivery Studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Mechanistic understanding of Nickel(II) adsorption onto fluorapatite-based natural phosphate via Rietveld refinement combined with Monte Carlo simulations. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Imgharn A, Anchoum L, Hsini A, Naciri Y, Laabd M, Mobarak M, Aarab N, Bouziani A, Szunerits S, Boukherroub R, Lakhmiri R, Albourine A. Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights. CHEMOSPHERE 2022; 295:133786. [PMID: 35114254 DOI: 10.1016/j.chemosphere.2022.133786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A polyaniline@Fe-ZSM-5 composite was synthesized via an in situ interfacial polymerization procedure. The morphology, crystallinity, and structural features of the as-developed PANI@Fe-ZSM-5 composite were assessed using scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The composite was efficiently employed for the first time as an adsorbent Orange G (OG) dyestuff from water. The OG dye adsorption performance was investigated as a function of several operating conditions. The kinetic study demonstrated that a pseudo-second-order model was appropriate to anticipate the OG adsorption process. The maximum adsorption capacity was found to be 217 mg/g. The adsorption equilibrium data at different temperatures were calculated via advanced statistical physics formalism. The entropy function indicated that the disorder of OG molecules improved at low concentrations and lessened at high concentrations. The free enthalpy and internal energy functions suggested that the OG adsorption was a spontaneous process and physisorption in nature. Regeneration investigation showed that the PANI@Fe-ZSM-5 could be effectively reused up to five cycles. The main results of this work provided a deep insight on the experimental study supported by advanced statistical physics prediction for the adsorption of Orange G dye onto the novel polyaniline@Fe-ZSM-5 hybrid composite. Additionally, the experimental and advanced statistical physics findings stated in this study may arouse research interest in the field of wastewater treatment.
Collapse
Affiliation(s)
- Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Lahoucine Anchoum
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; National HigheNational Higher School of Chemistry (NHSC), University Ibn Tofail, BP. 133-14000, Kenitra, Morocco; Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Science, Ibn Tofail University, BP 133, 14000, Kenitra, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Asmae Bouziani
- Chemical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F, 59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F, 59000, France
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Valorization Resources, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|