Lu S, Dong J, Li X. Gradual transformation of anionic/zwitterionic wormlike micelles from viscous to elastic domains: Unravelling the effect of anionic surfactant chain length.
J Colloid Interface Sci 2023;
641:319-328. [PMID:
36934579 DOI:
10.1016/j.jcis.2023.03.053]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
HYPOTHESIS
Ultra-long tailed zwitterionic surfactants often form aqueous wormlike elastic micelles, whereas the shorter ones mainly exhibit spherical viscous micelles. Anionic surfactants are widely used to tune the micellar morphology from spherical into wormlike. Systematic investigations in the molecular level are insightful to understand the viscoelasticity regulative mechanism.
EXPERIMENTS
Anionic/zwitterionic hybrid wormlike micelles are composed of sodium alkylsulfate (SAS) homologues and dodecyl dimethyl amidopropyl hydroxyl sulfobetaine (DHSB). The formation of wormlike micelles was studied by employing rheometer, cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS) techniques. The effects of surfactant concentration, molar ratio, anionic surfactant chain length and temperature were investigated systematically.
FINDINGS
SAS promoted the formation of SAS/DHSB hybrid wormlike micelles. The increase in both chain length and molar ratio (xSAS) of SAS are advantageous in the enhancement of viscosity. Interestingly, sodium hexadecylsulfate (SHS) endowed elastic wormlike micelles with thermally insensitive viscosity below its Krafft temperature (Tk), which was distinguished from the viscous ones formed by sodium octylsulfate (SOS). SAXS results showed that the size of SAS/DHSB wormlike micelles was primarily determinate by surfactants with longer hydrophobic tails.
Collapse