1
|
Chen YS, Guo JJ, Liu PB, Zhao HY, Wang J, Liu Y. B 92: a complete coating icosahedral B 12 core-shell structure. Phys Chem Chem Phys 2025; 27:655-659. [PMID: 39575655 DOI: 10.1039/d4cp03471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Using first-principles calculations, this study unveils a spherically aromatic core-shell B12@B80 structure featuring a B12 icosahedral core, which is the smallest complete coating icosahedral B12 core-shell Bn cluster to date. Detailed orbital and bonding analyses reveal that the icosahedral B12 core exhibits prominent superatomic behavior with the electronic configuration 1S21P61D101F8.
Collapse
Affiliation(s)
- Yi-Sha Chen
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Jing-Jing Guo
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Peng-Bo Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Hui-Yan Zhao
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Jing Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Ying Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
2
|
Ijaz R, Waqas M, Mahal A, Essid M, Zghab I, Khera RA, Alotaibi HF, Al-Haideri M, Alshomrany AS, Zahid S, Alatawi NS, Aloui Z. Tuning the optoelectronic properties of selenophene-diketopyrrolopyrrole-based non-fullerene acceptor to obtain efficient organic solar cells through end-capped modification. J Mol Graph Model 2024; 129:108745. [PMID: 38442441 DOI: 10.1016/j.jmgm.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
With the goal of developing a high-performance organic solar cell, nine molecules of A2-D-A1-D-A2 type are originated in the current investigation. The optoelectronic properties of all the proposed compounds are examined by employing the DFT approach and the B3LYP functional with a 6-31G (d, p) basis set. By substituting the terminal moieties of reference molecule with newly proposed acceptor groups, several optoelectronic and photovoltaic characteristics of OSCs have been studied, which are improved to a significant level when compared with reference molecule, i.e., absorption properties, excitation energy, exciton binding energy, band gap, oscillator strength, electrostatic potential, light-harvesting efficiency, transition density matrix, open-circuit voltage, fill factor, density of states and interaction coefficient. All the newly developed molecules (P1-P9) have improved λmax, small band gap, high oscillator strengths, and low excitation energies compared to the reference molecule. Among all the studied compounds, P9 possesses the least binding energy (0.24 eV), P8 has high interaction coefficient (0.70842), P3 has improved electron mobility due to the least electron reorganization energy (λe = 0.009182 eV), and P5 illustrates high light-harvesting efficiency (0.7180). P8 and P9 displayed better Voc results (1.32 eV and 1.33 eV, respectively) and FF (0.9049 and 0.9055, respectively). Likewise, the phenomenon of charge transfer in the PTB7-Th/P1 blend seems to be a marvelous attempt to introduce them in organic photovoltaics. Consequently, the outcomes of these parameters demonstrate that adding new acceptors to reference molecule is substantial for the breakthrough development of organic solar cells (OSCs).
Collapse
Affiliation(s)
- Rimsha Ijaz
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Maysoon Al-Haideri
- Pharmacy Department, School of Medicine, University of Kurdistan Hewlêr, Kurdistan Region, Iraq
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia.
| |
Collapse
|
3
|
S Al-Otaibi J, Mary YS, Mary YS, Cristina Gamberini M. SERS analysis, DFT, and solution effects regarding the structural and optical characteristics of folic acid biomolecule adsorbed on a Cu 3 metal cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124161. [PMID: 38493513 DOI: 10.1016/j.saa.2024.124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The optical characteristics of folic acid (ABP) and metal clusters of copper (Cu3) at various locations were investigated by means of density functional theory (DFT) computations. Mulliken charge analysis and molecular electrostatic potential (MEP) surface show how charge moves from Cu3 to ABP through the various groups. The peak in the UV-Vis spectra of ABP-Cu3 is caused by bonding and anti-bonding orbitals. In both vacuum and aqueous conditions, the polarizability values of ABP-Cu3 cluster are significantly higher than those of pure ABP, indicating a possible enhancement of the nonlinear optical (NLO) effect. Our research investigates the possibility of using ABP adsorbed metal clusters for NLO materials. Surface enhanced Raman scattering (SERS) in the ABP adsorbed metal clusters enhances the vibrational modes of ABP. Adsorption energies are found to be in the range -17.08 to -58.52 kcal/mol in vacuum and -53.34 to -93.44 kcal/mol in aqueous medium for the different configurations for ABP-Cu3. It indicates that metal clusters adsorbed by ABP are stable in the aqueous media. Experimental IR and UV-Vis of ABP is in agreement with theoretically predicted ones.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Y Sheena Mary
- Department of Physics, FMN College (Autonomous), Kollam, Kerala, University of Kerala, India
| | | | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
4
|
Zahoor A, Sadiq S, Khera RA, Essid M, Aloui Z, Alatawi NS, Ibrahim MAA, Hasanin THA, Waqas M. A DFT study for improving the photovoltaic performance of organic solar cells by designing symmetric non-fullerene acceptors by quantum chemical modification on pre-existed LC81 molecule. J Mol Graph Model 2023; 125:108613. [PMID: 37659133 DOI: 10.1016/j.jmgm.2023.108613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Minimizing the energy loss and improving the open circuit voltage of organic solar cells is still a primary concern for scientists working in this field. With the aim to enhance the photovoltaic performance of organic solar cells by minimizing energy loss and improving open circuit voltage, seven new acceptor molecules (LC1-LC7) are presented in this work. These molecules are designed by modifying the terminal acceptors of pre-existed "LC81" molecule based on an indacinodithiophene (IDT) fused core. The end-group modification approach is very fruitful in ameliorating the efficacy and optoelectric behavior of OSCs. The newly developed molecules presented remarkable improvements in performance-related parameters and optoelectronic properties. Among all designed molecules, LC7 exhibited the highest absorption maxima (λmax = 869 nm) with the lowest band-gap (1.79 eV), lowest excitation energy (Ex = 1.42 eV), lowest binding energy, and highest excited state lifetime (0.41 ns). The newly designed molecules LC2, LC3, and LC4 exhibited remarkably improved Voc that was 1.84 eV, 1.82 eV, and 1.79 eV accordingly, compared to the LC81 molecule with Voc of 1.74 eV LC2 molecule showed significant improvement in fill factor compared to the previously presented LC81 molecule. LC2, LC6, and LC7 showed a remarkable reduction in energy loss by showing Eloss values of 0.26 eV, 0.18 eV, and 0.25 eV than LC81 molecule (0.37 eV). These findings validate the supremacy of these developed molecules (especially LC2) as potential components of future OSCs.
Collapse
Affiliation(s)
- Amna Zahoor
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sonia Sadiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Tamer H A Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Perera SM, Aikawa T, Shaner SE, Moran SD, Wang L. Effects of the Intramolecular Group and Solvent on Vibrational Coupling Modes and Strengths of Fermi Resonances in Aryl Azides: A DFT Study of 4-Azidotoluene and 4-Azido- N-phenylmaleimide. J Phys Chem A 2023; 127:8911-8921. [PMID: 37819373 DOI: 10.1021/acs.jpca.3c06312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The high transition dipole strength of the azide asymmetric stretch makes aryl azides good candidates as vibrational probes (VPs). However, aryl azides have complex absorption profiles due to Fermi resonances (FRs). Understanding the origin and the vibrational modes involved in FRs of aryl azides is critically important toward developing them as VPs for studies of protein structures and structural changes in response to their surroundings. As such, we studied vibrational couplings in 4-azidotoluene and 4-azido-N-phenylmaleimide in two solvents, N,N-dimethylacetamide and tetrahydrofuran, to explore the origin and the effects of intramolecular group and solvent on the FRs of aryl azides using density functional theory (DFT) calculations with the B3LYP functional and seven basis sets, 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), and 6-311++G(df,pd). Two combination bands consisting of the azide symmetric stretch and another mode form strong FRs with the azide asymmetric stretch for both molecules. The FR profile was altered by replacing the methyl group with maleimide. Solvents change the relative peak position and intensity more significantly for 4-azido-N-phenylmaleimide, which makes it a more sensitive VP. Furthermore, the DFT results indicate that a comparison among the results from different basis sets can be used as a means to predict more reliable vibrational spectra.
Collapse
Affiliation(s)
- Sathya M Perera
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Tenyu Aikawa
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sarah E Shaner
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, Missouri 63701, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Lichang Wang
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
6
|
Sadiq S, Waqas M, Zahoor A, Mehmood RF, Essid M, Aloui Z, Khera RA, Akram SJ. Synergistic modification of end groups in Quinoxaline fused core-based acceptor molecule to enhance its photovoltaic characteristics for superior organic solar cells. J Mol Graph Model 2023; 123:108518. [PMID: 37235903 DOI: 10.1016/j.jmgm.2023.108518] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The competence of organic solar cells (OSCs) could be enhanced by improving the light absorption capabilities as well as the open-circuit voltage (Voc) of utilized molecules. To upgrade overall functionality of OSCs, seven new molecules were designed in this work using an end-cap alteration technique on Quinoxaline fused core-based non-fullerene acceptor (Qx-2) molecule. This technique is known to be quite advantageous in terms of improvement of the effectiveness and optoelectrical behavior of various OSCs. Critical parameters like the absorption maximum, frontier molecular orbitals, excitation energy, exciton binding energy, Voc, and fill factor of molecules were considered for the molecules thus designed. All newly designed molecules showed outstanding improvement in optoelectronic as well as performance-related properties. Out of all scrutinized molecules, Q1 exhibited highest wavelength of absorption peak (λmax = 779 nm) with the reduced band gap (1.90 eV), least excitation energy (Ex = 1.59 eV), along with the highest dipole moment (17.982950 D). Additionally, the newly designed compounds Q4, Q5, and Q6 exhibited significantly improved Vocs that were 1.55, 1.47, and 1.50 eV accordingly, as compared to the 1.37 eV of Qx-2 molecule. These molecules also showed remarkable improvement in fill factor attributed to direct correspondence of Voc with it. Inclusively, these results support the superiority of these newly developed molecules as prospective constituents of upgraded OSCs.
Collapse
Affiliation(s)
- Sonia Sadiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Zahoor
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, Aljuwayid AM, Habila MA, Mubashir M. Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation. CHEMOSPHERE 2023; 321:138000. [PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ghazanfar Ullah
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Rai R, Bhandari R, Kaleem M, Rai N, Gautam V, Misra A. A simple TICT/ICT based molecular probe exhibiting ratiometric fluorescence Turn-On response in selective detection of Cu2+. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Seri̇n S. A comprehensive DFT study on organosilicon-derived fungicide flusilazole and its germanium analogue: A computational approach to Si/Ge bioisosterism. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Bensalah J, Idrissi A, Faydy ME, Doumane G, Staoui A, Hsissou R, Lebkiri A, Habsaoui A, Abdelkader Z, Rifi EH. Investigation of the cationic resin as a potential adsorbent to remove MR and CV dyes: Kinetic, equilibrium isotherms studies and DFT calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
First-principles calculations to investigate structural stability, half-metallic behavior, thermophysical and thermoelectric properties of Co2YAl (Y= Mo, Tc) Full Heusler compounds. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Waqas M, Iqbal J, Mehmood RF, Akram SJ, Shawky AM, Raheel M, Rashid EU, Khera RA. Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. J Mol Graph Model 2022; 116:108255. [PMID: 35779337 DOI: 10.1016/j.jmgm.2022.108255] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Density functional theory, along with its time dependent computational approach were employed in order to fine tune the photovoltaic attributes along with the efficiency of the MO-IDIC-2F molecule. Thus, five new molecules were designed by substitution of the different notable acceptor fragments in the MO-IDIC-2F molecule, along with the addition of the "[1, 2, 5] thiadiazolo[3,4-d] pyridazine" spacer moieties between donor core and newly substituted acceptor groups. In this research work, various photovoltaic properties, which could affect the efficiency of an organic chromophores, such as bandgap, oscillator strength, dipole moment, binding energy, light-harvesting efficiency, etc. were studied. All the newly proposed molecules demonstrated significantly improved outcomes in comparison to that of the reference molecule, in their absorption spectrum, excitation, as well as binding energy values, etc. In order to confirm the results of optoelectronic properties, density of states, transition density matrix, and electrostatic potential analyses of molecules were also performed, which supported our computational findings. All of the results confirmed the high potential of all the newly proposed molecules for the development of improved OSCs.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Muhammad Raheel
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
13
|
Hu X, Hu R, Zhu H, Chen Q, Lu Y, Chen J, Liu Y, Chen H. Nanozyme-based cascade SPR signal amplification for immunosensing of nitrated alpha-synuclein. Mikrochim Acta 2022; 189:367. [PMID: 36056240 DOI: 10.1007/s00604-022-05465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
A self-assembled nanozyme of iron porphyrin mediated supramolecular modified gold nanoparticles (FpA) was fabricated to determine nitrated alpha-synuclein as the Tyr 39 residue (nT39 α-Syn) of a potential biomarker for early diagnosis of Parkinson's disease (PD). Mechanically, localized surface plasmon resonance (LSPR) and the mass effect caused by catalytic deposition of the nanozyme contributed to a cascade signal amplification strategy. The sensor allowed a signal amplification and selective nT39 α-Syn bioanalysis with a 1.34-fold enhancement by cascade amplified SPR signal and double specific recognition. The detection limit was 1.78 ng/mL in the detection range of 7-240 ng/mL. Benefiting from the excellent immunosensor, this method can distinguish healthy people and PD patients using actual samples. Overall, this strategy provides a nanozyme-based biosensing platform for the early diagnosis of PD and can be applied to detect other protein biomarkers, such as PD-L1.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ruhui Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
14
|
Afsar N, Jonathan DR, Satheesh D, Manivannan S. Computational description of quantum chemical calculations and pharmacological studies of the synthesized chalcone derivative: A promising NLO material. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Spectroscopic, quantum chemical and molecular docking studies on friedelin, the major triterpenoid isolated from Garcinia imberti. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lyu R, Huang Z, Deng H, Wei Y, Chen J, Zhong K, Wang R, Mou C, Wang L. Exploration for the Optical Properties and Fluorescent Prediction of Nitrotriazole and Nitrofurazan: First-Principles and TD-DFT Calculations. ACS OMEGA 2022; 7:19694-19705. [PMID: 35721979 PMCID: PMC9202023 DOI: 10.1021/acsomega.2c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
High-energy materials containing azole and furazan have revealed numerous properties; however, the underlying optical properties need to be solved. Meanwhile, the uncertainty for the choice of fluorescent matrix materials and the flexible situational conditions prompted us to estimate the optical and fluorescent properties of 5,5'-dinitro-2H,2H'-3,3'-bi-1,2,4-triazole (DNBT), 4,4'-dinitroazolefurazan (DNAF), and 4,4'-dinitro-3,3'-4,3'-ter-1,2,5-oxadiazole (DNTO). The first-principles calculation with improved dispersion correction terms and time-dependent density functional theory were utilized to calculate the absorbance and excitation energy of DNBT, DNAF, and DNTO, as well as characterization for their crystal structure, electronic structure, molecular orbitals, and so forth, synchronously. In this work, the absorbance anisotropy of DNBT and DNTO is stronger than that of DNAF. The absorbance for each of the (0,0,1) crystal planes in the three compounds is greater than that of the other two crystal planes. Moreover, DNBT has the maximum absorbance on the (0,0,1) crystal plane. The N-N-H from DNBT and N-O-N from DNTO and DNAF are responsible for these results, while N=N in DNAF weakens the performance of N-O-N. UV-vis spectra show that the maximum absorption wavelengths λmax for DNBT, DNAF, and DNTO are 225, 228, and 201 nm, respectively. The number of five-membered rings and the coplanarity of groups in the intermolecular non-conjugation interaction potentially improve this ability due to the results from the crystal diffraction analysis. In addition, the polarization rate DNBT > DNTO > DNAF based on the molecular orbital analysis and the electrostatic potential calculation implies that the excitation energy of DNBT is less than DNTO, and the excitation energy of DNTO is less than DNAF. This work is beneficial to the expansion of energetic materials into the optical field and the accelerated application process of the related industry.
Collapse
Affiliation(s)
- Ruiqi Lyu
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, China
| | - Zhiyu Huang
- School
of New Energy and Materials, Southwest Petroleum
University, Chengdu 610500, Sichuan, China
| | - Hongbo Deng
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, China
- Oil
& Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, Sichuan, China
| | - Yue Wei
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, China
| | - Jia Chen
- CNOOC
Enertech Equipment Technology Co., Ltd, Tianjin 300452, China
| | - Kai Zhong
- Institute
of Chemical Materials, China Academy of
Engineering Physics (CAEP), P.O. Box
919-311, Mianyang 621999, Sichuan, China
| | - Rong Wang
- Institute
of Chemical Materials, China Academy of
Engineering Physics (CAEP), P.O. Box
919-311, Mianyang 621999, Sichuan, China
| | - Chuanlin Mou
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, China
| | - Linyuan Wang
- School
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu 610500, Sichuan, China
| |
Collapse
|
17
|
Anis I, Dar MS, Bhat GA, Rather GM, Dar MA. Probing the Site-Specific Reactivity and Catalytic Activity of Ag n ( n = 15-20) Silver Clusters. ACS OMEGA 2022; 7:19687-19693. [PMID: 35721984 PMCID: PMC9202251 DOI: 10.1021/acsomega.2c01437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Density functional theory calculations within the framework of generalized gradient approximation (GGA), meta-GGA, and local functionals were carried out to investigate the reactivity and catalytic activity of Ag n (n = 15-20) clusters. Our results reveal that all the Ag n clusters in this size range, except Ag20, adsorb O2 preferably in the bridged mode with enhanced binding energy as compared to the atop mode. The O2 binding energies range from 0.77 to 0.29 in the bridged mode and from 0.36 to 0.15 eV in the atop mode of O2 adsorption. The strong binding in the case of the bridged mode of O2 adsorption is also reflected in the increase in O-O bond distance. Natural bond orbital charge analysis and vibrational frequency calculations reveal that enhanced charge transfer occurs to the O2 molecule and there is significant red shift in the stretching frequency of O-O bond in the case of the bridged mode of O2 adsorption on the clusters, thereby confirming the above results. Moreover, the simulated CO oxidation reaction pathways show that the oxidation of the CO molecule is highly facile on Ag16 and Ag18 clusters involving small kinetic barriers and higher heats toward CO2 formation.
Collapse
Affiliation(s)
- Insha Anis
- Department
of Chemistry, Islamic University of Science
and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Mohd. Saleem Dar
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Gulzar Ahmad Bhat
- Center
for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar 190006, India
| | - Ghulam Mohammad Rather
- Department
of Chemistry, Islamic University of Science
and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Manzoor Ahmad Dar
- Department
of Chemistry, Islamic University of Science
and Technology, Awantipora, Jammu and Kashmir 192122, India
| |
Collapse
|
18
|
Wang Y, Fu M, Zhang X, Jin D, Zhu S, Wang Y, Wu Z, Bao J, Cheng X, Yang L, Xie L. Cubic Nanogrids for Counterbalance Contradiction among Reorganization Energy, Strain Energy, and Wide Bandgap. J Phys Chem Lett 2022; 13:4297-4308. [PMID: 35532545 DOI: 10.1021/acs.jpclett.2c00827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular cross-scale gridization and polygridization of organic π-backbones make it possible to install 0/1/2/3-dimensional organic wide-bandgap semiconductors (OWBGSs) with potentially ZnO-like fascinating multifunctionality such as optoelectronic and piezoelectronic features. However, gridization effects are limited to uncover, because the establishment of gridochemistry still requires a long time, which offers a chance to understand the effects with a theoretical method, together with data statistics and machine learning. Herein, we demonstrate a state-of-the-art 3D cubic nanogridon with a size of ∼2 × 2 × 1.5 nm3 to examine its multigridization of π-segments on the bandgap, molecular strain energy (MSE), as well as reorganization energy (ROE). A cubic gridon (CG) consists of a four-armed bifluorene skeleton and a thiophene-containing fused arene plane with the Csp3 spiro-linkage, which can be deinstalled into face-on or edge-on monogrids. As a result, multigridization does not significantly reduce bandgaps (Eg ≥ 4.03 eV), while the MSE increases gradually from 4.72 to 23.83 kcal/mol. Very importantly, the ROE of a CG exhibits an extreme reduction down to ∼28 meV (λ+) that is near the thermal fluctuation energy (∼26 meV). Our multigridization results break through the limitation of the basic positively proportional relationship between reorganization energies and bandgaps in organic semiconductors. Furthermore, multigridization makes it possible to keep the ROE small under the condition of a high MSE in OWBGS that will guide the cross-scale design of multifunctional OWBGSs with both inorganics' optoelectronic performance and organics' mechanical flexibility.
Collapse
Affiliation(s)
- Yongxia Wang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mingyang Fu
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaofei Zhang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Dong Jin
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shiyuan Zhu
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yucong Wang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhenyu Wu
- School of Internet of Things, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jianmin Bao
- School of Internet of Things, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaogang Cheng
- School of Communications and Information Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lei Yang
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Linghai Xie
- Center for Molecular Systems & Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
19
|
Kinetic and thermodynamic studies of tocored thermal degradation in lipid systems with various degrees of unsaturation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
He M, Zhai Y, Zhang Y, Xu S, Yu S, Wei Y, Xiao H, Song Y. Inhibition of α-glucosidase by trilobatin and its mechanism: kinetics, interaction mechanism and molecular docking. Food Funct 2022; 13:857-866. [PMID: 34989743 DOI: 10.1039/d1fo03636j] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
α-Glucosidase is related to the increase in postprandial blood glucose in vivo. Inhibition of α-glucosidase is supposed to be an effective approach to treat type 2 diabetes mellitus (T2DM). Trilobatin, a member of the dihydrochalcone family, shows anti-oxidant, anti-inflammatory and anti-diabetic activities. In this study, the inhibitory activity and mechanism of trilobatin on α-glucosidase were investigated using multispectroscopic and molecular docking techniques. The kinetic analysis showed that trilobatin reversibly inhibited α-glucosidase in a noncompetitive-type manner and the value of IC50 was 0.24 ± 0.02 mM. The analysis of fluorescence spectra demonstrated that the formation of the trilobatin-α-glucosidase complex was driven mainly by hydrogen bonding and van der Waals forces, resulting in the conformational changes of α-glucosidase. Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) measurements suggested that the interaction could change the micro-environment and conformation of α-glucosidase affected by trilobatin. Molecular docking analysis determined the exact binding sites of trilobatin on α-glucosidase. These results indicated that trilobatin is a strong α-glucosidase inhibitor, thus it could be conducive to ameliorate T2DM.
Collapse
Affiliation(s)
- Ming He
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuhan Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuqing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Shuo Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Shaoxuan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yingxin Wei
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Haifang Xiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|