1
|
Lisowska A, Świątek P, Dębicki F, Lewińska A, Marciniak A, Pacini L, Papini AM, Brasuń J. The Role of the Unbinding Cycle on the Coordination Abilities of the Bi-Cyclopeptides toward Cu(II) Ions. Molecules 2024; 29:2197. [PMID: 38792059 PMCID: PMC11124368 DOI: 10.3390/molecules29102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Bicyclic peptides have attracted the interest of pharmaceutical companies because of their remarkable properties, putting them on a new path in medicine. Their conformational rigidity improves proteolytic stability and leads to rapid penetration into tissues via any possible route of administration. Moreover, elimination of renal metabolism is of great importance, for example, for people with a history of liver diseases. In addition, each ring can function independently, making bicyclic peptides extremely versatile molecules for further optimization. In this paper, we compared the potentiometric and spectroscopic properties studied by UV-vis, MCD, and EPR of four synthetic analogues of the bi-cyclic peptide c(PKKHP-c(CFWKTC)-PKKH) (BCL). In particular, we correlated the structural and spectral properties of complexes with coordinating abilities toward Cu(II) ions of MCL1 (Ac-PKKHPc(CFWKTC)PKKH-NH2) that contains the unbinding cycle and N- and C-terminal linear parts with two histidine residues, one per part; two monocyclic ligands containing one histidine residue, both in the N-terminal position, i.e., MCL2 (Ac-PKKHPc(CFWKTC)PKKS-NH2) and in the C-terminal position, i.e., MCL3 (Ac-PKKSPc(CFWKTC)PKKH-NH2), respectively; and the linear structure LNL (Ac-PKKHPSFWKTSPKKH-NH2). Potentiometric results have shown that the bicyclic structure promotes the involvement of the side chain imidazole donors in Cu(II) binding. On the other hand, the results obtained for the mono-cyclic analogues lead to the conclusion that the coordination of the histidine moiety as an anchoring group is promoted by its location in the peptide sequence further from the nonbinding cycle, strongly influencing the involvement of the amide donors in Cu(II) coordination.
Collapse
Affiliation(s)
- Alicja Lisowska
- Biomolecule Student Science Club, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Paulina Świątek
- Graduate of Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Filip Dębicki
- Faculty of Medicine, Medical University of Lodz, 90-647 Lodz, Poland;
| | | | - Aleksandra Marciniak
- Department of the Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Justyna Brasuń
- Department of the Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
2
|
Garstka K, Bellotti D, Wątły J, Kozłowski H, Remelli M, Rowińska-Żyrek M. Metal coordination to solute binding proteins - exciting chemistry with potential biological meaning. Dalton Trans 2023; 52:16140-16150. [PMID: 37814857 DOI: 10.1039/d3dt02417b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Zn(II) is essential for bacterial survival and virulence. In host cells, its abundance is extremely limited, thus, bacteria have evolved transport mechanisms that enable them to take up this essential metal nutrient. Paracoccus denitrificans encodes two solute binding proteins (SBPs) - ZnuA and AztC, which are responsible for zinc acquisition from the host cells. We focus on understanding the interactions of Zn(II) and Ni(II) (zinc's potential competitor, which is a biologically relevant metal ion essential for various bacterial enzymes) with the extracellular ZnuA and AztC's loops from P. denitrificans that are expected to be possible Zn(II) binding sites. In the case of Zn(II) complexes with ZnuA outercellular loop regions, the numerous histidines act as anchoring donors, forming complexes with up to four coordinated His residues, while in the AztC region, three imidazole nitrogens and one water molecule are involved in Zn(II) binding. In Zn(II) complexes with ZnuA His-rich loop regions, so-called polymorphic binding sites are observed. The large number of available imidazoles and carboxylic side chains also strongly affects the structure of Ni(II) complexes; the more histidines in the studied peptide, the higher the affinity to bind Ni(II) and the higher the pH value at which amide nitrogens start to participate in Ni(II) binding. Additionally, for Ni(II)-ZnuA complexes, a more rare octahedral geometry is observed and such complexes are more stable than the corresponding Zn(II) ones, in contrast to what was observed in the AztC region, suggesting that the numerous histidyl and glutamic acid side chains are more tempting for Ni(II) than for Zn(II).The general strong affinity of Zn(II)-zincophore complexes is also discussed.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Denise Bellotti
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
- Institute of Health Sciences, University of Opole, Katowicka 68 St, 45-060 Opole, Poland
| | - Maurizio Remelli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | | |
Collapse
|
3
|
Garstka K, Dzyhovskyi V, Wątły J, Stokowa-Sołtys K, Świątek-Kozłowska J, Kozłowski H, Barceló-Oliver M, Bellotti D, Rowińska-Żyrek M. CH vs. HC-Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores. Molecules 2023; 28:molecules28103985. [PMID: 37241727 DOI: 10.3390/molecules28103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys-His and His-Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while similar CC and HH regions are found 348 and 94 times, respectively. Complex stabilities increase in the series Fe(II) < Ni(II) < Zn(II), with Zn(II) complexes dominating at physiological pH, and Ni(II) ones-above pH 9. The stabilities of Zn(II) complexes with Ac-ACHA-NH2 and Ac-AHCA-NH2 are comparable, and a similar tendency is observed for Fe(II), while in the case of Ni(II), the order of Cys and His does matter-complexes in which the metal is anchored on the third Cys (Ac-AHCA-NH2) are thermodynamically stronger than those where Cys is in position two (Ac-ACHA-NH2) at basic pH, at which point amides start to take part in the binding. Cysteine residues are much better Zn(II)-anchoring sites than histidines; Zn(II) clearly prefers the Cys-Cys type of ligands to Cys-His and His-Cys ones. In the case of His- and Cys-containing peptides, non-binding residues may have an impact on the stability of Ni(II) complexes, most likely protecting the central Ni(II) atom from interacting with solvent molecules.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Valentyn Dzyhovskyi
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | - Miquel Barceló-Oliver
- Department of Chemistry, University of Balearic Islands, Cra. de Valldemossa, km 7.5., 07122 Palma de Mallorca, Spain
| | - Denise Bellotti
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | | |
Collapse
|
4
|
Modification of amino-acid sequence of cosmetic peptide Eyeseryl enhances the affinity towards copper(II) ion. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|