1
|
Yu CF, Chang CM. Ge-Doped Boron Nitride Nanoclusters Functionalized with Amino Acids for Enhanced Binding of Bisphenols A and Z: A Density Functional Theory Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4439. [PMID: 39336180 PMCID: PMC11433101 DOI: 10.3390/ma17184439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
This study uses density functional theory to investigate boron nitride nanoclusters functionalized with amino acids for enhanced binding of bisphenols A (BPA) and Z (BPZ) to mimic the estrogen-related receptor gamma. Three categories of nanoclusters were examined: pristine B12N12, and those which were germanium-doped for boron or nitrogen. The study reveals that hydrogen bonding patterns and molecular stability are significantly influenced by the type of functional group and the specific amino acids involved. Ge-doping generally enhances the binding stability and spontaneity of the nanocluster-amino acid-bisphenol complexes, with Glu 275 emerging as the most stable binding site. The analysis of electronic properties such as energy gap, ionization potential, electron affinity, and chemical hardness before and after bisphenol binding indicates a general trend of increased reactivity, particularly in Ge-doped nanoclusters. The findings highlight the potential of these nanocluster composites in applications requiring high reactivity and electron mobility, such as pollutant removal and drug delivery.
Collapse
Affiliation(s)
| | - Chia Ming Chang
- Environmental Molecular and Electromagnetic Physics (EMEP) Laboratory, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| |
Collapse
|
2
|
Behroozi R, Dehghanian E, Mansouri-Torshizi H. Investigation of antitumor activity and albumin interaction of new sulfosalicylate-based complex by spectroscopic and computational approaches. LUMINESCENCE 2024; 39:e4869. [PMID: 39192755 DOI: 10.1002/bio.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
In the present study, the drug delivery by albumin protein and antiproliferetaive activity of new transition metal complex i.e., [Pd (phen)(SSA)] (where phen and SSA represent 1, 10 phenanthroline and sulfosalicylic acid, respectively) was investigated. DFT (density functional theory) calculations were conducted at B3LYP level with 6-311G(d,p)/aug-ccpVTZ-PP basis set for the purpose of geometry optimization, frontier molecular orbital (FMO) analysis, molecular electrostatic potential (MEP), and natural bond orbital (NBO) analysis. Experimental tests were conducted to preliminarily assess the lipophilicity and antitumor activity of the metal complex, resulting in promising findings. In-silico prediction was accomplished to assess its toxicity and bioavailability. To evaluate the binding of the newly formed complex with DNA (which results in halting the cell cycle) or serum albumin protein (drug transporter to the tissues), in-silico molecular modeling was employed. Experimental results (spectroscopic and non-spectroscopic) showed that the new compound interacts with each biomolecule via hydrogen bond and van der Waals interactions. Molecular docking demonstrated the binding of this complex to the DNA groove and site I of BSA occurs mainly through hydrogen bonds. Molecular dynamics simulation confirmed the interactions between [Pd (phen)(SSA)] with DNA or BSA through stable hydrogen bonds.
Collapse
Affiliation(s)
- Roghayeh Behroozi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
3
|
Pattanaik S, Vishwkarma AK, Yadav T, Shakerzadeh E, Sahu D, Chakroborty S, Tripathi PK, Zereffa EA, Malviya J, Barik A, Sarankar SK, Sharma P, Upadhye VJ, Wagadre S. In silico investigation on sensing of tyramine by boron and silicon doped C 60 fullerenes. Sci Rep 2023; 13:22264. [PMID: 38097755 PMCID: PMC10721924 DOI: 10.1038/s41598-023-49414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
The present communication deals with the adsorption of tyramine neurotransmitter over the surface of pristine, Boron (B) and Silicon (Si) doped fullerenes. Density functional theory (DFT) calculations have been used to investigate tyramine adsorption on the surface of fullerenes in terms of stability, shape, work function, electronic characteristics, and density of state spectra. The most favourable adsorption configurations for tyramine have been computed to have adsorption energies of - 1.486, - 30.889, and - 31.166 kcal/mol, respectively whereas for the rest three configurations, it has been computed to be - 0.991, - 6.999, and - 8.796 kcal/mol, respectively. The band gaps for all six configurations are computed to be 2.68, 2.67, 2.06, 2.17, 2.07, and 2.14 eV, respectively. The band gap of pristine, B and Si doped fullerenes shows changes in their band gaps after adsorption of tyramine neurotransmitters. However, the change in band gaps reveals more in B doped fullerene rather than pristine and Si doped fullerenes. The change in band gaps of B and Si doped fullerenes leads a change in the electrical conductivity which helps to detect tyramine. Furthermore, natural bond orbital (NBO) computations demonstrated a net charge transfer of 0.006, 0.394, and 0.257e from tynamine to pristine, B and Si doped fullerenes.
Collapse
Affiliation(s)
- S Pattanaik
- Sri Satya Sai University of Technology and Medical Sciences, Sehore, Bhopal, M.P., India
| | - A K Vishwkarma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - T Yadav
- Department of Basic Sciences, IITM, IES University, Bhopal, M.P., India
| | - E Shakerzadeh
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - D Sahu
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - S Chakroborty
- Department of Basic Sciences, IITM, IES University, Bhopal, M.P., India.
| | - P K Tripathi
- Department of Physics, Sharda University, Greater Noida, U.P., India.
| | - E A Zereffa
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia.
| | - J Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, M.P., India
| | - A Barik
- CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
| | - S K Sarankar
- Faculty of Pharmacy, Mansarovar Global University, Sehore, M.P., 466111, India
| | - P Sharma
- Department of Pharmacy, Barkatullah University, Bhopal, India
| | - V J Upadhye
- Departmentt of Microbiology, Parul Institute of Applied Sciences (PIAS), Parul University, PO Limda, Tal Waghodia, 391760, Vadodara, Gujarat, India
| | - S Wagadre
- Department of Basic Sciences, IITM, IES University, Bhopal, M.P., India
| |
Collapse
|
4
|
Mirzaei H, Salehi A, Javan B, Enayati A, Nabi MO, Zahedi M, Zengin G. Potentilla reptans L. preconditioning regulates H19 and MIAT long noncoding RNAs in H9C2 myoblasts Ischemia/Reperfusion model. BMC Complement Med Ther 2023; 23:272. [PMID: 37525174 PMCID: PMC10388489 DOI: 10.1186/s12906-023-04071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The present study aimed to evaluate the effect of the ethyl acetate fraction of P. reptans root (PEF) preconditioning on expressions of lncRNAs H19 and MIAT in H9C2 myoblasts I/R injury.H9C2 cells were treated with different concentrations ranging from (10-400 µg/ml) of PEF for 24 h, followed by simulation of I/R condition. For I/R experiments, H9C2 cells were subjected with the oxygen and glucose deprivation for 2 h.H9C2 cell viability was significantly enhanced by PEF preconditioning under I/R condition in a concentration-dependent manner up to 200 µg/ml as a EC50. The PEF significantly diminished the expression of lncRNA MIAT and rate of apoptosis against the I/R group. In addition, PEF pretreated before stimulation I/R condition increased H19 expression compared to the normal PEF group with no statistically significant differences between groups. Hence, the results suggest that PEF can protect cardiomyocytes during hypoxia-induced myocardial cell injury by targeting specific involved genes.
Collapse
Affiliation(s)
- Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Aref Salehi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Morteza Olad Nabi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Zahedi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| |
Collapse
|
5
|
Luo Y, Wang K, Mu J, Cai Y, Zhu W. Exploring the adsorption behavior of pyrazinamide on the surface of X12Y12(X= B, Al; Y = N, P) nanocages: A in-silico study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Noronha MA, D'Angelo NA, Pérez-Sánchez G, Severino P, Ann Foglio M, Greaves TL, F. B. Pereira J, Lopes AM. Self-assembling micelles of lipopolysaccharides (LPS) for loading hydrophobic (bio)molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Hachem K, Jade Catalan Opulencia M, Kamal Abdelbasset W, Sevbitov A, Kuzichkin OR, Mohamed A, Moazen Rad S, Salehi A, Kaur J, Kumar R, Ng Kay Lup A, Arian Nia A. Anti-inflammatory effect of functionalized sulfasalazine boron nitride nanocages on cardiovascular disease and breast cancer: An in-silico simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Wang Q, Zhang P, Javed Ansari M, Aldawsari MF, Alalaiwe AS, Kaur J, Kumar R, Ng Kay Lup A, Enayati A, Mirzaei H, Soltani A, Su CH, Nguyen HC. Electrostatic interaction assisted Ca-decorated C20 fullerene loaded to anti-inflammatory drugs to manage cardiovascular disease risk in rheumatoid arthritis patients. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Jasim SA, Kzar HH, Jalil AT, Kadhim MM, Mahmoud MZ, Al-Gazally ME, Nasser HA, Ahmadi Z. DFT investigation of BN, AlN, and SiC fullerene sensors for arsine gas detection and removal. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Quantum chemical density functional theory (DFT) calculations were performed to investigate the adsorption of arsine (AsH3) gaseous substance at the surface of representative models of boron nitride (B16N16), aluminum nitride (Al16N16), and silicon carbide (Si16C16) fullerene-like nanocages. The results indicated that the adsorption processes of AsH3 could be taken place by each of B16N16, Al16N16, and Si16C16 nanocages. Moreover, the electronic molecular orbital properties indicated that the electrical conductivity of nanocages were changed after the adsorption processes enabling them to be used for sensor applications. To analyze the strength of interacting models, the quantum theory of atoms in molecules (QTAIM) was employed. As a typical achievement of this work, it could be mentioned that the investigated Si16C16 fullerene-like nanocage could work as a suitable adsorbent for the AsH3 gaseous substance proposing gas-sensor role for the Si16C16 fullerene-like nanocage.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hamzah H. Kzar
- Department of Chemistry, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim, Iraq
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Mustafa M. Kadhim
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Dentistry, Kut University College, Kut, Wasit, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Mustafa Z. Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al- Kharj, Saudi Arabia
- Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
10
|
Cao Y, Noori M, Nazari M, Ng Kay Lup A, Soltani A, Erfani-Moghadam V, Salehi A, Aghaei M, Lutfor Rahman M, Sani Sarjadi M, Sarkar SM, Su CH. Molecular docking evaluation of celecoxib on the boron nitride nanostructures for alleviation of cardiovascular risk and inflammatory. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Chandiramouli R, Deepika K, Manideep Reddy K, Swetha B, Nagarajan V. Methylcyclohexane and methyl methacrylate sensing studies using γ-arsenene nanoribbon – a first-principles investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|