1
|
Wang Y, Xu T, Song E, Jiang Y, Wang F, Gu C, Ju X, Bian Y, Song Y, Kengara FO, Jiang X. Ultrasensitive detection of trace Hg(Ⅱ) in acidic conditions using DMABR loaded on sepiolite: Function, application and mechanism studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134734. [PMID: 38850937 DOI: 10.1016/j.jhazmat.2024.134734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.
Collapse
Affiliation(s)
- Yuncheng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Xu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - En Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhao Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhu J, Guo Y, Yao L, Pan G, Zhang D, Yang J. Preparation and Property Analysis of Antibacterial Fiber Membranes Based on Hyperbranched Polymer Quaternary Ammonium Salts. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3761. [PMID: 39124425 PMCID: PMC11313460 DOI: 10.3390/ma17153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Due to their excellent properties, antimicrobial fiber membranes are widely applied in bioprotective materials. This work addresses the preparation of thermoplastic polyurethane (TPU)-based fiber membranes with active antimicrobial properties. 2-hydroxypropyl trimethyl ammonium chloride-terminated hyperbranched polymer (HBP-HTC) was synthesized and used as an antimicrobial agent. The fiber membranes were obtained by electrospinning a mixed solution of HBP-HTC and TPU. Different electrospinning conditions were investigated, such as the spinning voltage and drum rotation speed. The fiber membrane prepared under a 22 kV anode voltage and 100 rpm rotation speed had an average fiber diameter of 1.66 μm with a concentrated diameter distribution. Antibacterial tests showed that when the fiber membrane was loaded with 1500 mg/kg of HBP-HTC, the antibacterial rates of E. coli as well as S. aureus both reached 99.99%, exhibiting excellent proactive antimicrobial performance. Moreover, the protective performance of the fiber membrane was outstanding, with a filtration efficiency of 99.9%, a hydrostatic pressure resistance greater than 16,758 Pa, and a moisture permeability of 2711.0 g⋅(m2⋅d)-1.
Collapse
Affiliation(s)
- Jiehui Zhu
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (J.Z.); (J.Y.)
| | - Ying Guo
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China;
| | - Lirong Yao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China;
| | - Gangwei Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China;
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China;
| | - Jianwei Yang
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (J.Z.); (J.Y.)
| |
Collapse
|
3
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Elaraby A, Elgendy A, Abd-El-Raouf M, Migahed M, El-Tabei A, Abdullah AM, Al-Qahtani N, Alharbi SM, Shaban SM, Kim D, El Basiony N. Synthesis of Gemini cationic surfactants based on natural nicotinic acid and evaluation of their inhibition performance at C-steel/1 M HCl interface: Electrochemical and computational investigations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Effects of the number of cationic sites on the surface/interfacial activity and application properties of quaternary ammonium surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Kashapov RR, Mirgorodskaya AB, Kuznetsov DM, Razuvaeva YS, Zakharova LY. Nanosized Supramolecular Systems: From Colloidal Surfactants to Amphiphilic Macrocycles and Superamphiphiles. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Tan X, Chen J, Fang B, Liu B, Gao H, Li K, Yu L, Xu K, Lu Y, Qiu X. Rheology on high temperature resistant novel trimeric cationic viscoelastic surfactant with KCl. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2065296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xinyuan Tan
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Chen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Bo Fang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Boxiang Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hang Gao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Kejing Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Luyao Yu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Ke Xu
- Fracturing and Acidizing Technology Centre, Research Institute of Petroleum Exploration and Development - Langfang Branch, Langfang, China
| | - Yongjun Lu
- Fracturing and Acidizing Technology Centre, Research Institute of Petroleum Exploration and Development - Langfang Branch, Langfang, China
| | - Xiaohui Qiu
- Fracturing and Acidizing Technology Centre, Research Institute of Petroleum Exploration and Development - Langfang Branch, Langfang, China
| |
Collapse
|
8
|
Zhi L, Shi X, Zhang E, Gao C, Gai H, Wang H, Liu Z, Zhang T. Synthesis and Performance of Double-Chain Quaternary Ammonium Salt Glucosamide Surfactants. Molecules 2022; 27:molecules27072149. [PMID: 35408549 PMCID: PMC9000696 DOI: 10.3390/molecules27072149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
A series of double-chain quaternary ammonium salt surfactants N-[N'[3-(gluconamide)] propyl-N'-alkyl]propyl-N,N-dimethyl-N-alkyl ammonium bromide (CnDDGPB, where n represents a hydrocarbon chain length of 8, 10, 12, 14 and 16) were successfully synthesized from D (+)-glucose δ-lactone, N,N-dimethyldipropylenetriamine, and bromoalkane using a two-step method consisting of a proamine-ester reaction and postquaternization. Their surface activity, adsorption, and aggregation behavior in aqueous solution were investigated via measurements of dynamic/static surface tension, contact angle, dynamic light scattering, and transmission electron microscopy. An analysis of their application performance in terms of wettability, emulsifying properties, toxicity, and antibacterial properties was conducted. The results show that with increasing the carbon chain length of the CnDDGPB surfactants, their critical micelle concentration (CMC) increased and the pC20 and efficiency in the interface adsorption of the target product gradually decreased. Moreover, the influence of the hydrophobic carbon chain length on the surface of polytetrafluoroethylene (PTFE) was even greater for the wetting effect, reducing the contact angle to 32° within the length range of C8-C14. The results of the contact angle change and the wettability experiments proved that C10DDGPB exhibited the best wettability. The liquid paraffin and soybean oil emulsification ability of CnDDGPB showed an upward trend followed by a downward trend with the growth of the carbon chain, with C12DDGPB exhibiting the best emulsification performance. The Dlong/Dshort ratio was far lower than 1, which indicates mixed-kinetic adsorption. The surfactants formed spherical micelles and showed a unique aggregation behavior in aqueous solution, which showed an increase-decrease-increase trend with the change in concentration. A cell toxicity and acute oral toxicity experiment showed that the CnDDGPB surfactants were less toxic than the commonly used surfactant dodecyldimethylbenzyl ammonium chloride (1227). In addition, at a concentration of 150 ppm, CnDDGPB exhibited the same bacteriostatic effect as 1227 at a concentration of 100 ppm. The results demonstrate that sugar-based amide cationic surfactants are promising as environmentally friendly disinfection products.
Collapse
Affiliation(s)
- Lifei Zhi
- Correspondence: ; Tel.: +86-130-6800-2395
| | | | | | | | | | | | | | | |
Collapse
|