1
|
Li H, Li S, Hou R, Rao Y, Guo S, Chang Z, Zhou H. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem Soc Rev 2024; 53:7742-7783. [PMID: 38904425 DOI: 10.1039/d4cs00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.
Collapse
Affiliation(s)
- Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Ruilin Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Ahmed M, Filippov A, Johansson P, Shah FU. Pyrrolidium- and Imidazolium-Based Ionic Liquids and Electrolytes with Flexible Oligoether Anions. Chemphyschem 2024; 25:e202300810. [PMID: 38349198 DOI: 10.1002/cphc.202300810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Indexed: 03/01/2024]
Abstract
A new class of fluorine-free ionic liquids (ILs) and electrolytes based on aliphatic flexible oligoether anions, 2-(2-methoxyethoxy)acetate (MEA) and 2-[2-(2-methoxyethoxy)ethoxy]acetate (MEEA), coupled with pyrrolidinium and imidazolium cations is introduced. For the ILs with MEEA anions, Li+ conducting electrolytes are created by doping the ILs with 30 mol % of LiMEEA. The structural flexibility of the oligoether functionality in the anion results in glass transition temperatures (Tg) as low as -60 °C for the neat ILs and the electrolytes. The imidazolium-based ILs and electrolytes reveal better thermal stabilities but higher Tg and lower electrochemical stabilities than the corresponding pyrrolidinium-based analogues. All neat ILs show comparable transport properties for the cations and these decrease by the addition of lithium salt - the pyrrolidinium-based electrolyte being affected the most.
Collapse
Affiliation(s)
- Mukhtiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Patrik Johansson
- Materials Physics, Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87, Luleå, Sweden
| |
Collapse
|
3
|
Ilyas F, Fazal H, Ahmed M, Iqbal A, Ishaq M, Jabeen M, Butt M, Farid S. Advances in ionic liquids as fluorescent sensors. CHEMOSPHERE 2024; 352:141434. [PMID: 38401867 DOI: 10.1016/j.chemosphere.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.
Collapse
Affiliation(s)
- Farva Ilyas
- Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China; Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hira Fazal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhktiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-97 187, Luleå, Sweden
| | - Asma Iqbal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Maher Jabeen
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Madiha Butt
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sumbal Farid
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Nazir G, Rehman A, Lee JH, Kim CH, Gautam J, Heo K, Hussain S, Ikram M, AlObaid AA, Lee SY, Park SJ. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. NANO-MICRO LETTERS 2024; 16:138. [PMID: 38421464 PMCID: PMC10904712 DOI: 10.1007/s40820-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Adeela Rehman
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jagadis Gautam
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Abeer A AlObaid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Gao J, Xie Y, Zeng P, Zhang L. Strategies for Optimizing the Zn Anode/Electrolyte Interfaces Toward Stable Zn-Based Batteries. SMALL METHODS 2023; 7:e2300855. [PMID: 37702129 DOI: 10.1002/smtd.202300855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Aqueous rechargeable Zn-ion batteries (ARZIBs) have attracted extensive attention because of the advantages of high energy density, high safety, and low cost. However, the commercialization of ARZIBs is still challenging, mainly because of the low efficiency of Zn anodes. Several undesirable reactions (e.g., Zn dendrite and byproduct formation) always occur at the Zn anode/electrolyte interfaces, resulting in low Coulombic efficiency and rapid decay of ARZIBs. Motivated by the great interest in addressing these issues, various optimization strategies and related mechanisms have been proposed to stabilize the Zn anode-electrolyte interfaces and enlengthen the cycling lifespan of ARZIBs. Therefore, considering the rapid development of this field, updating the optimization strategies in a timely manner and understanding their protection mechanisms are highly necessary. This review provides a brief overview of the Zn anode/electrolyte interfaces from the fundamentals and challenges of Zn anode chemistry to related optimization strategies and perspectives. Specifically, these strategies are systematically summarized and classified, while several representative works are presented to illustrate the effect and corresponding mechanism in detail. Finally, future challenges and research directions for the Zn anode/electrolyte interfaces are comprehensively clarified, providing guidelines for accurate evaluation of the interfaces and further fostering the development of ARZIBs.
Collapse
Affiliation(s)
- Jiechang Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yawen Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pan Zeng
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Liang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
6
|
Su L, Lu F, Li Y, Li X, Chen L, Gao Y, Zheng L, Gao X. Microstructural Evolution of Zinc-Ion Species from Aqueous to Hydrated Eutectic Electrolyte for Zn-Ion Batteries. CHEMSUSCHEM 2023; 16:e202300285. [PMID: 37010877 DOI: 10.1002/cssc.202300285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/10/2023]
Abstract
Despite their intrinsic safety and environmental friendliness, typical aqueous Zn-ion rechargeable batteries have been struggling with poor reversibility and electrochemical stability. Hydrated eutectic electrolytes (HEEs) have been attracting extensive attention due to their appealing features of high designability and superior performances over typical aqueous electrolytes. However, an in-depth understanding of unique microstructure in HEEs and the ensuing superior performances remains obscure, limiting the development of enhanced electrolytes. Herein, we demonstrate a distinct evolution path of Zn-ion species from aqueous to superior hydrated eutectic electrolytes, which experience a special transition state enriched with H-bonds between eutectic molecules. Complementary with the well-studied reorganized solvation structure induced by short-ranged salt-solvent interaction, long-range solvent-solvent interactions arising from the H-bond reorganizes the extended electrolyte microstructure, which in turn influences the cation diffusion mechanisms and interfacial reaction kinetics. Overall, we highlight the importance of ion species microstructural evolution in the rational design of superior aqueous electrolytes.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, P. R. China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Yanrui Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, P. R. China
| | - Xia Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Liangdan Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, P. R. China
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
7
|
Ahmed M, Rao SS, Filippov A, Johansson P, Shah FU. Aromatic heterocyclic anion based ionic liquids and electrolytes. Phys Chem Chem Phys 2023; 25:3502-3512. [PMID: 36637119 DOI: 10.1039/d2cp05272e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Five new ionic materials comprising fluorine-free aromatic heterocyclic anions based on pyridine and pyrazine combined with a common n-tetrabutylphosphonium cation, (P4444)+, result in two room temperature ionic liquids (RTILs), one semi-solid, and two organic ionic plastic crystals (OIPCs) with melting points >20 °C. The OIPCs showed a plastic crystalline phase, multiple solid-solid transitions, and plastic crystalline and melt phases. For both the neat RTILs and the Li+ conducting electrolytes, the nature and strength of the ion-ion interactions mainly depend on the position of the nitrogen atom with respect to the carboxylate group in the anions. Furthermore, for the RTILs the ionic conductivity is effected by the electronic structure and flexibility of the ions and the anions diffuse faster than the (P4444)+ cation, but are slowed down in the electrolytes due to the strong electrostatic interactions between the carboxylate group of the anions and the Li+, as shown both experimentally and computationally. Overall, this study describes the effect of structural tuning of aromatic anions on the ion-ion interactions and introduces new ionic materials with promising properties to be used as solid and liquid electrolytes in energy storage devices.
Collapse
Affiliation(s)
- Mukhtiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Soniya S Rao
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Patrik Johansson
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
8
|
Ilyas F, Chen J, Zhang Y, Lu H, Huang Y, Ma H, Wang J. Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytes. Angew Chem Int Ed Engl 2023; 62:e202215110. [PMID: 36370036 DOI: 10.1002/anie.202215110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 11/13/2022]
Abstract
Metallic Zn is one of the most promising anodes, but its practical application has been hindered by dendritic growth and serious interfacial reactions in conventional electrolytes. Herein, ionic liquids are adopted to prepare intrinsically safe electrolytes via combining with TEP or TMP solvents. With this synergy effect, the blends of TEP/TMP with an IL fraction of ≈25 wt% are found to be promising electrolytes, with ionic conductivities comparable to those of standard phosphate-based electrolytes while electrochemical stabilities are considerably improved; over 1000 h at 2.0 mA cm-2 and ≈350 h at 5.0 mA cm-2 with a large areal capacity of 10 mAh cm-2 . The use of functionalized IL turns out to be a key factor in enhancing the Zn2+ transport due to the interaction of Zn2+ ions with IL-zincophilic sites resulting in reduced interfacial resistance between the electrodes and electrolyte upon cycling leading to spongy-like highly porous, homogeneous, and dendrite-free zinc as an anode material.
Collapse
Affiliation(s)
- Farva Ilyas
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahang Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huichao Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| | - Huiyang Ma
- College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Jiulin Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
| |
Collapse
|
9
|
Zhang Y, Zheng X, Wang N, Lai WH, Liu Y, Chou SL, Liu HK, Dou SX, Wang YX. Anode optimization strategies for aqueous zinc-ion batteries. Chem Sci 2022; 13:14246-14263. [PMID: 36545135 PMCID: PMC9749470 DOI: 10.1039/d2sc04945g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Zinc-ion batteries (ZIBs) have received much research attention due to their advantages of safety, non-toxicity, simple manufacture, and element abundance. Nevertheless, serious problems still remain for their anodes, such as dendrite development, corrosion, passivation, and the parasitic hydrogen evolution reaction due to their unique aqueous electrolyte system constituting the main issues that must be addressed, which are blocking the further advancement of anodes for Zn-ion batteries. Herein, we conduct an in-depth analysis of the problems that exist for the zinc anode, summarize the main failure types and mechanisms of the zinc anode, and review the main modification strategies for the anode from the three aspects of the electrolyte, anode surface, and anode host. Furthermore, we also shed light on further modification and optimization strategies for the zinc anode, which provide directions for the future development of anodes for zinc-ion batteries.
Collapse
Affiliation(s)
- Yiyang Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, Squires Way North Wollongong New South Wales 2500 Australia
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Nana Wang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, Squires Way North Wollongong New South Wales 2500 Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, Squires Way North Wollongong New South Wales 2500 Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, Squires Way North Wollongong New South Wales 2500 Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, Squires Way North Wollongong New South Wales 2500 Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yun-Xiao Wang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, Squires Way North Wollongong New South Wales 2500 Australia
| |
Collapse
|
10
|
Xu X, Su L, Lu F, Yin Z, Gao Y, Zheng L, Gao X. Unraveling anion effect on lithium ion dynamics and interactions in concentrated ionic liquid electrolyte. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zhang Y, Klein JM, Akolkar R, Gurkan BE, Maginn EJ. Solvation Structure, Dynamics, and Charge Transfer Kinetics of Cu 2+ and Cu + in Choline Chloride Ethylene Glycol Electrolytes. J Phys Chem B 2022; 126:6493-6499. [PMID: 35976689 DOI: 10.1021/acs.jpcb.2c04798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental measurements and classical molecular dynamics (MD) simulations were carried out to study electrolytes containing CuCl2 and CuCl salts in mixtures of choline chloride (ChCl) and ethylene glycol (EG). The study focused on the concentration of 100 mM of both CuCl2 and CuCl with the ratio of ChCl/EG varied from 1:2, 1:3, 1:4, to 1:5. It was found that the Cu2+ and Cu+ have different solvation environments in their first solvation shell. Cu2+ is coordinated by both Cl- anions and EG molecules, whereas Cu+ is only solvated by EG. However, both Cu2+ and Cu+ show strong interactions with their second solvation shells, which include both Cl- anions and EG molecules. Considering both the first and second solvation shells, the concentrations of Cu2+ and Cu+ that have various coordination numbers in each solution were calculated and were found to correlate qualitatively with the exchange current density trends reported in previous experiments of Cu2+ reduction to Cu+. This finding makes a connection between atomic solvation structure observed in MD simulations and redox reaction kinetics measured in electrochemical experiments, thus revealing the significance of the solvation environment of reduced and oxidized species for electrokinetics in deep eutectic solvents.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rohan Akolkar
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Burcu E Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Haghani H, Behrouz M, Chaban VV. Triethylsulfonium-Based Ionic Liquids Enforce Lithium Salts Electrolytes. Phys Chem Chem Phys 2022; 24:9418-9431. [DOI: 10.1039/d2cp00275b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The demand for energy cheap production and efficient storage is huge nowadays. Sulfonium-based ionic liquids were shown to exhibit a useful set of physical-chemical and electrochemical properties which make them...
Collapse
|