1
|
Gun'ko VM, Turov VV. Interfacial Phenomena in Nanostructured Systems with Various Materials. Chemphyschem 2024; 25:e202300622. [PMID: 38259051 DOI: 10.1002/cphc.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Interfacial phenomena linked to the behavior of bound water, organic solvents (co-sorbates, dispersion media), hydrogen, methane, acids/bases, and salts bound to various silicas, polymers, and carbon materials were analyzed vs. temperature and concentrations using 1 H NMR spectroscopy, differential scanning calorimetry (DSC) and other methods. The material characteristics were studied using microscopy, infrared spectroscopy (IR), small angle X-ray scattering (SAXS), and nitrogen adsorption. Confined space effects (CSE) result in enhanced freezing point depression (FPD) and stronger diminution of solvent activity and colligative properties of liquid mixtures in narrower pores. Short hydrophobic functionalities (≡Si-CH3 , =Si(CH3 )2 ) at a silica surface and the presence of nanopores result in differentiation of bound water into weakly (WAW, δH =0.2-2.0 ppm) and strongly (SAW, δH =4-6 ppm) associated waters of smaller solvent activity in smaller clusters located in narrower pores and unfrozen below a bulk freezing point. These effects are enhanced in hydrophobic dispersion media. Hydrophobic liquids could displace bound water into narrower pores inaccessible for their molecules larger than water and/or into broader pores to reduce contact area between immiscible liquids. The observed phenomena depend on sorbent/sorbate kinds and play an important role on practical applications of various sorbents.
Collapse
Affiliation(s)
- Volodymyr M Gun'ko
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Street, Kyiv, 03164, Ukraine
| | - Volodymyr V Turov
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Street, Kyiv, 03164, Ukraine
| |
Collapse
|
2
|
Zheng H, Liu H, Tong K. Insights into Molecular Dynamics and Oil Extraction Behavior of the Polymeric Surfactant in a Multilayered Heterogeneous Reservoir. ACS OMEGA 2024; 9:11243-11254. [PMID: 38496924 PMCID: PMC10938387 DOI: 10.1021/acsomega.3c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 03/19/2024]
Abstract
Interlayer heterogeneity, an inevitable and complex challenge during water flooding, seriously constrains the spread of the sweep region and oil recovery enhancement in multilayered heterogeneous reservoirs. To overcome this challenge, a novel polymeric surfactant, having an excellent performance in the reduction of interfacial tension (IFT) and the increase of viscosity of displacing fluid, is applied for enlarging the sweep resonance and increasing the oil washing efficiency. Through the molecular dynamics (MD) simulation, the molecular distributing mechanisms of the polymeric surfactant at the oil-water interface are analyzed to provide the theoretical basis for explaining the microscopic mechanism of oil extraction. To directly reflect the microscopic behavior of oil extraction, multiple transparent sand-packed models are designed to investigate the flowing behavior of different fluids and the extracted mechanisms of the remaining oil in both pore and macroscales. The multilayered heterogeneous reservoirs consisting of high-, moderate-, and low-permeability layers are fabricated to represent a heterogeneous characteristic. The recognition from the visual experiment and MD simulation can study the performance control, the extracting performance of the remaining oil, and the expression of the displacing front from different perspectives. The results from MD simulation demonstrate that the polymeric surfactant can promote the disintegration of the remaining oil and enhance its mobility. The experimental results indicate that the sweep efficiency is restricted by viscous fingering and tongue advance. Through the analysis of mathematical models, the rising mobility ratio and the location of the displacing front have a strong positive relationship with viscous fingering and tongue advance, which can reasonably explain the plugging performance of the polymeric surfactant, greatly improving the sweeping effect of the whole reservoir. Moreover, the Marangoni effect generated by the IFT gradient can induce the transformation of interfacial energy to displacement kinetic energy by the emulsification of the oil-water interface so that the remaining oil in the blind-end pore can be effectively extracted. However, by comparing data from image quantification techniques and production dynamic performance, the sweep efficiency (484%) was significantly greater than that of oil recovery (300%), demonstrating that the expanded sweep effect still plays a dominant role in the extraction of remaining oil after polymeric surfactant flooding. This study provides a novel plugging and effective washing agent that is expected to be an excellent and comprehensive method for solving the problem of low oil recovery in multilayered heterogeneous reservoirs.
Collapse
Affiliation(s)
- Hao Zheng
- State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- CNOOC
International Limited, Beijing 100026, China
| | - Huiqing Liu
- State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Kaijun Tong
- CNOOC
International Limited, Beijing 100026, China
| |
Collapse
|
3
|
Iravani M, Khalilnezhad Z, Khalilnezhad A. A review on application of nanoparticles for EOR purposes: history and current challenges. JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY 2023; 13:959-994. [PMID: 36644438 PMCID: PMC9831025 DOI: 10.1007/s13202-022-01606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Applications of nanotechnology in several fields of petroleum industry, e.g., refinery, drilling and enhanced oil recovery (EOR), have attracted a lot of attention, recently. This research investigates the applications of nanoparticles in EOR process. The potential of various nanoparticles, in hybrid and bare forms for altering the state of wettability, reducing the interfacial tension (IFT), changing the viscosity and activation of other EOR mechanisms are studied based on recent findings. Focusing on EOR, hybrid applications of nanoparticles with surfactants, polymers, low-salinity phases and foams are discussed and their synergistic effects are evaluated. Also, activated EOR mechanisms are defined and specified. Since the stabilization of nanofluids in harsh conditions of reservoir is vital for EOR applications, different methods for stabilizing nanofluids through EOR procedures are reviewed. Besides, a discussion on different functional groups of NPs is represented. Later, an economic model for evaluation of EOR process is examined and "Hotelling" method as an appropriate model for investigation of economic aspects of EOR process is introduced in detail. The findings of this study can lead to better understanding of fundamental basis about efficiency of nanoparticles in EOR process, activated EOR mechanisms during application of nanoparticles, selection of appropriate nanoparticles, the methods of stabilizing and economic evaluation for EOR process with respect to costs and outcomes.
Collapse
Affiliation(s)
- Mostafa Iravani
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz, 51335-1996 Iran
| | | | - Ali Khalilnezhad
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz, 51335-1996 Iran
- Grupo de Investigación en Fenómenos de Superficie−Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, 050034 Medellín, Colombia
| |
Collapse
|
4
|
Hussain KA, Chen C, Haggerty R, Schubert M, Li Y. Fundamental Mechanisms and Factors Associated with Nanoparticle-Assisted Enhanced Oil Recovery. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kazi Albab Hussain
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| | - Cheng Chen
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Ryan Haggerty
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| | - Mathias Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| | - Yusong Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, United States
| |
Collapse
|
5
|
Xu G, Chang J, Wu H, Shao W, Li G, Hou J, Kang N, Yang J. Enhanced oil recovery performance of surfactant-enhanced Janus SiO2 nanofluid for high temperature and salinity reservoir. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Zhong W, Zhi Z, Zhao J, Li D, Yu S, Duan M, Xu J, Tong C, Pang J, Wu C. Oxidized Chitin Nanocrystals Greatly Strengthen the Stability of Resveratrol-Loaded Gliadin Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13778-13786. [PMID: 36196864 DOI: 10.1021/acs.jafc.2c04174] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resveratrol (RES) is a natural polyphenol with a variety of health beneficial properties, but its application is greatly limited due to low aqueous solubility and poor bioavailability. This study aims to address these issues via gliadin nanoparticles stabilized with oxidized chitin nanocrystals (O-ChNCs) as a delivery system for RES. RES-loaded gliadin nanoparticles (GRNPs) were fabricated by an antisolvent method, and their formation mechanism was elucidated using zeta-potential, FTIR, XRD, and TEM. Furthermore, the effect of O-ChNCs on the colloidal stability and bioactiveness of GRNPs was discussed. The results demonstrate that O-ChNCs are adsorbed onto the surface of GRNPs through hydrogen bonding and electrostatic interactions, leading to the enhanced absolute potential and the improved hydrophobicity of the particles, which in turn facilitates the stability of the GRNPs. Furthermore, the changes in the release profile and antioxidant activity of RES in the simulated gastric and intestinal tracts indicate that the adsorption of O-ChNCs not only delays the release of RES but also has a protective effect on the antioxidant capacity of RES. This study provides significant implications for developing stable gliadin nanoparticles as delivery vehicles for bioactive substances.
Collapse
Affiliation(s)
- Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent9000, Belgium
| | - Jianbo Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian350002, China
| |
Collapse
|