1
|
Mool-Am-Kha P, Phetduang S, Phongsanam N, Surawanitkun C, Ngamdee K, Ngeontae W. A fluorescence biosensor for organophosphorus pesticide detection with a portable fluorescence device-based smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125330. [PMID: 39486239 DOI: 10.1016/j.saa.2024.125330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
An innovative fluorescence biosensor was successfully developed to detect organophosphorus pesticide (OPs) by utilizing smartphone technology. The assay relied on the enzymatic activity of alkaline phosphatase (ALP), which facilitated the conversion of L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAP) into L-ascorbic acid (AA). The AA that generated was then reactedwith o-phenylenediamine (OPD) to yield a fluorescent marker identified as 3-(1,2-dihydroxyethyl)furo[3,4-b]quinoxalin-1(3H)-one (DFQ). A novel bandpass approach was specifically developed for a smartphone that was integrated with a customized portable fluorescence device to measure the fluorescence emission of DFQ. The device has a unique application that converts the fluorescence intensity into an RGB signal. In the presence of OPs, malathion was chosen as the representative of the OPs substance; the enzymatic activity of the ALP was inhibited, resulting in a decrease in fluorescence intensity, which was proportional to the concentration of malathion. Smartphones can be used to measure fluorescence emission, offering a calibration sensitivity more than 70 times higher than that of conventional spectrofluorometer. The recently developed methodology can be employed to identify malathion within the concentration range of 0.1-1 ppm, with a detection limit of 0.05 ppm. The practical applicability of the method was established using vegetable samples, and the acquired results were in good agreement with those obtained using the standard HPLC approach. This innovative method provides both portability and accuracy, while also exhibiting a notable degree of sensitivity in detecting traceamounts of OPs.
Collapse
Affiliation(s)
- Pijika Mool-Am-Kha
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Construction Materials Group, Engineering Materials Division, Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Samuch Phetduang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nopphakon Phongsanam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chayada Surawanitkun
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Kessarin Ngamdee
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Zhu H, Liu B, Pan J, Xu L, Liu J, Hu P, Du D, Lin Y, Niu X. Redox interference-free bimodal paraoxon sensing enabled by an aggregation-induced emission nanozyme catalytically hydrolyzing phosphoesters specifically. Biosens Bioelectron 2025; 267:116756. [PMID: 39244836 DOI: 10.1016/j.bios.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
In view of the current serious situation of organophosphorus pesticides (OPs) residue contamination, developing rapid and accurate OPs sensors is a matter of urgency. Redox-nanozyme based colorimetric sensors have been widely researched and utilized in OPs residue determination, but overcoming the interference of external redox substances and the effect of single-signal modes on detection performance is still a challenge. Here we fabricated a Zr-based metal-organic framework (MOF) featuring specific phosphatase-like activity and strong aggregation-induced emission (AIE) fluorescence for redox interference-free bimodal pesticide sensing. In the MOF, the activity-tunable Zr4+ node offered high hydrolytic activity and affinity toward P-O containing substrates, and the rigid framework structure effectively enhanced the fluorescence emission of the ligand 1,1,2,2-tetra(4-carboxylphenyl)ethylene. The developed AIEzyme could efficiently catalyze the hydrolysis of paraoxon to yellow p-nitrophenol, which further reduced the intrinsic AIE fluorescence of AIEzyme through internal filtration effect. Thereby, a natural enzyme-free dual-mode colorimetric/fluorescence approach was established for paraoxon detection with no interference from redox substances, and a smartphone-assisted portable platform was further developed to enable the facile, rapid, and high-performance sensing of the pesticide in complex practical matrices.
Collapse
Affiliation(s)
- Hengjia Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Lizhang Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Xiangheng Niu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Zhou L, Zhao H, Zhang T, Li R, Cui Y, Liu Z, Wang L, Xie D. Apple polysaccharide stabilized palladium nanoparticles for sensitive detection of organophosphorus pesticide. Int J Biol Macromol 2024; 281:136056. [PMID: 39443178 DOI: 10.1016/j.ijbiomac.2024.136056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The widespread application of organophosphorus pesticides (OPs) has inflicted significant damage on human well-being and food security. Hence, it is imperative to develop a friendly and accessible biosensor for the detection of OPs. Herein, apple polysaccharide (AP) stabilized palladium nanoparticles (AP-PdnNPs) with a particle size of 2.75-5.95 nm were prepared using AP as a stabilizer and reducing agent. AP-Pd30NPs exhibited good peroxidase-like activity and effectively decomposed H2O2 to ·OH, which catalyzed the 3,3',5,5'-tetramethylbenzidine system to become blue. The catalytic kinetics of AP-Pd30NPs conformed to the typical Michelis-Menten equation. Furthermore, OPs directly inhibited the peroxidase-like activity of AP-Pd30NPs. Thus, a highly effective colorimetric biosensor was developed for the detection of OPs. The detection range of the biosensor was 0.050 μg/L - 200 mg/L, and the limit of detection was extremely low to 0.010 μg/L. Compared with other nanomaterials, the detection platform based on AP-Pd30NPs can effectively detect organophosphorus pesticides without coupling natural enzymes;this method is more economical and practical. Therefore, this established method explores good perspective for the detection of OPs.
Collapse
Affiliation(s)
- Lijie Zhou
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Han Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China.
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Danyang Xie
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
4
|
Khampieng T, Kewcharoen K, Parnklang T, Kladsomboon S, Chailapakul O, Apilux A. Bi-enzyme assay coupled with silver nanoplate transformation for insecticide detection. NANOSCALE ADVANCES 2024:d4na00585f. [PMID: 39415772 PMCID: PMC11474407 DOI: 10.1039/d4na00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
A novel colorimetric method utilizing a bi-enzyme assay using silver nanoplates (AgNPls) as a direct signal source was developed to enable rapid insecticide detection. This innovative system leverages the in situ generated H2O2 from the consecutive enzyme-catalyzed reactions of acetylcholine hydrolysis and choline oxidation to introduce oxidative etching of AgNPls, transforming them into aggregated silver nanospheres (AgNSs). The morphological transformation of silver nanoparticles could be observed with the naked eye due to the solution's color shifts from pink-violet to blue-violet. The presence of insecticide, i.e., dichlorvos (DDVP), could inhibit acetylcholinesterase activity, thereby limiting H2O2 production and affecting the transformation of AgNPls into aggregated AgNSs. Furthermore, the extent of AgNPl-to-aggregated AgNS transformation and the subsequent solution's color change was inversely proportional to the amount of DDVP. Under optimal conditions, the developed bi-enzyme assay enables the quantification of DDVP within 5 minutes, achieving detection limits of 0.5 ppm and 0.1 ppm by naked-eye detection and UV-visible spectrophotometry, respectively. Furthermore, the practical application of this assay was validated for detecting insecticides in real vegetable samples, demonstrating both accuracy and reliability.
Collapse
Affiliation(s)
- Thitikan Khampieng
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Kaneenard Kewcharoen
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Tewarak Parnklang
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Sumana Kladsomboon
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Amara Apilux
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| |
Collapse
|
5
|
Mahato M, Maiti A, Ahamed S, Rajbanshi M, Lama S, Das SK. Acid-base equilibrium in non-aqueous medium: colorimetric visualization, estimation of acidity constants and construction of molecular logic gates. RSC Adv 2024; 14:3480-3488. [PMID: 38259994 PMCID: PMC10801445 DOI: 10.1039/d3ra04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
A reversible acid-base probe, (N1E, N4E)-N1, N4-bis((Z)-3-(4-(dimethylamino)phenyl)allylidene)benzene-1,4-diamine (MM1), is introduced for the colorimetric visualization of acid-base equilibria in non-aqueous media. MM1 displays reversible acidochromic behavior, showing exciting colorimetric change varying from weak to strong acid. Also, we have fabricated a colorimetric paper strip-based test kit to visualize acid-base equilibria. A dipstick experiment has been demonstrated to visualize the acid-base equilibria in the gaseous state. This acid-base probe has also been employed to estimate the pKa values of several acidic compounds in a non-aqueous medium using overlapping indicator methods. Based on reversible acidochromic UV-visible absorption spectral and colorimetric behavior, we have constructed a reconfigurable dual input and dual output combinational logic circuit and set-reset memorized device employing acid and base as chemically encoded inputs and corresponding optical outputs. The current report evokes a new protocol for developing various reversible acidochromic probes and its implication for constructing opto-chemical molecular logic gates and estimating the acid dissociation constants of various acidic compounds in non-aqueous media.
Collapse
Affiliation(s)
- Manas Mahato
- Department of Chemistry, University of North Bengal Darjeeling West Bengal 734013 India
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal Darjeeling West Bengal 734013 India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal Darjeeling West Bengal 734013 India
| | - Madan Rajbanshi
- Department of Chemistry, University of North Bengal Darjeeling West Bengal 734013 India
| | - Shubham Lama
- Department of Chemistry, University of North Bengal Darjeeling West Bengal 734013 India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal Darjeeling West Bengal 734013 India
| |
Collapse
|
6
|
Ayaz S, Uluçay S, Üzer A, Dilgin Y, Apak R. A novel acetylcholinesterase inhibition based colorimetric biosensor for the detection of paraoxon ethyl using CUPRAC reagent as chromogenic oxidant. Talanta 2024; 266:124962. [PMID: 37499364 DOI: 10.1016/j.talanta.2023.124962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
A novel colorimetric biosensor for the sensitive and selective detection of an organophosphate pesticide, paraoxon ethyl (POE), was developed based on its inhibitory effect on the acetylcholine esterase (AChE) enzyme. The bis-neocuproine copper (II) complex ([Cu(Nc)2]2+) known as the CUPRAC reagent, was used as a chromogenic oxidant in the AChE inhibition-based biosensors for the first time. To initiate the biosensor, an enzymatic reaction takes place between AChE and its substrate acetylthiocholine (ATCh). Then, enzymatically produced thiocholine (TCh) reacts with the light blue [Cu(Nc)2]2+ complex, resulting in the oxidation of TCh to its disulfide form. On the other hand, [Cu(Nc)2]2+ reduces to a yellow-orange cuprous complex ([Cu(Nc)2]+) which gives maximum absorbance at 450 nm. However, the absorbance of [Cu(Nc)2]+ proportionally decreased with the addition of POE because the inhibition of AChE by the organophosphate pesticide reduced the amount of TCh that would give a colorimetric reaction with the CUPRAC reagent. Based on this strategy, the linear response range of a colorimetric biosensor was found to be between 0.15 and 1.25 μM with a detection limit of 0.045 μM. The fabricated biosensor enabled the selective determination of POE in the presence of some other pesticides and metal ions. The recovery results between 92% and 104% were obtained from water and soil samples spiked with POE, indicating that the determination of POE in real water and soil samples can be performed with this simple, accurate, sensitive, and low-cost colorimetric biosensor.
Collapse
Affiliation(s)
- Selen Ayaz
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Canakkale, Turkey
| | - Sude Uluçay
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Chemistry Engineering, Canakkale, Turkey
| | - Ayşem Üzer
- İstanbul University -Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul-Avcılar, Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Canakkale, Turkey.
| | - Reşat Apak
- İstanbul University -Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul-Avcılar, Turkey.
| |
Collapse
|
7
|
Zhao H, Li R, Zhang T, Zhou L, Wang L, Han Z, Liu S, Zhang J. Platinum nanoflowers stabilized with aloe polysaccharides for detection of organophosphorus pesticides in food. Int J Biol Macromol 2023; 253:126552. [PMID: 37660849 DOI: 10.1016/j.ijbiomac.2023.126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Organophosphorus pesticides can inhibit the activity of acetylcholinesterase and cause neurological diseases. Therefore, it is crucial to establish an efficient and sensitive platform for organophosphorus pesticide detection. In this work, we extracted aloe polysaccharide (AP) from aloe vera with the number average molecular weight of 27760 Da and investigated its reducing property. We prepared aloe polysaccharide stabilized platinum nanoflowers (AP-Ptn NFs), their particle size ranges were 29.4-67.3 nm. Furthermore, AP-Ptn NFs exhibited excellent oxidase-like activity and the catalytic kinetics followed the typical Michaelis-Menten equation. They showed strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of organophosphorus pesticides in food using biocompatible AP-Ptn NFs. The detection range was 0.5 μg/L - 140 mg/L, which was wider than many previously reported nanozyme detection systems. This colorimetric biosensor had good selectivity and good promise for bioassay analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Sihang Liu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Zhang
- Shanxi Datong University, College of Chemical and Environmental Engineering, Datong 037009, China
| |
Collapse
|
8
|
Zhao F, Li M, Wang L, Wang M. A Colorimetric Sensor Enabled with Heterogeneous Nanozymes with Phosphatase-like Activity for the Residue Analysis of Methyl Parathion. Foods 2023; 12:2980. [PMID: 37569249 PMCID: PMC10418809 DOI: 10.3390/foods12152980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, a colorimetric sensor was developed for the detection of organophosphorus pesticides (OPs) using a heterogeneous nanozyme with phosphatase-like activity. Herein, this heterogeneous nanozyme (Au-pCeO2) was obtained by the modification of gold nanoparticles on porous cerium oxide nanorods, resulting in synergistic hydrolysis performance for OPs. Taking methyl parathion (MP) as the target pesticide, the catalytic performance and mechanism of Au-pCeO2 were investigated. Based on the phosphatase-like Au-pCeO2, a dual-mode colorimetric sensor for MP was put forward by the analysis of the hydrolysis product via a UV-visible spectrophotometer and a smartphone. Under optimum conditions, this dual-mode strategy can be used for the on-site analysis of MP with concentrations of 5 to 200 μM. Additionally, it can be applied for MP detection in pear and lettuce samples with recoveries ranging from 85.27% to 115.87% and relative standard deviations (RSDs) not exceeding 6.20%, which can provide a simple and convenient method for OP detection in agricultural products.
Collapse
Affiliation(s)
| | | | | | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (F.Z.); (M.L.); (L.W.)
| |
Collapse
|
9
|
Yan Z, Peng Z, Lai J, Xu P, Qiu P. Simplifying the complexity: Single enzyme (choline oxidase) inhibition-based biosensor with dual-readout method for organophosphorus pesticide detection. Talanta 2023; 265:124905. [PMID: 37421789 DOI: 10.1016/j.talanta.2023.124905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agricultural production, but their residues could cause pollution to the environment and living organisms. In this paper, a simple dual-readout method for OPs detection was proposed based on ChOx single enzyme inhibition. Firstly, ChOx can catalyze the production of H2O2 from choline chloride (Ch-Cl). Bifunctional iron-doped carbon dots (Fe-CDs) with good peroxidase-like activity and superior fluorescence properties can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) by H2O2 formed, and oxTMB could quench the fluorescence of Fe-CDs. In light of the fact that OPs exhibited activity in inhibiting ChOx, less H2O2 and the decreasing oxTMB led to a result that the fluorescence of the system recovered and the solution became lighter in blue color. Moreover, the process of ChOx inhibition by OPs was analyzed by molecular docking technique and it was found that OPs interact with key amino acid residues catalyzed by ChOx (Asn510, His466, Ser101, His351, Phe357, Trp331, Glu312). Finally, a dual-mode (colorimetry and fluorescence) sensor was created for the detection of OPs with the detection limit of 6 ng/L, and was successfully used in the quantitative determination of OPs in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Ziyu Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Juanhua Lai
- Jiangxi Center of Medical Device Testing, Nanchang, 330047, China
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|
11
|
Wang J, Wang X, Wang M, Bian Q, Zhong J. Novel Ce-based coordination polymer nanoparticles with excellent oxidase mimic activity applied for colorimetric assay to organophosphorus pesticides. Food Chem 2022; 397:133810. [PMID: 35917788 DOI: 10.1016/j.foodchem.2022.133810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
Cerium, as a lanthanide, has attracted considerable interest because of its excellent catalytic activity. Here, we propose a novel cerium-based coordination polymer nanoparticles named DPA-Ce-GMP, which have excellent oxidase-mimicking properties. Furthermore, a colorimetric probe that can act as an inhibitor to suppress the activity of acetylcholinesterase (AChE) was developed for detecting organophosphorus pesticides (OPs). DPA-Ce-GMP catalyzes colorless 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue color, and AChE catalyzes acetylthiocholine to produce thiocholine (TCh), which can weaken DPA-Ce-GMP-catalyzed TMB. After the addition of OPs, the enzymatic activity of AChE was inhibited to produce less amount of TCh, resulting in more DPA-Ce-GMP-catalyst oxidized TMB to show an increasing blue color. Dichlorvos, as the samples, with the limit of 0.024 μg/L. Overall, we believe that the colorimetric probe can be used for the rapid, low-cost, and large-scale field detection of OPs in food samples.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xueyang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Min Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Qinghua Bian
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jiangchun Zhong
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
12
|
Mahato M, Sarkar P, Sultana T, Tohora N, Ghanta S, Das A, Dutta P, Kumar Das S. Target Analyte Interaction with a New Julolidine Coupled Benzoxazole‐based Dyad: A combined Photophysical, Theoretical (DFT), and Bioimaging Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Pallobi Sarkar
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Susanta Ghanta
- Department of Chemistry National Institute of Technology, Agartala, Barjala Jirania Tripura 799046 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Dutta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research, Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| |
Collapse
|
13
|
Mahato M, Tohora N, Rahman Z, Sultana T, Ghanta S, Kumar Das S. A benzoxazole-based smart molecule for relay detection of zinc and phosphate ions and its implication towards molecular logic gate constructions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Rahman Z, Rajbanshi M, Mahato M, Ghanta S, Kumar Das S. A phthalimide scaffold smart molecule for visualization of acid-base equilibrium and determination of acid dissociation constants in the non-aqueous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Mahato M, Mardanya S, Rahman Z, Tohora N, Pramanik P, Ghanta S, Chowdhury AA, Kumar Shaw T, Kumar Das S. A Coumarin Coupled Electron Donor-Acceptor Dyad for Cascade Detection of Aluminium Ions and Explosive Nitroaromatic Compounds. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|