1
|
Dhameliya TM, Vekariya DD, Bhatt PR, Kachroo T, Virani KD, Patel KR, Bhatt S, Dholakia SP. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Mol Divers 2025; 29:871-897. [PMID: 38709459 DOI: 10.1007/s11030-024-10842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
- Present Address: Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Drashtiben D Vekariya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Pooja R Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Tarun Kachroo
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Kumkum D Virani
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Khushi R Patel
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Sandip P Dholakia
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| |
Collapse
|
2
|
Xu D, Wang XN, Wang L, Dai L, Yang C. Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes. Molecules 2024; 29:5661. [PMID: 39683819 DOI: 10.3390/molecules29235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts. In this short review, we aim to provide an overview of the structures of chiral ionic-liquid-supported ligands and the synthetic pathways for these ligands and catalysts. Various synthetic methodologies are demonstrated based on the conceptual frameworks of diverse chiral ionic-liquid-supported ligands. We systematically present the structures and comprehensive synthetic pathways of the chiral ionic-liquid-supported ligands and the typical corresponding transition-metal complexes that have been readily applied to asymmetric processes, categorized by their parent ligand framework. Notably, the crucial experimental procedures are delineated in exhaustive detail, with the objective of enhancing comprehension of the pivotal aspects involved in constructing chiral ionic-liquid-tagged ligands and compounds for both scholars and readers. Considering the current limitations of such ligands and catalysts, we conclude with remarks on several potential research directions for future breakthroughs in the synthesis and application of these intriguing ligands.
Collapse
Affiliation(s)
- Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Ning Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
3
|
Sager A, Rahman S, Imtiaz SA, Zhang Y, Alodhayb A, Georghiou PE, Al-Gawati M. Oxidative and Extractive Desulfurization of Fuel Oils Catalyzed by N-Carboxymethyl Pyridinium Acetate and N-Carboxyethyl Pyridinium Acetate Acidic Ionic Liquids: Experimental and Computational DFT Study. ACS OMEGA 2024; 9:23485-23498. [PMID: 38854558 PMCID: PMC11154728 DOI: 10.1021/acsomega.3c09975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
This study reports on the synthesis, characterization, and application of two acidic ionic liquids, namely, N-carboxymethylpyridinium acetate ([HO2CCH2Py][CH3CO2] or AIL1) and N-carboxyethylpyridinium acetate ([HO2C(CH2)2Py][CH3CO2] or AIL2), as both extractants and catalysts for the oxidative and extractive desulfurization (OEDS) of model fuel oils containing heteroaromatic sulfur compounds. The structural properties of the synthesized acidic ionic liquids (ILs) were confirmed by 1H NMR, 13C NMR, and FT-IR spectroscopic analysis. To optimize the performance of the acidic AILs in the desulfurization process, the effects of different parameters, such as H2O2 dosage, reaction time, and temperatures, were investigated. The experimental results showed that AIL1 has exceptionally high desulfurization-extraction rates, with values of 99.8%, 97.8%, and 95.4%, for DBT, BT, and 4,6-DMDBT, respectively, under the optimum conditions established. Under the same conditions, the desulfurization-extraction rates using AIL2 reached 91.6%, 87.3%, and 82.4%, respectively, for DBT, 4, 6-DMDBT, and BT. Both ionic liquids can be recycled up to 9 times without a significant decrease in their sulfur removal efficiencies. Furthermore, density functional theory (DFT) calculations were conducted to evaluate the electronic interaction energies (ΔIE) between the AILs with each of the sulfur-containing compounds and their putative oxidized products. The computational findings strongly supported the experimental outcomes.
Collapse
Affiliation(s)
- Amani Sager
- Department
of Process Engineering, Memorial University
of Newfoundland, St John’s, Newfoundland and Labrador A1B3X5, Canada
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Syed A. Imtiaz
- Department
of Process Engineering, Memorial University
of Newfoundland, St John’s, Newfoundland and Labrador A1B3X5, Canada
| | - Yan Zhang
- Department
of Process Engineering, Memorial University
of Newfoundland, St John’s, Newfoundland and Labrador A1B3X5, Canada
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Paris E. Georghiou
- Department
of Chemistry, Memorial University of Newfoundland, St John’s, Newfoundland
and Labrador A1B3X5, Canada
| | - Mahmoud Al-Gawati
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
6
|
Verma UK, Manhas A, Kapoor KK. [Ch][TAPSO] As an Efficient Ionic Liquid Catalyst for One‐Pot Synthesis ofTetrahydro‐4
H
‐chromenes and 3,4‐Dihydropyrano[
c
]chromenes. ChemistrySelect 2023. [DOI: 10.1002/slct.202204961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Usha Kumari Verma
- Department of Chemistry University of Jammu Jammu Jammu and Kashmir (INDIA 180006 India
| | - Akanksha Manhas
- Department of Chemistry University of Jammu Jammu Jammu and Kashmir (INDIA 180006 India
| | - Kamal K. Kapoor
- Department of Chemistry University of Jammu Jammu Jammu and Kashmir (INDIA 180006 India
| |
Collapse
|
7
|
Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Ionic liquids are a family of liquids that are composed entirely of ions and usually have melting points lower than 100 °C. Extensive research, along with the ever-growing interest of the scientific community, allowed for the development of a multitude of ionic liquids with low melting points. Such compounds are considered neoteric materials as well as ideal, custom-made solvents for a variety of different chemical transformations. In this regard, the importance of phase transfer catalysis is evident in a diversity of substrates and reactions. The use of phase transfer catalysts allows the reaction to proceed, facilitating the transfer of otherwise insoluble reactants to the desired phase. Recent scientific advances led to the emergence of ionic liquids, which are excellent candidates as phase transfer catalysts. The inherent fine-tuning capability of these molecules, along with the potential of phase transfer catalytic reactions, epitomize the sustainable aspect of this field of research. Herein, a cohesive report of such applications will be presented, including the period from the last decade of the 20th century up to date.
Collapse
|
8
|
Iftikhar R, Kamran M, Iftikhar A, Parveen S, Naeem N, Jamil N. Recent advances in the green synthesis of Betti bases and their applications: a review. Mol Divers 2023; 27:543-569. [PMID: 35449388 DOI: 10.1007/s11030-022-10427-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Well-known Betti bases are the products obtained by the one-pot multicomponent reaction of 1-naphthol/2-naphthol, aliphatic/aromatic aldehydes, and secondary amines, and this reaction is known as the Betti reaction. During recent years, due to the unveiling of the pharmacological and synthetic potential of Betti bases, a tremendous increase in the studies reporting novel synthetic methods for the efficient synthesis of Betti bases was observed. This review presents the recent key developments in the green synthesis of the Betti bases and accounts for the significant number of the literature reported during 2019-2022. Both catalyst free as well as the catalyst promoted synthesis (nanocatalyst, biocatalyst, transition metal catalyst, etc.) along with the synthetic applications (catalyst, ligands/chiral auxiliaries, and valuable synthons), optoelectronic applications (fluorescence sensors for phosgene gas, Hg2+, and Cr3+ detection, quasi-reversible redox potential) and biological properties (anticancer agents, antioxidant, anti-inflammatory agents, antitubercular agents, pesticidal agents, anti-Alzheimer agents, Topoisomerase I inhibitors, YAP-TEAD interaction inhibitors, and DNA binding and cleavage activity) are discussed. There is a surge of interest for the development of the green and efficient Betti reaction for the construction of C-C and C-N bond in a single-step reaction accessing Betti bases as products. Along with key methodological developments for the green synthesis of Betti bases, their applications in synthetic organic chemistry, optoelectronic sensors, advanced materials synthesis, agrochemicals and pharmaceutically active scaffolds, during the period of 2019-2022, have been considered.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Kamran
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Aleesha Iftikhar
- School of Biochemistry, Punjab Medical College, Faisalabad, 38000, Pakistan
| | - Sadia Parveen
- Department of Chemistry, Government College University Faisalabad (Layyah Campus), Layyah, Pakistan
| | - Naila Naeem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Ahmad MG, Chanda K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Santamaría C, Morales E, Rio CD, Herradón B, Amarilla JM. Studies on sodium-ion batteries: searching for the proper combination of the cathode material, the electrolyte and the working voltage. The role of magnesium substitution in layered manganese-rich oxides, and pyrrolidinium ionic liquid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Nasri A, Jaleh B, Shabanlou E, Nasrollahzadeh M, Ali Khonakdar H, Kruppke B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Siavashi J, Najafi A, Moslemizadeh A, Sharifi M, Kowsari E, Zendehboudi S. Design and Synthesis of a New Ionic Liquid Surfactant for Petroleum Industry. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. An Update on Synthesis, Properties, Applications and Toxicity of the ILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. In-silico Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2. ChemistrySelect 2022; 7:e202202069. [PMID: 35942360 PMCID: PMC9349937 DOI: 10.1002/slct.202202069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Due to alarming outbreak of pandemic COVID-19 in recent times, there is a strong need to discover and identify new antiviral agents acting against SARS CoV-2. Among natural products, lignan derivatives have been found effective against several viral strains including SARS CoV-2. Total of twenty-seven reported antiviral lignan derivatives of plant origin have been selected for computational studies to identify the potent inhibitors of SARS CoV-2. Molecular docking study has been carried out in order to predict and describe molecular interaction between active site of enzyme and lignan derivatives. Out of identified hits, clemastatin B and erythro-strebluslignanol G demonstrated stronger binding and high affinity with all selected proteins. Molecular dynamics simulation studies of clemastin B and savinin against promising targets of SARS CoV-2 have revealed their inhibitory potential against SARS CoV-2. In fine, in-silico computational studies have provided initial breakthrough in design and discovery of potential SARS CoV-2 inhibitors.
Collapse
Affiliation(s)
- Dipen K. Sureja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Ashish P. Shah
- Department of Pharmacy, Sumandeep VidyapeethVadodara391760, GujaratIndia
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Shwetaba B. Jadeja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Kunjan B. Bodiwala
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| |
Collapse
|
16
|
Bhakhar KA, Vaghela PV, Varakala SD, Chudasma SJ, Gajjar ND, Nagar PR, Sriram D, Dhameliya TM. Indole‐2‐carboxamides as New Anti‐Mycobacterial Agents: Design, Synthesis, Biological Evaluation and Molecular Modeling against mmpL3. ChemistrySelect 2022. [DOI: 10.1002/slct.202201813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaushikkumar A. Bhakhar
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Punit V. Vaghela
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Saiprasad D. Varakala
- Department of Pharmacy Birla Institute of Technology & Science - Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 India
| | - Shrdhhaba J. Chudasma
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Prinsa R. Nagar
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| | - Dharmarajan Sriram
- Department of Pharmacy Birla Institute of Technology & Science - Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500 078 India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura Ahmedabad 380009 Gujarat India
| |
Collapse
|
17
|
Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV. Environmentally Benign Approaches towards the Synthesis of Quinolines. ChemistrySelect 2022. [DOI: 10.1002/slct.202201059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asim Kumar
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Kirti Sharma
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Krupa A. Patel
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Rajvi V. Hirani
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| |
Collapse
|
18
|
Dhameliya TM, Devani AA, Patel KA, Shah KC. Comprehensive Coverage on Anti‐mycobacterial Endeavour Reported in 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202200921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aanal A. Devani
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Krupa A. Patel
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Kashvi C. Shah
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| |
Collapse
|