1
|
Xu X, Zhang Z, Weng X, Chen Z. What are the different biomolecules involved in the selective recovery of REEs from mining wastewater using FeNPs synthesized from two plant extracts? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174571. [PMID: 38977102 DOI: 10.1016/j.scitotenv.2024.174571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Extracting rare earth elements (REEs) from wastewater is crucial for saving the environment, sustainable use of natural resources and economic growth. Reported here is a simple, low cost and one-step synthesis of Fe nanoparticles (FeNPs) based on two plant extracts having the ability to recover REEs. The synthesis of FeNPs using Excoecaria cochinchinensis leaves extract (Ec-FeNPs) exhibited high selectivity for heavy rare earth due to unique biomolecules, achieving separation coefficients (Kd) of 3.16 × 103-4.04 × 106 mL/g and recovery efficiencies ranging from 71.7 to 100 %. Conversely, the synthesis of FeNPs using Pinus massoniana lamb extract (PML-FeNPs) revealed poorer REE recovery efficiencies of 7.2-86.7 %. To understand the differences between Ec-FeNPs and PML-FeNPs in terms of selectivity and efficiency, LC-QTOF-MS served to analyze the biomolecules differences of two plant extracts. In addition, various types of characterization were carried out to identify the different functional groups encapsulated on the surface of FeNPs. These results reveal the source of the difference in the selectivity of Ec-FeNPs and PML-FeNPs for REEs. Furthermore, during DFT calculations, it was found that biomolecules with varying affinities for the surface of FeNPs interact with each other, leading to the formation of structures that exhibit high reactivity towards REEs. Finally, incorporating Spearman correlation analysis demonstrates that the selective removal efficiency of REEs was closely linked to surface complexation, ion exchange, and electrostatic adsorption. Consequently, this work strongly highlights the potential for the practical application of novel adsorbents in this field.
Collapse
Affiliation(s)
- Xinmiao Xu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Zhenjun Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiulan Weng
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Zuliang Chen
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
2
|
Phaenark C, Nasuansujit S, Somprasong N, Sawangproh W. Moss biomass as effective biosorbents for heavy metals in contaminated water. Heliyon 2024; 10:e33097. [PMID: 39022103 PMCID: PMC11252938 DOI: 10.1016/j.heliyon.2024.e33097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
The study explored batch adsorption of Cd(II) and Pb(II) ions using moss biomass from Barbula consanguinea and Hyophila involuta, assessing removal efficiency concerning various parameters. Both moss species showed high removal rates for Cd(II) (87 % for B. consanguinea and 89 % for H. involuta) and Pb(II) (93 % for B. consanguinea and 94 % for H. involuta) from contaminated water, reaching equilibrium within 30 min. While Cd(II) removal was pH-independent, Pb(II) removal showed pH-dependence, peaking at pH 5.0-5.5. Adsorption isotherm analysis indicated that the Langmuir, Freundlich, Elovich, Sips, and Redlich-Peterson models best described Cd(II) and Pb(II) adsorption onto both moss species (except for Cd(II) adsorption onto H. involuta), with R 2 > 0.98. This confirms a heterogeneous surface with both monolayer and multilayer adsorption sites. The pseudo-second-order kinetic model confirmed chemisorption on moss biomass from both species. FTIR spectra identified major binding sites such as phenols, alkaloids, amines, alkenes, nitro compounds, and low-molecular-weight carbohydrates. EDS analysis validated the bonding of Cd(II) and Pb(II) ions to the biomass surface by displacing Ca(II) ions. According to the Langmuir model, moss biomass exhibited selective adsorption, favoring Pb(II) over Cd(II). B. consanguinea showed a higher adsorption capacity than H. involuta, which is attributed to its higher negative zeta potential. This study underscores the novelty of moss biomass for heavy metal removal in wastewater treatment, highlighting its sustainability, effectiveness, cost-efficiency, versatility, and eco-friendliness.
Collapse
Affiliation(s)
- Chetsada Phaenark
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University, (Kanchanaburi Campus), 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Sarunya Nasuansujit
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University, (Kanchanaburi Campus), 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Natdanai Somprasong
- Division of Research, Innovation, and Academic Services, Mahidol University, (Kanchanaburi Campus), 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Weerachon Sawangproh
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University, (Kanchanaburi Campus), 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| |
Collapse
|
3
|
Dai M, Di J, Zhang T, Li T, Dong Y, Bao S, Fu S. Reparation of nano-FeS by ultrasonic precipitation for treatment of acidic chromium-containing wastewater. Sci Rep 2024; 14:211. [PMID: 38168529 PMCID: PMC10761992 DOI: 10.1038/s41598-023-50070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Nano-FeS is prone to agglomeration in the treatment of chromium-containing wastewater, and ultrasonic precipitation was used to synthesize nano-FeS to increase its dispersion. The optimization of the preparation method was carried out by single factor method (reaction temperature, Fe/S molar ratio and FeSO4 dropping flow rate) and response surface methodology. Dynamic experiments were constructed to investigate the long-term remediation effect and water column changes of nano-FeS and its solid particles. The changes of the remediation materials before and after the reaction were observed by SEM, and the mechanism of the remediation of chromium-containing wastewater by nano-FeS prepared by ultrasonication was revealed by XRD. The results showed that the reaction temperature of 12 °C, Fe/S molar ratio of 3.5 and FeSO4 dropping flow rate of 0.5 mL/s were the best parameters for the preparation of nano-FeS. The nano-FeS has efficient dispersion and well-defined mesoporous structure in the form of needles and whiskers of 40-80 nm. The dynamic experiments showed that the average removal of Cr(VI) and total chromium by nano-FeS and its immobilized particles were 94.97% and 63.51%, 94.93% and 45.76%, respectively. Fe2+ and S2- ionized by the FeS nanoparticles rapidly reduced Cr(VI) to Cr(III). Part of S2- may reduce Fe3+ to Fe2+, forming a small iron cycle that gradually decreases with the ion concentration. Cr(III) and Fe2+ form Cr(OH)3 and FeOOH, respectively, with the change of aqueous environment. Another part of S2- reacts with Cr(III) to form Cr2S3 precipitate or is oxidized to singlet sulfur. The FeS nanoparticles change from short rod-shaped to spherical shape. Compared with the conventional chemical precipitation method, the method used in this study is simple, low cost, small particle size and high removal rate per unit.
Collapse
Affiliation(s)
- Mengjia Dai
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Ting Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Tuoda Li
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Sihang Bao
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Saiou Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
4
|
Khodayari P, Ebrahimzadeh H. A green QuEChERS syringe filter based micro-solid phase extraction using hydrophobic natural deep eutectic solvent as immobilized sorbent for simultaneous analysis of five anti-diabetic drugs by HPLC-UV. Anal Chim Acta 2023; 1279:341765. [PMID: 37827666 DOI: 10.1016/j.aca.2023.341765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Here, it has been discussed about creating a specific and sustainable analytical technique for monitoring anti-diabetic drugs in order to accurately determine the dosage in patients and reduce side effects, remove them from wastewater (as emerging contaminants), and ultimately abate pharmaceutical pollutants in the environment. RESULTS In this research, a green and reproducible Quick Easy Cheap Effective Rugged Safe (QuEChERS) method based on syringe filter based micro-solid phase extraction (SF-μSPE) coupled with HPLC-UV using a green sorbent was developed and optimized for the extraction of five anti-diabetic drugs from wastewater, serum, and plasma real samples. A novel green sorbent composed of a liquid mixture of thymol: menthol ([Thy]:[Men], 1:1) hydrophobic natural deep eutectic solvent (HNADES) and curcumin (Cur) immobilized into the non-toxic and biodegradable polyvinyl alcohol (PVA) electrospun nanofibers' mat was synthesized simply via cheap equipment. Cur was added to enhance the hydrophobicity and functionality of the sorbent. The immobilization process was performed by soaking the mat in the liquid mixture for a specific duration. The correct synthesis and experimental molar ratio of the HNADES components were confirmed by ATR-FTIR and NMR (1H and 13C) spectroscopy. The prepared green sorbent (Cur-HNADES/PVA) was characterized using ATR-FTIR, FE-SEM, EDX/EDX mapping analysis, and water contact angle (WCA) measurement, and it exhibited satisfactory adsorption capacity for the target analytes. SIGNIFICANCE Under optimal conditions (pH = 6.0, adsorption cycle = 3, sample volume = 5.0 mL, desorption cycle = 1, type and volume of elution = 80:20 %v/v MeOH/ACN and 500.0 μL), the method was validated in terms of specificity, linear dynamic ranges (LDRs = 0.1-2000.0 μg L-1 and 0.1-1800.0 μg L-1), limits of detection (LODs = 0.03-0.09 μg L-1), and precision (within-day RSDs% = 0.32-1.45% and between-day RSDs% = 0.59-2.03%). Evaluation of the greenness aspects of the proposed method was accomplished using the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) approaches. It is noteworthy that the conducted research represents the first report of the synthesis and application of this novel and green sorbent for the determination of anti-diabetic drugs in the mentioned real samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
5
|
Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, Wilson LD, ALOthman ZA. Food-grade algae modified Schiff base-chitosan benzaldehyde composite for cationic methyl violet 2B dye removal: RSM statistical parametric optimization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:459-471. [PMID: 37583281 DOI: 10.1080/15226514.2023.2246596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.
Collapse
Affiliation(s)
- Hasan M Agha
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Norrizah Jaafar Sidik
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Shafiq Aazmi
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Ramesh B, Saravanan A, Senthil Kumar P, Yaashikaa PR, Thamarai P, Shaji A, Rangasamy G. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121572. [PMID: 37028793 DOI: 10.1016/j.envpol.2023.121572] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution.
Collapse
Affiliation(s)
- B Ramesh
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
7
|
Bayramoglu G, Kilic M, Arica MY. Tramates trogii biomass in carboxymethylcellulose-lignin composite beads for adsorption and biodegradation of bisphenol A. Biodegradation 2023; 34:263-281. [PMID: 36806955 DOI: 10.1007/s10532-023-10024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Tramates trogii biomass was immobilized in carboxymethyl cellulose-lignin composite beads via cross-linking with Fe(III) ions (i.e., Fe(III)-CMC@Lig(1-4)@FB). The composite beads formulations were used for the adsorption and degradation of bisphenol A (BPA) using the free fungal biomass as a control system. The maximum adsorption capacity of the free fungal biomass and Fe(III)-CMC@Lig-3@FB for BPA was found to be 57.8 and 95.6, mg/g, respectively. The degradation rates of BPA were found to be 87.8 and 89.6% for the free fungal biomass and Fe(III)CMC@Lig-3@FB for 72 h in a batch reactor, respectively. Adsorption of BPA on the free fungal biomass and Fe(III)CMC@Lig-3@FB fungal preparations described by the Langmuir and Temkin isotherm models, and the pseudo-second-order kinetic model. The values of Gibbs free energy of adsorption (ΔG°) were - 20.7 and - 25.8 kJ/mol at 298 K for BPA on the free fungal biomass and Fe(III)-CMC@Lig-3@FB beads, respectively. Moreover, the toxicities of the BPA and degradation products were evaluated with three different test organisms: (i) a freshwater micro-crustacean (Daphnia magna), (ii) a freshwater algae (Chlamydomonas reinhardti), and (iii) a Turkish winter wheat seed (Triticum aestivum L.). After treatment with the Fe(III)CMC@Lig-3@FB formulation, the degradation products had not any significant toxic effect compared to pure BPA. This work shows that the prepared composite bioactive system had a high potential for degradation of BPA from an aqueous medium without producing toxic end-products. Thus, it could be a good candidate for environmentally safe biological methods.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
- Graduate School of Natural and Applied Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| | - Murat Kilic
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| |
Collapse
|
8
|
Sarvalkar P, Vadanagekar AS, Karvekar OS, Kumbhar PD, Terdale SS, Thounaojam AS, Kolekar SS, Vhatkar RS, Patil PS, Sharma KKK. Thermodynamics of Azo Dye Adsorption on a Newly Synthesized Titania-Doped Silica Aerogel by Cogelation: A Comparative Investigation with Silica Aerogels and Activated Charcoal. ACS OMEGA 2023; 8:13285-13299. [PMID: 37065033 PMCID: PMC10099422 DOI: 10.1021/acsomega.3c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The adsorption isotherms of azo dyes on a newly synthesized titania-doped silica (TdS) aerogel compared to silica aerogels and activated charcoal (AC) are systematically investigated. Monolithic TdS aerogels were synthesized by the cogelation process followed by supercritical drying of tetraethyl orthosilicate (TEOS) as a gel precursor and titanium(IV) isopropoxide (TTIP) as a metal complex precursor for co-polymerization in ethanol solvent. An acid-base catalyst was used for the hydrolysis and condensation of TEOS and TTIP. The effect of Ti4+ doping in a silica aerogel on the mesoporous structure and the adsorption capacity of methylene blue (MB) and crystal violet (CV) dyes were evaluated from the UV-vis absorption spectra. In order to compare the adsorption isotherms, the surface areas of silica and TdS aerogels were first normalized with respect to AC, as adsorption is a surface phenomenon. The azo dye equilibrium adsorption data were analyzed using different isotherm equations and found to follow the Langmuir adsorption isotherm. The maximum monolayer adsorption capacities for the adsorbent TdS aerogel normalized with the AC of the Langmuir isotherm are 131.58 and 159.89 mg/g for MB and CV dyes, respectively. From the Langmuir curve fitting, the Q max value of the TdS aerogel was found to increase by 1.22-fold compared to AC, while it increased 1.25-1.53-fold compared to the silica aerogel. After four cycles, regeneration efficiency values for MB and CV dyes are about 84 and 80%, respectively. The study demonstrates the excellent potential and recovery rate of silica and TdS aerogel adsorbents in removing dyes from wastewater. The pore volume and average pore size of the new aerogel, TdS, were found to be lower than those of the silica aerogel. Thus, a new TdS aerogel with a high capacity of adsorption of azo dyes is successfully achieved.
Collapse
Affiliation(s)
- Prashant
D. Sarvalkar
- School
of Nanoscience and Biotechnology, Shivaji
University, Kolhapur 416004, Maharashtra, India
| | - Apurva S. Vadanagekar
- School
of Nanoscience and Biotechnology, Shivaji
University, Kolhapur 416004, Maharashtra, India
| | - Omkar S. Karvekar
- School
of Nanoscience and Biotechnology, Shivaji
University, Kolhapur 416004, Maharashtra, India
| | - Pramod D. Kumbhar
- Department
of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
- Department
of Chemistry, Sadguru Gadge Maharaj College, Karad 415124, Maharashtra, India
| | - Santosh S. Terdale
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Avinash Singh Thounaojam
- Department
of Chemistry, AKI’s Poona College
of Arts, Science & Commerce, Pune 411001, Maharashtra, India
| | - Sanjay S. Kolekar
- Department
of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Rajiv S. Vhatkar
- Department
of Physics, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Pramod S. Patil
- School
of Nanoscience and Biotechnology, Shivaji
University, Kolhapur 416004, Maharashtra, India
- Department
of Physics, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Kiran Kumar K. Sharma
- School
of Nanoscience and Biotechnology, Shivaji
University, Kolhapur 416004, Maharashtra, India
| |
Collapse
|
9
|
Nille OS, Patel RS, Borate BY, Babar SS, Kolekar GB, Gore AH. One-step in-situ sustainable synthesis of magnetic carbon nanocomposite from corn comb (MCCC): agricultural biomass valorisation for pollutant abatement in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38425-38442. [PMID: 36580255 DOI: 10.1007/s11356-022-24847-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This study explored a novel, eco-friendly, sustainable, low-cost, and abundantly available corn comb (CC) agricultural biomass waste-derived one-step in-situ synthesis of magnetic carbon (MCCC) as an efficient adsorbent for water decontamination applications. Herein, we developed a robust and easily separable MCCC by carbonization of Fe(NO3)3.9H2O single iron salt-soaked CC at 500 °C for 5 h. The as-synthesized MCCC was confirmed for their physicochemical properties by various characterization techniques viz. scanning electron microscopy (SEM), high-resolution transmission emission microscopy (HR-TEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface area measurements by Brunauer-Emmett-Teller (BET) study, Raman analysis, and magnetic behavior by VSM analysis. The adsorption properties of MCCC on prototypical pollutant methylene blue (MB) was monitored depending on the effect of pH, adsorbent dose, contact time, and varying concentrations of MB. Especially, the π-π interactions played important role in the adsorption of MB at acidic pH (pH = 4). The MCCC displayed a maximum uptake capacity of 120.73 ± 0.63 mg/g toward MB. The Langmuir, Freundlich, and Temkin adsorption isotherm models were fitted with determined coefficient (R2) values of 0.99, 0.95, and 0.96 respectively. The kinetics of the adsorption process was well fitted with a pseudo-second-order model (R2 = 0.99). Most significantly, the as-designed easily separable, and reusable adsorbent, MCCC was effectively applied for the abatement of pollutants, different kinds of dyes, pesticides, and industrial wastewater samples. The sustainable, affordable, and waste to wealth-based MCCC with a simple synthesis methodology can be fruitfully applicable for environmental remediation and water decontamination.
Collapse
Affiliation(s)
- Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, 416004, MS, India
| | - Rahul S Patel
- Tarsadia Institute of Chemical Science, UKA Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Bhagyashree Y Borate
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, 416004, MS, India
| | - Santosh S Babar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, 416004, MS, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, 416004, MS, India
| | - Anil H Gore
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, 416004, MS, India.
- Tarsadia Institute of Chemical Science, UKA Tarsadia University, Bardoli, 394350, Gujarat, India.
| |
Collapse
|
10
|
Celik S. A Green Biocomposite Produced by Passive Cell Immobilization onto Waste Biomass Support for Biodecolorization of Reactive Dye Contamination. ChemistrySelect 2023. [DOI: 10.1002/slct.202203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sema Celik
- Department of Chemistry Eskisehir Osmangazi University Faculty of Science TR-26040 Eskisehir Turkey
| |
Collapse
|
11
|
Fu S, Di J, Guo X, Dong Y, Bao S, Li H. Preparation of lignite-loaded nano-FeS and its performance for treating acid Cr(VI)-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3351-3366. [PMID: 35947258 DOI: 10.1007/s11356-022-22411-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, lignite-loaded nano-FeS (nFeS@Lignite) was successfully prepared by ultrasonic precipitation, and its potential for treating acid Cr(VI)-containing wastewater was explored. The results showed that the 40--80-nm rod-shaped nFeS was successfully loaded onto lignite particles, and the maximum adsorption capacity of Cr(VI) by nFeS@Lignite reached 33.08 mg∙g-1 (reaction time = 120 min, pH = 4, temperature = 298.15 K). The adsorption process of Cr(VI) by nFeS@Lignite fitted the pseudo-second-order model and the Langmuir isotherm model, and thermodynamic results showed that the adsorption process was an endothermic process with an adsorption enthalpy of 28.0958 kJ·mol-1. The inhibition intensity of coexisting anions on Cr(VI) removal was in the order of PO43- > NO3- > SO42- > Cl-, and the increase of ionic strength resulted in more pronounced inhibition. Electrostatic adsorption, reduction, and precipitation were synergistically engaged in the adsorption of Cr(VI) by nFeS@Lignite, among which reduction played a major role. The characterization results showed that Fe2+, S2-, and Cr(VI) were converted to FeOOH, S8, SO42-, Fe2O3, Cr2O3, and Fe(III)-Cr(III) complexes. This research demonstrates that nFeS@Lignite is a good adsorbent with promising potential for application in the remediation of heavy metal-contaminated wastewater.
Collapse
Affiliation(s)
- Saiou Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Xuying Guo
- College of Science, Liaoning Technical University, Fuxin, 123000, China
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Sihang Bao
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Hanzhe Li
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
12
|
Lira Pérez J, Rodríguez Vázquez R. Removal of orange G dye by Aspergillus niger and its effect on organic acid production. Prep Biochem Biotechnol 2022:1-12. [PMID: 36527445 DOI: 10.1080/10826068.2022.2153368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Azo dyes have been found in wastewater from textile industries. These compounds continuously persist in the environment for long periods of time and may be toxic for living beings. An alternative treatment for dye removal that has proven to be effective is aerobic treatment with fungi. In this study, Aspergillus niger was investigated as a mechanism to remove orange G (OG). Removal of 200 mg/L of OG by A. niger biomass was carried out in solid and liquid medium, which showed a positive correlation between A. niger growth and dye removal. In liquid media what was proved is that the efficiency of OG removal by A. niger depends on its concentration; at 200 mg/L of OG remove by degradation and at 400 mg/L by processes as sorption and degradation. During OG removal, the generation of organic acids by A. niger was modified compared to constitutive generation, one of the modifications was the increase of gluconic acid production and the decrease of acids involved in the Krebs cycle, as well as the null detection of oxalic acid. The monitoring of organic acids by high-performance liquid chromatography (HPLC) was important because some of them have been linked to dye removal.
Collapse
|
13
|
Biosorption of crystal violet by nutraceutical industrial fennel seed spent equilibrium, kinetics, and thermodynamic studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Uddin MK, Abd Malek NN, Jawad AH, Sabar S. Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:393-402. [PMID: 35786072 DOI: 10.1080/15226514.2022.2086214] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the biomass of rubber seed pericarp was first treated with sulfuric acid and then its activated carbon was formed by the pyrolysis process. As produced acid-treated activated carbon of chosen biomass was then used for the adsorption of crystal violet (CV) and methylene green (MG) from the colored aqueous solution. The adsorbent was exposed to several characterization methods to know its structural and morphological behaviors before and after CV and MG adsorption. The adsorbent was found to be mesoporous having a surface area of 59.517 m2/g. The effect of pH, time, and concentration was assessed while various isotherm and kinetics models were employed to know the adsorption insight. The optimum conditions were at pH 8, within 30 min, 50 mg/L concentration, and 0.06 gm dose. The adsorption data (the maximum adsorption capacity for CV and MG were found to be 302.7 and 567.6 mg/g, respectively) was validated by fitting in a response surface statistical methodology and the positive interactions between the studied factors were found. The adsorption was mainly belonging to the electrostatic attraction of the dye molecules. The study proves that the used adsorbent is economical and an excellent source of treating wastewater.
Collapse
Affiliation(s)
- Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Zulfi Campus, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - S Sabar
- Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|