1
|
Anwar S, Khan S, Hussain A, Alajmi MF, Shamsi A, Hassan MI. Investigating Pyruvate Dehydrogenase Kinase 3 Inhibitory Potential of Myricetin Using Integrated Computational and Spectroscopic Approaches. ACS OMEGA 2024; 9:29633-29643. [PMID: 39005765 PMCID: PMC11238318 DOI: 10.1021/acsomega.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Protein kinases are involved in various diseases and currently represent potential targets for drug discovery. These kinases play major roles in regulating the cellular machinery and control growth, homeostasis, and cell signaling. Dysregulation of kinase expression is associated with various disorders such as cancer and neurodegeneration. Pyruvate dehydrogenase kinase 3 (PDK3) is implicated in cancer therapeutics as a potential drug target. In this current study, a molecular docking exhibited a strong binding affinity of myricetin to PDK3. Further, a 100 ns all-atom molecular dynamics (MD) simulation study provided insights into the structural dynamics and stability of the PDK3-myricetin complex, revealing the formation of a stable complex with minimal structural alterations upon ligand binding. Additionally, the actual affinity was ascertained by fluorescence binding studies, and myricetin showed appreciable binding affinity to PDK3. Further, the kinase inhibition assay suggested significant inhibition of PDK3 by myricetin, revealing an excellent inhibitory potential with an IC50 value of 3.3 μM. In conclusion, this study establishes myricetin as a potent PDK3 inhibitor that can be implicated in therapeutic targeting cancer and PDK3-associated diseases. In addition, this study underscores the efficacy of myricetin as a potential lead to drug discovery and provides valuable insights into the inhibition mechanism, enabling advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- South
African Medical Research Council, Vaccines and Infectious Diseases
Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, 4545, Saudi Arabia
| | - Mohamed F. Alajmi
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, 4545, Saudi Arabia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab
Emirates
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Alotaibi BS, Hakami MA, Anwar S, Mawkili W, Albaqami A, Hassan MI. Structure-based investigation of pyruvate dehydrogenase kinase-3 inhibitory potential of thymoquinone, targeting lung cancer therapy. Int J Biol Macromol 2024; 265:131064. [PMID: 38518935 DOI: 10.1016/j.ijbiomac.2024.131064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/24/2024]
Abstract
Protein kinases are an attractive therapeutic target for cardiovascular, cancer and neurodegenerative diseases. Cancer cells demand energy generation through aerobic glycolysis, surpassing "oxidative phosphorylation" (OXPHOS) in mitochondria. The pyruvate dehydrogenase kinases (PDKs) have many regulatory roles in energy generation balance by controlling the pyruvate dehydrogenase complex. Overexpression of PDKs is associated with the overall survival of cancer. PDK3, an isoform of PDK is highly expressed in various cancer types, is targeted for inhibition in this study. PDK3 has been shown to binds strongly with a natural compound, thymoquinone (TQ), which is known to exhibit anti-cancer potential. Detailed interaction between the PDK3 and TQ was carried out using spectroscopic and docking methods. The overall changes in the protein's structures after TQ binding were estimated by UV-Vis spectroscopy, circular dichroism and fluorescence binding studies. The kinase activity assay was also carried out to see the kinase inhibitory potential of TQ. The enzyme inhibition assay suggested an excellent inhibitory potential of TQ towards PDK3 (IC50 = 5.49 μM). We observed that TQ forms a stable complex with PDK3 without altering its structure and can be a potent PDK3 inhibitor which may be implicated in cancer therapy after desired clinical validation.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
3
|
Jairajpuri DS, Khan S, Anwar S, Hussain A, Alajmi MF, Hassan I. Investigating the role of thymol as a promising inhibitor of pyruvate dehydrogenase kinase 3 for targeted cancer therapy. Int J Biol Macromol 2024; 259:129314. [PMID: 38211912 DOI: 10.1016/j.ijbiomac.2024.129314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Protein kinases have emerged as major contributors to various diseases. They are currently exploited as a potential target in drug discovery because they play crucial roles in cell signaling, growth, and regulation. Their dysregulation is associated with inflammatory disorders, cancer, and neurodegenerative diseases. Pyruvate dehydrogenase kinase 3 (PDK3) has become an attractive drug target in cancer therapeutics. In the present study, we investigated the effective role of thymol in PDK3 inhibition due to the high affinity predicted through molecular docking studies. Hence, to better understand this inhibition mechanism, we carried out a 100 ns molecular dynamics (MD) simulation to analyse the dynamics and stability of the PDK3-thymol complex. The PDK3-thymol complex was stable and energetically favourable, with many intramolecular hydrogen bond interactions in the PDK3-thymol complex. Enzyme inhibition assay showed significant inhibition of PDK3 by thymol, revealing potential inhibitory action of thymol towards PDK3 (IC50 = 2.66 μM). In summary, we established thymol as one of the potential inhibitors of PDK3, proposing promising therapeutic implications for severe diseases associated with PDK3 dysregulation. This study further advances our understanding of thymol's therapeutic capabilities and potential role in cancer treatment.
Collapse
Affiliation(s)
- Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Khan MS, Furkan M, Shahwan M, Yadav DK, Anwar S, Khan RH, Shamsi A. Investigating molecular interactions between human transferrin and resveratrol through a unified experimental and computational approach: Role of natural compounds in Alzheimer's disease therapeutics. Amino Acids 2023; 55:1923-1935. [PMID: 37926707 DOI: 10.1007/s00726-023-03355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Disruptions to iron metabolism and iron homeostasis have emerged as significant contributors to the development and progression of Alzheimer's disease (AD). Human transferrin plays a key part in maintaining iron equilibrium throughout the body, highlighting its importance in AD. Many plant-derived compounds and dietary constituents show promise for preventing AD. Polyphenols that are abundant in fruits, vegetables, teas, coffee, and herbs possess neuroprotective attributes. Resveratrol is a natural polyphenol present in various plant sources like grapes, berries, peanuts, and red wine that has garnered research interest due to its wide range of biological activities. Notably, resveratrol exhibits neuroprotective effects that may help prevent or treat AD through multiple mechanisms. In the present study, we employed a combination of molecular docking and all-atom molecular dynamic simulations (MD) along with experimental approaches to unravel the intricate interactions between transferrin and resveratrol deciphering the binding mechanism. Through molecular docking analysis, it was determined that resveratrol occupies the iron binding pocket of transferrin. Furthermore, MD simulations provided a more profound insight into the stability and conformational dynamics of the complex suggesting that the binding of resveratrol introduced localized flexibility, while maintaining overall stability. The spectroscopic observations yielded clear evidence of substantial binding between resveratrol and transferrin, confirming the computational findings. The identified binding mechanism and conformational stability hold potential for advancing the development of innovative therapeutic approaches targeting AD through resveratrol, particularly concerning iron homeostasis. These insights serve as a platform for considering the natural compounds in the realm of AD therapeutics.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
5
|
Atiya A, Alsayari A, Bin Muhsinah A, Almaghaslah D, Bilgrami AL, Abdulmonem WA, Alorfi NM, DasGupta D, Ashraf GM, Shamsi A, Shahwan M. Role of lisinopril in the therapeutic management of cardiovascular disease by targeting microtubule affinity regulating kinase 4: molecular docking and molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 41:8824-8830. [PMID: 36376029 DOI: 10.1080/07391102.2022.2143425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Cardiovascular diseases (CVDs) are a major cause of premature adult death. Various factors contribute to the development of CVDs, such as atherosclerosis leading to myocardial infarction (MI), and compromised cardiac function after MI leads to chronic heart failure with systemic health complications and a high mortality rate. Microtubule detyrosination has rapidly evolved as an essential mechanism to regulate cardiomyocyte contractility. Microtubule affinity regulating kinase 4 (MARK4) regulates cardiomyocyte contractility in a way that it promotes phosphorylation of microtubule-associated protein 4, thereby facilitating the access of vasohibin 2-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Lisinopril, a drug belonging to the class of angiotensin-converting enzyme inhibitors, is used to treat high blood pressure. This is also used to treat heart failure, which plays a vital role in improving the survival rate post-heart attack. In this study, we will evaluate the MARK4 inhibitory potential of lisinopril employing molecular docking and molecular dynamics (MD) simulation approaches. Molecular docking analysis suggested that lisinopril binds to MARK4 with a significant binding affinity forming interactions with functionally essential residues of MARK4. Additionally, MD simulation deciphered the structural dynamics and stability of the MARK4-lisinopril complex. The findings of MD studies established that minimal structural deviations are observed during simulation, affirming the stability of the MARK4-lisinopril complex. Altogether, this study demonstrates lisinopril's crucial role in the therapeutic management of CVD by targeting MARK4.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Anas Shamsi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
- College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
6
|
Adnan M, DasGupta D, Anwar S, Shamsi A, Siddiqui AJ, Snoussi M, Bardakci F, Patel M, Hassan MI. Mechanistic insights into MARK4 inhibition by galantamine toward therapeutic targeting of Alzheimer's disease. Front Pharmacol 2023; 14:1276179. [PMID: 37795023 PMCID: PMC10546050 DOI: 10.3389/fphar.2023.1276179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Hyperphosphorylation of tau is an important event in Alzheimer's disease (AD) pathogenesis, leading to the generation of "neurofibrillary tangles," a histopathological hallmark associated with the onset of AD and related tauopathies. Microtubule-affinity regulating kinase 4 (MARK4) is an evolutionarily conserved Ser-Thr (S/T) kinase that phosphorylates tau and microtubule-associated proteins, thus playing a critical role in AD pathology. The uncontrolled neuronal migration is attributed to overexpressed MARK4, leading to disruption in microtubule dynamics. Inhibiting MARK4 is an attractive strategy in AD therapeutics. Methods: Molecular docking was performed to see the interactions between MARK4 and galantamine (GLT). Furthermore, 250 ns molecular dynamic studies were performed to investigate the stability and conformational dynamics of the MARK4-GLT complex. We performed fluorescence binding and isothermal titration calorimetry studies to measure the binding affinity between GLT and MARK4. Finally, an enzyme inhibition assay was performed to measure the MARK4 activity in the presence and absence of GLT. Results: We showed that GLT, an acetylcholinesterase inhibitor, binds to the active site cavity of MARK4 with an appreciable binding affinity. Molecular dynamic simulation for 250 ns demonstrated the stability and conformational dynamics of the MARK4-GLT complex. Fluorescence binding and isothermal titration calorimetry studies suggested a strong binding affinity. We further show that GLT inhibits the kinase activity of MARK4 significantly (IC50 = 5.87 µM). Conclusion: These results suggest that GLT is a potential inhibitor of MARK4 and could be a promising therapeutic target for AD. GLT's inhibition of MARK4 provides newer insights into the mechanism of GLT's action, which is already used to improve cognition in AD patients.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| |
Collapse
|
7
|
Atiya A, Batra S, Mohammad T, Alorfi NM, Abdulmonem WA, Alhumaydhi FA, Ashraf GM, Baeesa SS, Elasbali AM, Shahwan M. Desmodin and isopongachromene as potential inhibitors of cyclin-dependent kinase 5: phytoconstituents targeting anticancer and neurological therapy. J Biomol Struct Dyn 2023; 41:8042-8052. [PMID: 36184739 DOI: 10.1080/07391102.2022.2128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 10/07/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine-threonine protein kinase vital for neuronal cell cycle arrest and differentiation. It activates by binding with p35 and p39 and is important for the functioning of the nervous system. A growing body of evidence suggests that CDK5 contributes to the onset and progression of neurodegeneration and tumorigenesis and represents itself as a potential therapeutic target. Our research illustrates virtual screening of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) library to search for potential inhibitors of CDK5. Initially, the compounds from the parent library were filtered out via their physicochemical properties following the Lipinski rule of five. Then sequentially, molecular docking-based virtual screening, PAINS filter, ADMET, PASS analysis, and molecular dynamics (MD) simulation were done using various computational tools to rule out adversities that can cause hindrances in the identification of potential inhibitors of CDK5. Finally, two compounds were selected via the extensive screening showing significant binding with CDK5 ATP-binding pocket and ultimately were selected as potent ATP-competitive inhibitors of CDK5. Finally, we propose that the elucidated compounds Desmodin and Isopongachromene can be used further in the drug discovery process and act as therapeutics in the medical industry to treat certain complex diseases, including cancer and neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Shivani Batra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh S Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Moyad Shahwan
- College of Pharmacy, Ajman University, Abha, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Abha, United Arab Emirates
| |
Collapse
|
8
|
Alrouji M, DasGupta D, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Al Abdulmonem W, Shahwan M, Alsayari A, Atiya A, Shamsi A. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches. Int J Biol Macromol 2023; 235:123831. [PMID: 36870649 DOI: 10.1016/j.ijbiomac.2023.123831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), 752 amino acids long, belonging to the AMPK superfamily, plays a vital role in regulating microtubules due to its potential to phosphorylate microtubule-associated proteins (MAP's) and thus, MARK4 plays a key role in Alzheimer's disease (AD) pathology. MARK4 is a druggable target for cancer, neurodegenerative diseases, and metabolic disorders. In this study, we have evaluated the MARK4 inhibitory potential of Huperzine A (HpA), an acetylcholinesterase inhibitor (AChEI), a potential AD drug. Molecular docking revealed the key residues governing the MARK4-HpA complex formation. The structural stability and conformational dynamics of the MARK4-HpA complex was assessed by employing Molecular dynamics (MD) simulation. The results suggested that the binding of HpA with MARK4 leads to minimal structural alterations in the native conformation of MARK4, implying the stability of the MARK4-HpA complex. Isothermal titration calorimetry (ITC) studies deciphered that HpA binds to MARK4 spontaneously. Moreover, the kinase assay depicted significant inhibition of MARK by HpA (IC50 = 4.91 μM), implying it to be a potent MARK4 inhibitor that can be implicated in the treatment of MARK4-directed diseases.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Debarati DasGupta
- 428 Church Street, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
9
|
Atiya A, Das Gupta D, Alsayari A, Alrouji M, Alotaibi A, Sharaf SE, Abdulmonem WA, Alorfi NM, Abdullah KM, Shamsi A. Linagliptin and Empagliflozin Inhibit Microtubule Affinity Regulatory Kinase 4: Repurposing Anti-Diabetic Drugs in Neurodegenerative Disorders Using In Silico and In Vitro Approaches. ACS OMEGA 2023; 8:6423-6430. [PMID: 36844587 PMCID: PMC9948186 DOI: 10.1021/acsomega.2c06634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant public health burdens. Many studies have revealed the possibility of common pathophysiology between T2DM and AD. Thus, in recent years, studies deciphering the action mechanism of anti-diabetic drugs with their future use in AD and related pathologies are on high demand. Drug repurposing is a safe and effective approach owing to its low cost and time-saving attributes. Microtubule affinity regulating kinase 4 (MARK4) is a druggable target for various diseases and is found to be linked with AD and diabetes mellitus. MARK4 plays a vital role in energy metabolism and regulation and thus serves as an irrefutable target to treat T2DM. The present study was intended to identify the potent MARK4 inhibitors among FDA-approved anti-diabetic drugs. We performed structure-based virtual screening of FDA-approved drugs to identify the top hits against MARK4. We identified five FDA-approved drugs having an appreciable affinity and specificity toward the binding pocket of MARK4. Among these identified hits, two drugs, linagliptin, and empagliflozin, favorably bind to the MARK4 binding pocket, interacting with its critical residues and thus subjected to detailed analysis. All-atom detailed molecular dynamics (MD) simulations revealed the dynamics of binding of linagliptin and empagliflozin with MARK4. Kinase assay showed significant inhibition of MARK4 kinase activity in the presence of these drugs, implying them as potent MARK4 inhibitors. In conclusion, linagliptin and empagliflozin may be promising MARK4 inhibitors, which can further be exploited as potential lead molecules against MARK4-directed neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 2428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Abdulrhman Alsayari
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
- Complementary
and Alternative Medicine Unit, King Khalid
University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammed Alrouji
- Department
of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmajeed Alotaibi
- College
of Applied Medical Sciences, King Saud bin
Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Nasser M. Alorfi
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - K. M. Abdullah
- Department
of Biochemistry, Jain University, Bengaluru 560069, India
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
10
|
Alsagaby SA, Iqbal D, Ahmad I, Patel H, Mir SA, Madkhali YA, Oyouni AAA, Hawsawi YM, Alhumaydhi FA, Alshehri B, Alturaiki W, Alanazi B, Mir MA, Al Abdulmonem W. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci Rep 2022; 12:17648. [PMID: 36271116 PMCID: PMC9587039 DOI: 10.1038/s41598-022-21546-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Danish Iqbal
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Iqrar Ahmad
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Shabir Ahmad Mir
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Yahya Awaji Madkhali
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia ,grid.440760.10000 0004 0419 5685Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Yousef M. Hawsawi
- grid.415310.20000 0001 2191 4301Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499 Kingdom of Saudi Arabia ,grid.411335.10000 0004 1758 7207College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533 Kingdom of Saudi Arabia
| | - Fahad A. Alhumaydhi
- grid.412602.30000 0000 9421 8094Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Bader Alshehri
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Wael Alturaiki
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Bader Alanazi
- grid.415277.20000 0004 0593 1832Biomedical Research Administration, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia ,Prince Mohammed bin Abdulaziz Medical City, AlJouf, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- grid.412997.00000 0001 2294 5433Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Waleed Al Abdulmonem
- grid.412602.30000 0000 9421 8094Department of Pathology, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer's disease. Int J Biol Macromol 2022; 224:188-195. [DOI: 10.1016/j.ijbiomac.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
12
|
Ashraf GM, Gupta DD, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, Alqurashi TMA, Al Abdulmonem W, Alyousef MA, Alhumaydhi FA, Shamsi A. Unravelling Binding of Human Serum Albumin with Galantamine: Spectroscopic, Calorimetric, and Computational Approaches. ACS OMEGA 2022; 7:34370-34377. [PMID: 36188253 PMCID: PMC9521020 DOI: 10.1021/acsomega.2c04004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Human serum albumin (HSA), an abundant plasma protein, binds to various ligands, acting as a transporter for numerous endogenous and exogenous substances. Galantamine (GAL), an alkaloid, treats cognitive decline in mild to moderate Alzheimer's disease and other memory impairments. A vital step in pharmacological profiling involves the interaction of plasma protein with the drugs, and this serves as an essential platform for pharmaceutical industry advancements. This study is carried out to understand the binding mechanism of GAL with HSA using computational and experimental approaches. Molecular docking revealed that GAL preferentially occupies Sudlow's site I, i.e., binds to subdomain IIIA. The results unveiled that GAL binding does not induce any conformational change in HSA and hence does not compromise the functionality of HSA. Molecular dynamics simulation (250 ns) deciphered the stability of the HSA-GAL complex. We performed the fluorescence binding and isothermal titration calorimetry (ITC) to analyze the actual binding of GAL with HSA. The results suggested that GAL binds to HSA with a significant binding affinity. ITC measurements also delineated thermodynamic parameters associated with the binding of GAL to HSA. Altogether, the present study deciphers the binding mechanism of GAL with HSA.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-Clinical
Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Mohammad Zubair Alam
- Pre-Clinical
Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Salem Baeesa
- Division
of Neurosurgery, College of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Badrah S. Alghamdi
- Pre-Clinical
Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Physiology, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- The
Neuroscience
Research Unit, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department
of Pharmacology, Faculty of Medicine, King
Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Mohammed A. Alyousef
- Division of Neurosurgery, King
Abdulaziz
University Hospital, Jeddah 21589, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied
Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in
Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O.
Box Number 346, Ajman, United Arab Emirates
| |
Collapse
|
13
|
Ashraf GM, DasGupta D, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, Alqurashi TMA, Sharaf SE, Al Abdulmonem W, Alyousef MA, Alhumaydhi FA, Shamsi A. Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27144652. [PMID: 35889524 PMCID: PMC9320910 DOI: 10.3390/molecules27144652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/22/2023] Open
Abstract
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP's). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer's disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson's disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of -6.9 kcal/mol forming interactions with binding pocket's critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M-1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs.
Collapse
Affiliation(s)
- Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (G.M.A.); (A.S.)
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh S. Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Physiology, The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 21589, Saudi Arabia;
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah 24246, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 51452, Saudi Arabia;
| | - Mohammed A. Alyousef
- Division of Neurosurgery, College of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: (G.M.A.); (A.S.)
| |
Collapse
|
14
|
Xue B, DasGupta D, Alam M, Khan MS, Wang S, Shamsi A, Islam A, Hassan MI. Investigating binding mechanism of thymoquinone to human transferrin, targeting Alzheimer's disease therapy. J Cell Biochem 2022; 123:1381-1393. [PMID: 35722728 DOI: 10.1002/jcb.30299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Iron deposition in the central nervous system (CNS) is one of the causes of neurodegenerative diseases. Human transferrin (hTf) acts as an iron carrier present in the blood plasma, preventing it from contributing to redox reactions. Plant compounds and their derivatives are frequently being used in preventing or delaying Alzheimer's disease (AD). Thymoquinone (TQ), a natural product has gained popularity because of its broad therapeutic applications. TQ is one of the significant phytoconstituent of Nigella sativa. The binding of TQ to hTf was determined by spectroscopic methods and isothermal titration calorimetry. We have observed that TQ strongly binds to hTf with a binding constant (K) of 0.22 × 106 M-1 and forming a stable complex. In addition, isothermal titration calorimetry revealed the spontaneous binding of TQ with hTf. Molecular docking analysis showed key residues of the hTf that were involved in the binding to TQ. We further performed a 250 ns molecular dynamics simulation which deciphered the dynamics and stability of the hTf-TQ complex. Structure analysis suggested that the binding of TQ doesn't cause any significant alterations in the hTf structure during the course of simulation and a stable complex is formed. Altogether, we have elucidated the mechanism of binding of TQ with hTf, which can be further implicated in the development of a novel strategy for AD therapy.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shuo Wang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, UAE, Ajman
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Aggarwal S, Bhadana K, Singh B, Rawat M, Mohammad T, Al-Keridis LA, Alshammari N, Hassan MI, Das SN. Cinnamomum zeylanicum Extract and its Bioactive Component Cinnamaldehyde Show Anti-Tumor Effects via Inhibition of Multiple Cellular Pathways. Front Pharmacol 2022; 13:918479. [PMID: 35774603 PMCID: PMC9237655 DOI: 10.3389/fphar.2022.918479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cinnamomum zeylanicum is a tropical plant with traditional medicinal significance that possesses antimicrobial, antifungal, anti-parasitic, and anti-tumor properties. Here, we have elucidated the anti-tumor effects of Cinnamomum zeylanicum extract (CZE) and its bioactive compound cinnamaldehyde (CIN) on oral cancer and elucidated underlying molecular mechanisms. Anti-tumor activities of CZE and CIN were demonstrated by various in vitro experiments on oral cancer cells (SCC-4, SCC-9, SCC-25). The cell proliferation, growth, cell cycle arrest, apoptosis, and autophagy were analyzed by MTT, clonogenic assay, propidium iodide, annexin-V-PI, DAPI, and acridine orange staining, respectively. The binding affinity of CIN towards dihydrofolate reductase and p38-MAP kinase alpha was analyzed by molecular docking. Western blot assay was performed to assess the alteration in the expression of various proteins. CZE and CIN treatment significantly inhibited the growth and proliferation of oral cancer cells in a dose-dependent manner. These treatments further induced apoptosis, cell cycle arrest, and autophagy. CZE and CIN inhibited the invasion and cytoplasmic translocation of NF-κB in these cell lines. CIN showed a high affinity to MAP kinase P38 alpha and dihydrofolate reductase with binding affinities of −6.8 and −5.9 kcal/mol, respectively. The cancer cells showed a decreased expression of various PI3k-AKT-mTOR pathways related to VEGF, COX-2, Bcl-2, NF-κB, and proteins post-treatment.
Collapse
Affiliation(s)
- Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanchan Bhadana
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Baldeep Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Rawat
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Md. Imtaiyaz Hassan, ; Satya N. Das,
| | - Satya N. Das
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- *Correspondence: Md. Imtaiyaz Hassan, ; Satya N. Das,
| |
Collapse
|
16
|
Anwar S, DasGupta D, Azum N, Alfaifi SY, Asiri AM, Alhumaydhi FA, Alsagaby SA, Sharaf SE, Shahwan M, Hassan MI. Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Waseem R, Shamsi A, Khan T, Hassan MI, Kazim SN, Shahid M, Islam A. Unraveling the Binding Mechanism of Alzheimer's Drugs with Irisin: Spectroscopic, Calorimetric, and Computational Approaches. Int J Mol Sci 2022; 23:ijms23115965. [PMID: 35682643 PMCID: PMC9180407 DOI: 10.3390/ijms23115965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The prevalence of Alzheimer’s disease (AD) has been a major health concern for a long time. Despite recent progress, there is still a strong need to develop effective disease-modifying therapies. Several drugs have already been approved to retard the progression of AD-related symptoms; however, there is a need to develop an effective carrier system for the delivery of drugs to combat such diseases. In recent years, various biological macromolecules, including proteins, have been used as carriers for drug delivery. Irisin is a beneficial hormone in such diseases, including AD and related pathologies. Herein, the interaction mechanism of irisin with AD drugs such as memantine, galantamine, and fluoxetine is investigated. Fluorescence studies revealed that the above drugs bind to irisin with significant affinity, with fluoxetine having the highest binding affinity. Isothermal titration calorimetry (ITC) complemented the spontaneous binding of these drugs with irisin, delineating various associated thermodynamic and binding parameters. Molecular docking further validated the fluorescence and ITC results and unfolded the mechanism that hydrogen bonding governs the binding of fluoxetine to irisin with a significant binding score, i.e., −6.3 kcal/mol. We believe that these findings provide a promising solution to fight against AD as well as a platform for further research to utilize irisin in the drug-delivery system for an effective therapeutic strategy.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (R.W.); (A.S.); (T.K.); (M.I.H.); (S.N.K.)
- Correspondence:
| |
Collapse
|
19
|
Boichuk S, Syuzov K, Bikinieva F, Galembikova A, Zykova S, Gankova K, Igidov S, Igidov N. Computational-Based Discovery of the Anti-Cancer Activities of Pyrrole-Based Compounds Targeting the Colchicine-Binding Site of Tubulin. Molecules 2022; 27:2873. [PMID: 35566235 PMCID: PMC9101527 DOI: 10.3390/molecules27092873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite the tubulin-binding agents (TBAs) that are widely used in the clinic for cancer therapy, tumor resistance to TBAs (both inherited and acquired) significantly impairs their effectiveness, thereby decreasing overall survival (OS) and progression-free survival (PFS) rates, especially for the patients with metastatic, recurrent, and unresectable forms of the disease. Therefore, the development of novel effective drugs interfering with the microtubules' dynamic state remains a big challenge in current oncology. We report here about the novel ethyl 2-amino-1-(furan-2-carboxamido)-5-(2-aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (EAPCs) exhibiting potent anti-cancer activities against the breast and lung cancer cell lines in vitro. This was due to their ability to inhibit tubulin polymerization and induce cell cycle arrest in M-phase. As an outcome, the EAPC-treated cancer cells exhibited a significant increase in apoptosis, which was evidenced by the expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin-V-positive cells. By using the in silico molecular modeling methods (e.g., induced-fit docking, binding metadynamics, and unbiased molecular dynamics), we found that EAPC-67 and -70 preferentially bind to the colchicine-binding site of tubulin. Lastly, we have shown that the EAPCs indicated above and colchicine utilizes a similar molecular mechanism to inhibit tubulin polymerization via targeting the T7 loop in the β-chain of tubulin, thereby preventing the conformational changes in the tubulin dimers required for their polymerization. Collectively, we identified the novel and potent TBAs that bind to the colchicine-binding site and disrupt the microtubule network. As a result of these events, the compounds induced a robust cell cycle arrest in M-phase and exhibited potent pro-apoptotic activities against the epithelial cancer cell lines in vitro.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Biologically Active Terpenoids Laboratory, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Kirill Syuzov
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
| | - Firuza Bikinieva
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (K.S.); (F.B.); (A.G.)
| | - Svetlana Zykova
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| | - Ksenia Gankova
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| | - Sergei Igidov
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| | - Nazim Igidov
- Department of Pharmacology, Perm State Academy of Pharmacy, 614990 Perm, Russia; (S.Z.); (K.G.); (S.I.); (N.I.)
| |
Collapse
|
20
|
Computational-Based Discovery of the Anti-Cancer Activities of Pyrrole-Based Compounds Targeting the Colchicine-Binding Site of Tubulin. Molecules 2022. [PMID: 35566235 DOI: 10.3390/molecules27092873.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Despite the tubulin-binding agents (TBAs) that are widely used in the clinic for cancer therapy, tumor resistance to TBAs (both inherited and acquired) significantly impairs their effectiveness, thereby decreasing overall survival (OS) and progression-free survival (PFS) rates, especially for the patients with metastatic, recurrent, and unresectable forms of the disease. Therefore, the development of novel effective drugs interfering with the microtubules' dynamic state remains a big challenge in current oncology. We report here about the novel ethyl 2-amino-1-(furan-2-carboxamido)-5-(2-aryl/tert-butyl-2-oxoethylidene)-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates (EAPCs) exhibiting potent anti-cancer activities against the breast and lung cancer cell lines in vitro. This was due to their ability to inhibit tubulin polymerization and induce cell cycle arrest in M-phase. As an outcome, the EAPC-treated cancer cells exhibited a significant increase in apoptosis, which was evidenced by the expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin-V-positive cells. By using the in silico molecular modeling methods (e.g., induced-fit docking, binding metadynamics, and unbiased molecular dynamics), we found that EAPC-67 and -70 preferentially bind to the colchicine-binding site of tubulin. Lastly, we have shown that the EAPCs indicated above and colchicine utilizes a similar molecular mechanism to inhibit tubulin polymerization via targeting the T7 loop in the β-chain of tubulin, thereby preventing the conformational changes in the tubulin dimers required for their polymerization. Collectively, we identified the novel and potent TBAs that bind to the colchicine-binding site and disrupt the microtubule network. As a result of these events, the compounds induced a robust cell cycle arrest in M-phase and exhibited potent pro-apoptotic activities against the epithelial cancer cell lines in vitro.
Collapse
|