1
|
Daraie M, Tajbakhsh M, Ayati A, Rashidi S. Ag nanoparticles on arginine-cyanoguanidine functionalized magnetic g-C 3N 4: A catalyst for nitroaromatic hydrogenation and regioselective click reactions. Heliyon 2024; 10:e38956. [PMID: 39435055 PMCID: PMC11491912 DOI: 10.1016/j.heliyon.2024.e38956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
This study describes the development of a novel hybrid nanocatalyst that was obtained by doping magnetic g-C3N4 with Ag nanoparticles and modifying it with arginine and cyanoguanidine (Ag@Fe3O4-g-C3N4-Arg-CG). Comprehensive characterization of the nanocatalyst using techniques such as FTIR, XRD, SEM, and TGA confirmed its structural and morphological properties. The catalytic efficiency of the synthesized nanostructure was evaluated in two key reactions: the reduction of nitroaromatic compounds and a click reaction for 1,2,3-triazole synthesis. The results demonstrate that Ag@Fe3O4-g-C3N4-Arg-CG effectively reduced various nitroaromatic compounds to substituted anilines at room temperature using NaBH4 as the reducing agent. Nitrobenzene reduction did not proceed in aprotic solvents such as acetonitrile, CH2Cl2, and dimethylformamide, whereas it exhibited a high reaction yield in protic solvents such as ethanol and water. The highest yield (100 %) was observed in water at 50 °C using H2O solvent. Additionally, the nanohybrid exhibited significant potential for "green" click chemistry by efficiently synthesizing 1,2,3-triazoles under mild conditions, with low catalyst loading. Its magnetic properties facilitated easy recovery, and the catalyst maintained high activity over six cycles, making it suitable for sustainable applications in organic transformations.
Collapse
Affiliation(s)
- Mansoureh Daraie
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Sara Rashidi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| |
Collapse
|
2
|
Mokhtar A, Abdelkrim S, Sardi A, Hachemaoui M, Chaibi W, Chergui F, Boukoussa B, Djelad A, Sassi M, Abboud M. A strategy for the efficient removal of acidic and basic dyes in wastewater by organophilic magadiite@alginate beads: Box-Behnken Design optimization. Int J Biol Macromol 2024; 277:134348. [PMID: 39089557 DOI: 10.1016/j.ijbiomac.2024.134348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this study, four adsorbents were developed: layered silicate magadiite material (mag), Hexadecyltrimethylammonium intercalated magadiite (HDTMA@mag), a cross-linked composite of sodium alginate and magadiite (ALG@mag) and a cross-linked composite of sodium alginate and HDTMA@magadiite (ALG@HDTMA@mag). The adsorbents were evaluated for their effectiveness in removing of Methylene Blue (MB) and Eriochrome Black T (EBT) dyes. The prepared adsorbents were characterized using SEM, XRD, FTIR, and zeta potential measurements. Kinetic modeling results indicated that both film diffusion and intraparticle diffusion are useful as rate-determining processes in adsorption for all adsorbents. For both dyes, the Langmuir isotherm model provided a good correlation with the adsorption equilibrium data. ANOVA analysis for the best adsorbent (ALG@HDTMA@mag beads) revealed that MB removal was significantly influenced by the positive individual effects of contact time and ALG@HDTMA@mag dose. However, the individual effect of MB concentration exhibited an antagonistic effect throughout the adsorption process. The optimal parameters for achieving an adsorption capacity of 118.54 mg/g were a dye concentration of 60 ppm, a contact period of 1800 min, and an ALG@HDTMA@mag dose of 50 mg.
Collapse
Affiliation(s)
- Adel Mokhtar
- Département Génie des Procédés, Faculté des Sciences et Technologies, Université de Relizane, 48000 Relizane, Algeria; Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria.
| | - Soumia Abdelkrim
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria; Institut des Sciences et Techniques Appliquées (ISTA), Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Amina Sardi
- Laboratoire de Chimie Physique Macromoléculaire L.C.P.M, Université Oran 1 Ahmed Bella, El-Menaouer, B.P 1524, 31000, Oran, Algeria; Université Hassiba Ben Bouali, Faculté science exacte et informatique, département de chimie, 02010, Ouled Fares, Chlef, Algeria
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria; Département de Chimie, Faculté des Sciences et Technologies, Université de Relizane, 48000 Relizane, Algeria
| | - Wahiba Chaibi
- Physical and Organic Macromolecular Chemistry Laboratory (LCOPM), Faculty of Exact Sciences, University "Djillali Liabes", BP 89, Sidi Bel Abb, Sidi Bel Abbès, Algeria
| | - Fatma Chergui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria; Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Amal Djelad
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria
| | - Mohammed Sassi
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Mvala B, Munonde TS, Mpupa A, Bambo MF, Matabola KP, Nomngongo PN. Valorization and Upcycling of Acid Mine Drainage and Plastic Waste via the Preparation of Magnetic Sorbents for Adsorption of Emerging Contaminants. ACS OMEGA 2024; 9:34700-34718. [PMID: 39157114 PMCID: PMC11325435 DOI: 10.1021/acsomega.4c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Plastic waste poses a serious environmental risk, but it can be recycled to produce a variety of nanomaterials for water treatment. In this study, poly(ethylene terephthalate) (PET) waste and acid mine drainage were used in the preparation of magnetic mesoporous carbon (MMC) nanocomposites for the adsorptive removal of pharmaceuticals and personal care products (PPCPs) from water samples. The latter were then characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and ζ potential. The results of Brunauer-Emmett-Teller isotherms revealed high specific surface areas of 404, 664, and 936 m2/g with corresponding pore sizes 2.51, 2.28, and 2.26 nm for MMC, MMAC-25%, and MMAC-50% adsorbents, respectively. Under optimized conditions, the equilibrium studies were best described by the Langmuir and Freundlich models and kinetics by the pseudo-second-order model. The maximum adsorption capacity for monolayer adsorption from the Langmuir model was 112, 102, and 106 mg/g for acetaminophen, caffeine, and carbamazepine, respectively. The composites could be reused for up to six cycles without losing their adsorption efficiency. Furthermore, prepared adsorbents were used to remove acetaminophen, caffeine, and carbamazepine from wastewater samples, and up to a 95% removal efficiency was attained.
Collapse
Affiliation(s)
- Bongiwe
Apatia Mvala
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tshimangadzo S. Munonde
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering
and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Anele Mpupa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mokae Fanuel Bambo
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
| | - Kgabo Phillemon Matabola
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
- Department
of Water and Sanitation, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - Philiswa Nosizo Nomngongo
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
4
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
5
|
Jiang T, Pervez MN, Ilango AK, Ravi YK, Zhang W, Feldblyum JI, Yigit MV, Efstathiadis H, Liang Y. Magnetic surfactant-modified clay for enhanced adsorption of mixtures of per- and polyfluoroalkyl substances (PFAS) in snowmelt: Improving practical applicability and efficiency. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134390. [PMID: 38678712 DOI: 10.1016/j.jhazmat.2024.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
The extensive use of per- and polyfluoroalkyl substances (PFAS) in many industrial and consumer contexts, along with their persistent nature and possible health hazards, has led to their recognition as a prevalent environmental issue. While various PFAS removal methods exist, adsorption remains a promising, cost-effective approach. This study evaluated the PFAS adsorption performance of a surfactant-modified clay by comparing it with commercial clay-based adsorbents. Furthermore, the impact of environmental factors, including pH, ionic strength, and natural organic matter, on PFAS adsorption by the modified clay (MC) was evaluated. After proving that the MC was regenerable and reusable, magnetic modified clay (MMC) was synthesized, characterized, and tested for removing a wide range of PFAS in pure water and snowmelt. The MMC was found to have similar adsorption performance as the MC and was able to remove > 90% of the PFAS spiked to the snowmelt. The superior and much better performance of the MMC than powdered activated carbon points to its potential use in removing PFAS from real water matrices at an industrial scale.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States.
| | - Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haralabos Efstathiadis
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
6
|
Solanki S, Sinha S, Seth CS, Tyagi S, Goyal A, Singh R. Enhanced adsorption of Bismark Brown R dye by chitosan conjugated magnetic pectin loaded filter mud: A comprehensive study on modeling and mechanisms. Int J Biol Macromol 2024; 270:131987. [PMID: 38705337 DOI: 10.1016/j.ijbiomac.2024.131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Herein, a polymer-based bioadsorbent was prepared by cross-linking chitosan to filter mud and magnetic pectin (Ch-mPC@FM) for the removal of Bismark Brown R dye (BB-R) from wastewater. Morphological characterization analysis indicated that Ch-mPC@FM had a higher surface area and better pore structure than its components. The Artificial Neuron Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were employed to evaluate the simulation and prediction of the adsorption process based on input variables like temperature, pH, dosage, initial BB-R dye concentration, and contact time. ANFIS and ANN demonstrated significant modeling and predictive accuracy, with R2 > 0.93 and R2 > 0.96, and root mean square error < 0.023 and <0.020, respectively. The Langmuir isotherm and the pseudo-second-order kinetic models provided the best fits to the equilibrium and kinetic data. The thermodynamic assessment showed spontaneous and endothermic adsorption with average entropy and enthalpy changes of 119.32 kJ mol-1 K and 403.47 kJ mol-1, respectively. The study of BB-R dye adsorption on Ch-mPC@FM revealed multiple mechanisms, including electrostatic, complexation, pore filling, cation-π interaction, hydrogen bonding, and π-π interactions. The approximate production cost of US$ 5.809 Kg-1 and excellent adsorption capability render Ch-mPC@FM an inexpensive, pragmatic, and ecologically safe bioadsorbent for BB-R dye removal from wastewater.
Collapse
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | | | - Shivanshi Tyagi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Aarushi Goyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
7
|
Dai N, Liu X, Yang L, Huang X, Song D, Wang S, Zhang K, Liu X, Dong W, Zhang Y. Cetyltrimethylammonium Bromide-Modified Laponite@Diatomite Composites for Enhanced Adsorption Performance of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8427-8439. [PMID: 38607689 DOI: 10.1021/acs.langmuir.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
This work aims to enhance the adsorption performance of Laponite @diatomite for organic pollutants by modifying it with cetyltrimethylammonium bromide (CTAB). The microstructure and morphology of the CTAB-modified Laponite @diatomite material were characterized using SEM, XRD, FTIR, BET, and TG. Furthermore, the influences of key parameters, containing pH, adsorbent dosage, reaction time, and reaction temperature, on the adsorption process were investigated. The kinetics, thermodynamics, and isotherm models of the adsorption process were analyzed. Finally, potential adsorption mechanisms were given based on the characterization. The research findings indicate that CTAB-La@D exhibits good adsorption performance toward Congo red (CR) over a broad pH range. The maximum adsorption capacity of CR was 451.1 mg/g under the optimum conditions (dosage = 10 mg, contact time = 240 min, initial CR concentration = 100 mg/L, temperature = 25 °C, and pH = 7). The adsorption process conformed to the pseudo-second-order kinetic model, and the adsorption isotherms indicated that the adsorption process of CR was more in line with the Langmuir model, and it was physical adsorption. Thermodynamic analysis illustrates that the adsorption process is exothermic and spontaneous. Additionally, the mechanisms of electrostatic adsorption and hydrophobic effect adsorption of CR were investigated through XPS and FTIR analysis. This work provides an effective pathway for designing high-performance adsorbents for the removal of organic dye, and the synthesized materials hold great capability for practical utilization in the treatment of wastewater.
Collapse
Affiliation(s)
- Nan Dai
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xinyi Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lei Yang
- Department of Chemistry, Fudan University, Shanghai 200438, PR China
| | - Xi Huang
- College of Chemistry, Chongqing Normal University, Chongqing 400047, PR China
| | - Dan Song
- Chongqing Academy of Eco-Environmental Sciences, Chongqing 401147, PR China
| | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Kai Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Xiaoying Liu
- Army Logistics Academy of PLA, Chongqing 401331, PR China
| | - Wenxin Dong
- School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
8
|
Chamani F, Tanhaei B, Chenar MP. Innovative strategies for enhancing gas separation: Ionic liquid-coated PES membranes for improved CO 2/N 2 selectivity and permeance. CHEMOSPHERE 2024; 351:141179. [PMID: 38224753 DOI: 10.1016/j.chemosphere.2024.141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
As a cost-effective advancement in membrane technology, this study investigates the impact of PEG additive and CBT on the structural, stability, and gas permeance properties of PES-coated membranes, utilizing 1-dodecyl-3-methylimidazolium chloride ionic liquid ([DDMI][Cl] IL) as a carrier liquid. BET and FT-IR analyses highlight the significant enhancement in performance through the immobilization of pores with [DDMIM][Cl] IL. The investigation focuses on PES-M5-coated membranes, revealing excellent stability in finger-like pore structures prepared through direct immersion and nitrogen pressure immobilization. PES-M5-coated membranes with [DDMIM][Cl] IL via direct immersion experience lower weight loss than those coated using nitrogen pressure, with critical pressures at 1.4 and 1.25 bar, respectively. The study identifies PES-coated membranes, particularly PES-M25 (20.88 GPU) with macro-void pores and PES-M5 (29 GPU) with finger-like pores, exhibiting the highest CO2 permeance and CO2/N2 selectivity. As a cost-effective advancement in membrane technology, ionic liquids are employed in support membranes to enhance gas separation. Employing pure PES membranes with varying pore structures, created through the NIPS method, the study immobilizes [DDMI][Cl] IL in membrane pores through nitrogen pressure and direct immersion. Results underscore the successful application of porous support materials coated with ionic liquids for continuous CO2 and sulfur compound separation, showcasing competitive permeability and selectivity compared to traditional polymer membranes.
Collapse
Affiliation(s)
- Fatemeh Chamani
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mahdi Pourafshari Chenar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Gonçalves JO, Crispim MM, Rios EC, Silva LF, de Farias BS, Sant'Anna Cadaval Junior TR, de Almeida Pinto LA, Nawaz A, Manoharadas S, Dotto GL. New and effective cassava bagasse-modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5209-5220. [PMID: 38110688 DOI: 10.1007/s11356-023-31489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
A promissory technic for reducing environmental contaminants is the production of biochar from waste reuse and its application for water treatment. This study developed biochar (CWb) and NH4Cl-modified biochar (MCWb) using cassava residues as precursors. CWb and MCWb were characterized and evaluated in removing dyes (Acid Blue 9 and Food Red 17) in a binary system. The adsorbent demonstrated high adsorption capacity at all pH levels studied, showing its versatility regarding this process parameter. The equilibrium of all adsorption experiments was reached in 30 min. The adsorption process conformed to pseudo-first-order kinetics and extended Langmuir isotherm model. The thermodynamic adsorption experiments demonstrated that the adsorption process is physisorption, exhibiting exothermic and spontaneous characteristics. MCWb exhibited highly efficient and selective adsorption behavior towards the anionic dyes, indicating maximum adsorption capacity of 131 and 150 mg g-1 for Food Red 17 and Acid Blue 9, respectively. Besides, MCWb could be reused nine times, maintaining its original adsorption capacity. This study demonstrated an excellent adsorption capability of biochars in removing dyes. In addition, it indicated the recycling of wastes as a precursor of bio composts, a strategy for utilization in water treatment with binary systems. It showed the feasibility of the reuse capacity that indicated that the adsorbent may have many potential applications.
Collapse
Affiliation(s)
- Janaína Oliveira Gonçalves
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Marssele Martins Crispim
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil
| | - Estefani Cardillo Rios
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil
| | - Luis Felipe Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Bruna Silva de Farias
- Industrial Technology Laboratory, School of Chemistry and Food Federal University of Rio Grande, Rio Grande, Brazil
| | | | | | - Asad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
10
|
Mosaffa E, Patel D, Ramsheh NA, Patel RI, Banerjee A, Ghafuri H. Bacterial cellulose microfiber reinforced hollow chitosan beads decorated with cross-linked melamine plates for the removal of the Congo red. Int J Biol Macromol 2024; 254:127794. [PMID: 37923035 DOI: 10.1016/j.ijbiomac.2023.127794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In this epoch, the disposal of multipollutant wastewater inevitably compromises life on Earth. In this study, the inclusion of Bacterial cellulose microfilaments reinforced chitosan adorned with melamine 2D plates creates a unique 3D bead structure for anionic dye removal. The establishment of an imine network between melamine and chitosan, along with the quantity of inter- and intra‑hydrogen bonds, boosts the specific surface area to 106.68 m2.g-1. Removal efficiency and in-depth comprehension of synthesized adsorbent characteristics were assessed using batch adsorption experiments and characterization methods. Additionally, pH, adsorbent quantity, time, beginning concentration of solution, and temperature were analyzed and optimized as adsorption essential factors. Owing to the profusion of hydroxyl, amine, imine functional groups and aromatic rings, the synthesized adsorbent intimated an astonishing maximum adsorption capacity of 3168 mg.g-1 in Congo red dye removal at pH 5.5. Based on the kinetic evaluation, pseudo-second-order (R2 = 0.999), pseudo-first-order (R2 = 0.964), and Avrami (R2 = 0.986) models were well-fitted with the kinetic results among the seven investigated models. The isothermal study reveals that the adsorption mechanism predominantly follows the Redlich-Peterson (R2 = 0.996), Koble-Carrigan, and Hill isotherm models (R2 = 0.994). The developed semi-natural sorbent suggests high adsorption capacity, which results from its exceptional structure, presenting promising implications for wastewater treatment.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India; Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Dhruvi Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Rishikumar Indravadan Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
11
|
Garg R, Sabouni R. Efficient removal of cationic dye using ZIF-8 based sodium alginate composite beads: Performance evaluation in batch and column systems. CHEMOSPHERE 2023; 342:140163. [PMID: 37714469 DOI: 10.1016/j.chemosphere.2023.140163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
The environmental and health risks associated with dye contamination in water sources are alarming. Recently, researchers have been focusing on developing an innovative and susceptible solution using composite beads that effectively combat this issue. In this paper, beads were synthesized using a sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) through a simple dipping process. Several characterization tests were performed including XRD, FTIR, BET, TGA, and SEM-EDX. The SEM images confirmed that SA effectively coated the cubical structure of the ZIF-8, ensuring optimal performance. The efficiency of the resulting SA@ZIF-8 composite beads was tested on both synthetic malachite green dye and real industrial wastewater samples using batch and fixed bed column reactors. The findings revealed that maximum adsorption of 95.5% was achieved at pH 6 in 120 min of reaction time. FTIR and SEM analysis also confirmed the adsorption of MG dye onto the beads. The Freundlich isotherm model (R2 > 0.99) has a better fit than the Langmuir (R2 > 0.96) for describing the adsorption process. The PSO model predicted the kinetics of the system, whereas the intraparticle diffusion study supported the system's mechanistic analysis. Furthermore, the study also investigated the efficacy of the beads in treating real wastewater effluent samples collected from the dye industry. Overall, using sodium alginate-coated ZIF-8 beads was found to have many advantages over powdered ZIF-8, including higher selectivity, stability, reusability, and practicality, making them a promising alternative for adsorption applications. Therefore, these composite beads have the potential for the removal of the dye from wastewater, which could be widely applied in various industries.
Collapse
Affiliation(s)
- Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, PO Box 26666, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, PO Box 26666, United Arab Emirates.
| |
Collapse
|
12
|
Saghir S, Wang Y, Xiao Z. In situ synthesis of multivariant zeolitic tetrazolate imidazole frameworks (ZTIFs) with uncoordinated N-heteroatom sites for efficient adsorption of antiviral drugs. JOURNAL OF CLEANER PRODUCTION 2023; 414:137654. [PMID: 37304129 PMCID: PMC10227440 DOI: 10.1016/j.jclepro.2023.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The current outbreak of the coronavirus (COVID-19) pandemic has significantly increased the global usage of antiviral drugs (AVDs), leading to higher concentrations of antibiotics in water pollution. To address this current issue, a new kind of adsorbent named isostructural zeolitic tetrazolate imidazolate frameworks (ZTIFs) were synthesized by combining imidazole and tetrazolates into one self-assembly approach by adjusting pores and stability of frameworks. The incorporation of imidazole ligand progressively increased the stability of frameworks. Furthermore, increasing the content of tetrazolate ligand greatly improved the adsorption performance due to N-rich sites by increasing the pore size. The obtained adsorbent composite exhibits macroporous structure up to 53.05 nm with excellent structural stability. Owing to their macropores and highly exposed active sites, the synthesized ZTIFs exhibit the maximum adsorption capacity for oseltamivir (OT) and ritonavir (RT) of 585.2 mg/g and 435.8 mg/g, respectively. Moreover, the adsorption uptake and saturation process were rapid compared to simple MOF. Within 20 min, both pollutants achieved equilibrium. The adsorption isotherms were best interpreted by Pseudo second order kinetics. The adsorption of AVDs on ZTIFs was spontaneous, exothermic, and thermodynamically feasible. The DFT calculations and characterization results after adsorption demonstrate that π-π interaction, pore filling, surface complexation, and electrostatic interaction were the primary features of the adsorption mechanism. The prepared ZTIFs composite exhibits high chemical, mechanical and thermal stability and can be recycled multiple times without destroying its morphology and structure. The adsorbent regeneration for several cycles impacted the operational cost and the eco-friendly characteristic of the process.
Collapse
Affiliation(s)
- Summaira Saghir
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Yongqiang Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Zhenggang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| |
Collapse
|
13
|
Shi X, Gao L, Alzahrani E, Hong J, Alanazi AK, Abo-Dief HM, Li J, Xu BB, Algadi H, El-Bahy ZM, Guo Z. High adsorption performance for trace lead (II) cation from sewage by Fe/Cu metal organic nanosheets modified with terephthalic acid. CHEMOSPHERE 2023; 330:138637. [PMID: 37030340 DOI: 10.1016/j.chemosphere.2023.138637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/14/2023]
Abstract
A two-dimensional nanoflake (Fe/Cu-TPA) was prepared through a simple ultrasonic-centrifuge method. Fe/Cu-TPA has prominent performance on the removal of Pb2+ with low consistences. More than 99% lead (II) (Pb2+) was removed. The adsorption equipoise was established within 60 min for 50 mg L-1 Pb2+. Fe/Cu-TPA shows excellent regenerability with 19.04% decline of Pb2+ adsorption competence in 5 cycles. There are two models for Fe/Cu-TPA adsorption of Pb2+, pseudo-second-order dynamic model and Langmuir isotherm model, with a utmost adsorption competence of 213.56 mg g-1. This work offers a new candidate material for the industrial-grade Pb2+ adsorbents with promising application prospect.
Collapse
Affiliation(s)
- Xiaofeng Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Lingshu Gao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Junmao Hong
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Abdullah K Alanazi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Junhua Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Hassan Algadi
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK; Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
14
|
Parasuraman B, Kandasamy B, Murugan I, Alsalhi MS, Asemi N, Thangavelu P, Perumal S. Designing the heterostructured FeWO 4/FeS 2 nanocomposites for an enhanced photocatalytic organic dye degradation. CHEMOSPHERE 2023; 334:138979. [PMID: 37236279 DOI: 10.1016/j.chemosphere.2023.138979] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The present study, reports a facile approach for the synthesis of FeWO4/FeS2 nanocomposites were demonstrated through hydrothermal method. The surface morphology, crystalline structure, chemical composition, optical properties of the prepared samples was analysed by different various technique. The result observed analysis indicates that, the formation of heterojunction by 2:1 wt.% of FeWO4/FeS2 nanohybrid has the lowest recombination rate of electron-hole pairs and the least electron transfer resistance. Due to its the broad absorption spectral range and preferable energy band gap, the (2:1) FeWO4/FeS2 nanohybrid photocatalyst exhibits an excellent ability to remove MB dye when exposed to UV-Vis. Light irradiation. Its photocatalytic activity of (2:1) FeWO4/FeS2 nanohybrid is higher than other as prepared samples due to its synergistic effects, enhanced light absorption and high charge carrier separation. Radical trapping experimental result implies that the photo-generated free electrons and hydroxyl radials are essential to degrade the MB dye. Furthermore, a possible future mechanism for FeWO4/FeS2 nanocomposites photocatalytic activity was discussed. Moreover, the recyclability analysis demonstrated that the FeWO4/FeS2 nanocomposites can be recycled multiple times. The enhanced photocatalytic activity of 2:1 FeWO4/FeS2 nanocomposites is promising for the further application of visible light driven photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India
| | | | - Indrani Murugan
- Department of Chemistry, Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, 642128, India
| | - Mohamad S Alsalhi
- Department of Physics Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nassar Asemi
- Department of Physics Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India.
| | - Sakthivel Perumal
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
15
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
16
|
Liu F, Yang Q, Tang Q, Peng Q, Chen Y, Huo Y, Huang Q, Zuo Q, Gao N, Chen L. Adsorption of RhB dye on soy protein isolate-based double network spheres: Compromise between the removal efficiency and the mechanical strength. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Fu J, Yap JX, Leo CP, Chang CK. Carboxymethyl cellulose/sodium alginate beads incorporated with calcium carbonate nanoparticles and bentonite for phosphate recovery. Int J Biol Macromol 2023; 234:123642. [PMID: 36791941 DOI: 10.1016/j.ijbiomac.2023.123642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Although anionic polyelectrolyte hydrogel beads offer attractive adsorption of cationic dyes, phosphate adsorption is limited by electrostatic interactions. In this work, carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were modified with calcium carbonate (CaCO3) and/or bentonite (Be). The compatibility between CaCO3 and Be was proven by the homogeneous surface, as shown in the scanning electron microscopic images. Fourier-transform infrared and X-ray diffraction spectra further confirmed the existence of inorganic filler in the hydrogel beads. Although CMC/SA/Be/CaCO3 hydrogel beads attained the highest methylene blue and phosphate adsorption capacities (142.15 MB mg/g, 90.31 P mg/g), phosphate adsorption was significantly improved once CaCO3 nanoparticles were incorporated into CMC/SA/CaCO3 hydrogel beads. The kinetics of MB adsorption by CMC/SA hydrogel beads with or without inorganic fillers could be described by the pseudo-second-order model under chemical interactions. The phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads could be explained by the Elovich model due to heterogeneous properties. The incorporation of Be and CaCO3 also improved the phosphate adsorption through chemical interaction since Langmuir isotherm fitted the phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads. Unlike MB adsorption, the reusability of these hydrogel beads in phosphate adsorption reduced slightly after 5 cycles.
Collapse
Affiliation(s)
- Jialin Fu
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Jia Xin Yap
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia.
| | - Chun Kiat Chang
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| |
Collapse
|
18
|
Xie X, Zhao X, Luo X, Zhang Y, Qin Z, Ji H. Characterization of Modified Mechanically Activated Cassava Starch Magnetic Porous Microspheres and Its Adsorption for Cd(II) Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:513. [PMID: 36770474 PMCID: PMC9919324 DOI: 10.3390/nano13030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The magnetic polymer microsphere is a promising adsorbent due to its high adsorption efficiency and good regeneration ability from wastewater. Cassava starch magnetic porous microspheres (AAM-MSMPMs) were synthesized by graft copolymerization in inverse emulsion. Mechanically activated cassava starch (MS) was used to graft skeletons, vinyl monomers [acrylic acid (AA) and acrylamide (AM)] as copolymerized unsaturated monomers, methyl methacrylate (MMA) as the dispersing agent, and polyethylene glycol/methanol (PEG2000/MeOH) as the porogen. It was found that the AAM-MSMPM adsorbent is superparamagnetic, the saturation magnetization is 14.9 emu·g-1, and it can be rapidly and directionally separated from Cd(II) ions in aqueous solution. The FTIR indicated that the carboxyl and hydroxyl groups were grafted into MS. The AAM-MSMPM had good speroidization and a uniform size. After the porogen was added, the particle size of the AAM-MSMPM decreased from 19.00 to 7.00 nm, and the specific surface area increased from 7.00 to 35.00 m2·g-1. The pore volume increased from 0.03 to 0.13 cm3·g-1. The AAM-MSMPM exhibited a large specific surface area and provided more adsorption active sites for Cd(II) ions. The maximum adsorption capacity of the AAM-MSMPM for Cd(II) ions was 210.68 mg·g-1, i.e., 81.02% higher than that without porogen. Additionally, the Cd(II) ion adsorption process on the AAM-MSMPM can be described by Langmuir isothermal and pseudo-second-order kinetic models. A chemical reaction dominated the Cd(II) ion adsorption process on the AAM-MSMPM, and chemisorption was the rate-controlling step during the Cd(II) ion adsorption process. The AAM-MSMPM still had excellent stability after five consecutive reuses.
Collapse
Affiliation(s)
- Xinling Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaona Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xuan Luo
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Youquan Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongbing Ji
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Ranjbari S, Ayati A, Niknam Shahrak M, Tanhaei B, Hamidi Tabrizi S. Design of [BmIm] 3PW 12O 40 Ionic Liquid Encapsulated-ZIF-8 Nanocomposite for Cationic Dye Adsorptive Removal: Modeling by Response Surface Methodology. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| | - Ali Ayati
- ChemBio Cluster, ITMO University, 9 Lomonosova Street, Saint Petersburg191002, Russia
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| | - Soheil Hamidi Tabrizi
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| |
Collapse
|
20
|
Grigoraș CG, Simion AI, Favier L, Drob C, Gavrilă L. Performance of Dye Removal from Single and Binary Component Systems by Adsorption on Composite Hydrogel Beads Derived from Fruits Wastes Entrapped in Natural Polymeric Matrix. Gels 2022; 8:795. [PMID: 36547319 PMCID: PMC9777880 DOI: 10.3390/gels8120795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The treatment of contaminated water is currently a major concern worldwide. This work was directed towards the preparation of a composite hydrogel by entrapping cherry stones powder on chitosan, which is known as one of the most abundant natural polymers. The synthesized material was characterized by scanning electron microscopy, by Fourier transform infrared spectroscopy, and by the point of zero charge determination. Its ability to remove two azo dyes models (Acid Red 66 and Reactive Black 5) existing in single form and in binary mixture was evaluated. Response Surface Methodology-Central Composite Design was used to optimize three parameters affecting the process while targeting the lowest final contaminant concentrations. The best results were obtained at pH 2, an adsorbent dose of 100 g/L, and a temperature of 30 °C, when more than 90% of the pollutants from the single component systems and more than 70% of those of the binary mixtures were removed from their aqueous solutions. The adsorption process was in accordance with Elovich and pseudo-second-order kinetic models, and closely followed the Freundlich and Temkin equilibrium isotherms. The obtained results led to the conclusion that the prepared hydrogel composite possesses the ability to successfully retain the target molecules and that it can be considered as a viable adsorbent material.
Collapse
Affiliation(s)
- Cristina-Gabriela Grigoraș
- Department of Chemical and Food Engineering, Faculty of Engineering, "Vasile Alecsandri" University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Andrei-Ionuț Simion
- Department of Chemical and Food Engineering, Faculty of Engineering, "Vasile Alecsandri" University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Lidia Favier
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, UMR 6226, CEDEX 7, 35708 Rennes, France
| | - Cătălin Drob
- Department of Engineering and Management, Mechatronics, Faculty of Engineering, "Vasile Alecsandri" University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Lucian Gavrilă
- Department of Chemical and Food Engineering, Faculty of Engineering, "Vasile Alecsandri" University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| |
Collapse
|
21
|
Synthesis and application of a thiol functionalized clay for borewell water purification: Microchemical characteristics and adsorption studies. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|