1
|
Zhang W, He Y, Tang Y, Dai W, Si Y, Mao F, Xu J, Yu C, Sun X. A meta-analysis of application of PD-1/PD-L1 inhibitor-based immunotherapy in unresectable locally advanced triple-negative breast cancer. Immunotherapy 2023; 15:1073-1088. [PMID: 37337734 DOI: 10.2217/imt-2023-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aims: The purpose of this study was to explore the efficacy of immunotherapy for patients with triple-negative breast cancer (TNBC). Materials & methods: Randomized clinical trials comparing immunotherapy with chemotherapy for advanced TNBC patients were included. Results: A total of six articles (3183 patients) were eligible for this meta-analysis. PD-1/PD-L1 inhibitor-based immunotherapy combined with chemotherapy can significantly increase the progression-free survival (hazard ratio [HR] = 0.82; 95% CI = 0.76-1.14; p < 0.001) of unresectable locally advanced or metastatic TNBC patients without effect on overall survival, compared with chemotherapy. Conclusion: PD-1/PD-L1 inhibitors-based immunotherapy can safely improve progression-free survival in patients with unresectable locally advanced or metastatic TNBC, but has no effect on overall survival.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuning Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Feiyan Mao
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xing Sun
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
2
|
Perrone S, Lopedote P, De Sanctis V, Iamundo De Cumis I, Pulsoni A, Strati P. Novel Drugs and Radiotherapy in Relapsed Lymphomas: Abscopal Response and Beyond. Cancers (Basel) 2023; 15:2751. [PMID: 37345088 DOI: 10.3390/cancers15102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Combined modality has represented a mainstay of treatment across many lymphoma histologies, given their sensitivity to both multi-agent chemotherapy and intermediate-dose radiotherapy. More recently, several new agents, including immunotherapies, have reshaped the therapeutic panorama of some lymphomas. In parallel, radiotherapy techniques have witnessed substantial improvement, accompanied by a growing understanding that radiation itself comes with an immune-mediated effect. Six decades after a metastatic lesion regression outside the irradiated field was first described, there is increasing evidence that a combination of radiotherapy and immunotherapy could boost an abscopal effect. This review focuses on the mechanisms underlying this interaction in the setting of lymphomas, and on the results of pivotal prospective studies. Furthermore, the available evidence on the concomitant use of radiotherapy and small molecules (i.e., lenalidomide, venetoclax, and ibrutinib), as well as brentuximab vedotin, and chimeric antigen receptor (CAR) T-cell therapy, is summarized. Currently, combining radiotherapy with new agents in patients who are affected by lymphomas appears feasible, particularly as a bridge to anti-CD19 autologous CAR T-cell infusion. However, more studies are required to assess these combinations, and preliminary data suggest only a synergistic rather than a curative effect.
Collapse
Affiliation(s)
- Salvatore Perrone
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, 04100 Latina, Italy
| | - Paolo Lopedote
- Department of Medicine, St Elizabeth's Medical Center, Boston University, Boston, MA 02135, USA
| | - Vitaliana De Sanctis
- Department of Radiation Oncology, Faculty of Medicina e Psicologia, Sant'Andrea Hospital, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Ilenia Iamundo De Cumis
- Department of Radiation Oncology, A. Businco Hospital, ARNAS G. Brotzu, 09121 Cagliari, Italy
| | - Alessandro Pulsoni
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, 04100 Latina, Italy
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Abstract
T-cell lymphomas (TCL) are uncommon non-Hodgkin lymphomas that often have an aggressive clinical course. Patients typically have limited treatment options upon relapse and a dismal prognosis after progression despite newly approved therapies. New therapeutic approaches for these orphan diseases are very much needed and a greater understanding of the role of nonmalignant immune cells in the tumor microenvironment may allow for an improved antitumor immune response. The tumor microenvironment is a key component in tumor evasion and typically results in an ineffective T-cell response to the tumor cells despite a significant inflammatory response. A better understanding of the tumor microenvironment therefore, in an effort to overcome the barriers to an effective immune response, would help in developing novel therapeutic approaches to treat and improve outcomes of these diseases. Immune checkpoint blockade to reinvigorate suppressed T-cell, or modulation of the CD47-SIRPalpha axis to promote macrophage phagocytosis, would be such targets. However, whether modulating the immune response using each pathway alone or whether a combination approach is necessary has yet to be determined.
Collapse
Affiliation(s)
- N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
6
|
Schlereth SL, Refaian N, Iden S, Cursiefen C, Heindl LM. Impact of the prolymphangiogenic crosstalk in the tumor microenvironment on lymphatic cancer metastasis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:639058. [PMID: 25254213 PMCID: PMC4165560 DOI: 10.1155/2014/639058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis is a very early step in lymphatic metastasis. It is regulated and promoted not only by the tumor cells themselves, but also by cells of the tumor microenvironment, including cancer associated fibroblasts, mesenchymal stem cells, dendritic cells, or macrophages. Even the extracellular matrix as well as cytokines and growth factors are involved in the process of lymphangiogenesis and metastasis. The cellular and noncellular components influence each other and can be influenced by the tumor cells. The knowledge about mechanisms behind lymphangiogenesis in the tumor microenvironmental crosstalk is growing and offers starting points for new therapeutic approaches.
Collapse
Affiliation(s)
- Simona L. Schlereth
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Nasrin Refaian
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Ludwig M. Heindl
- Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| |
Collapse
|
7
|
Lipson EJ, Vincent JG, Loyo M, Kagohara LT, Luber BS, Wang H, Xu H, Nayar SK, Wang TS, Sidransky D, Anders RA, Topalian SL, Taube JM. PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res 2013; 1:54-63. [PMID: 24416729 PMCID: PMC3885978 DOI: 10.1158/2326-6066.cir-13-0034] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Merkel cell carcinoma (MCC) is a lethal, virus-associated cancer that lacks effective therapies for advanced disease. Agents blocking the PD-1/PD-L1 pathway have demonstrated objective, durable tumor regressions in patients with advanced solid malignancies and efficacy has been linked to PD-L1 expression in the tumor microenvironment. To investigate whether MCC might be a target for PD-1/PD-L1 blockade, we examined MCC PD-L1 expression, its association with tumor-infiltrating lymphocytes (TILs), Merkel cell polyomavirus (MCPyV), and overall survival. Sixty-seven MCC specimens from 49 patients were assessed with immunohistochemistry for PD-L1 expression by tumor cells and TILs, and immune infiltrates were characterized phenotypically. Tumor cell and TIL PD-L1 expression were observed in 49% and 55% of patients, respectively. In specimens with PD-L1(+) tumor cells, 97% (28/29) demonstrated a geographic association with immune infiltrates. Among specimens with moderate-severe TIL intensities, 100% (29/29) demonstrated PD-L1 expression by tumor cells. Significant associations were also observed between the presence of MCPyV DNA, a brisk inflammatory response, and tumor cell PD-L1 expression: MCPyV(-) tumor cells were uniformly PD-L1(-). Taken together, these findings suggest that a local tumor-specific and potentially MCPyV-specific immune response drives tumor PD-L1 expression, similar to previous observations in melanoma and head and neck squamous cell carcinomas. In multivariate analyses, PD-L1(-) MCCs were independently associated with worse overall survival (hazard ratio 3.12; 95% CI, 1.28-7.61; p=0.012). These findings suggest that an endogenous immune response promotes PD-L1 expression in the MCC microenvironment when MCPyV is present, and provide a rationale for investigating therapies blocking PD-1/PD-L1 for patients with MCC.
Collapse
Affiliation(s)
- Evan J. Lipson
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Jeremy G. Vincent
- Department of Pathology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Myriam Loyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Luciane T. Kagohara
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Brandon S. Luber
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Hao Wang
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Haiying Xu
- Department of Dermatology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Suresh K. Nayar
- Department of Pathology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Timothy S. Wang
- Department of Dermatology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Suzanne L. Topalian
- Department of Surgery, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| | - Janis M. Taube
- Department of Pathology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
- Department of Dermatology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21287
| |
Collapse
|
8
|
Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov 2013; 12:130-46. [PMID: 23370250 PMCID: PMC3698571 DOI: 10.1038/nrd3877] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed a surge in the development of immunomodulatory approaches to combat a broad range of human diseases, including cancer, viral infections, autoimmunity and inflammation as well as in the prevention of transplant rejection. Immunomodulatory approaches mostly involve the use of monoclonal antibodies or recombinant fusion proteins that target cell surface signalling molecules on immune cells to drive immune responses towards the desired direction. Advances in our understanding of the human immune system, along with valuable lessons learned from the first generation of therapeutic biologics, are aiding the design of the next generation of immunomodulatory biologics with better therapeutic efficacy, minimized adverse effects and long-lasting clinical benefit. The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD1) and B7 homolog 1 (B7H1; also known as PDL1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, 300 George Street, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
9
|
Munir S, Andersen GH, Met Ö, Donia M, Frøsig TM, Larsen SK, Klausen TW, Svane IM, Andersen MH. HLA-restricted CTL that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 2013; 73:1764-76. [PMID: 23328583 DOI: 10.1158/0008-5472.can-12-3507] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PD-L1 (CD274) contributes to functional exhaustion of T cells and limits immune responses in patients with cancer. In this study, we report the identification of an human leukocyte antigen (HLA)-A2-restricted epitope from PD-L1, and we describe natural, cytolytic T-cell reactivity against PD-L1 in the peripheral blood of patients with cancer and healthy individuals. Notably, PD-L1-specific T cells were able not only to recognize and kill tumor cells but also PD-L1-expressing dendritic cells in a PD-L1-dependent manner, insofar as PD-L1 ablation rescued dendritic cells from killing. Furthermore, by incubating nonprofessional antigen-presenting cells with long peptides from PD-L1, we found that PD-L1 was rapidly internalized, processed, and cross-presented by HLA-A2 on the cell surface. Apparently, this cross-presentation was TAP-independent, as it was conducted not only by B cells but in addition by TAP-deficient T2-cells. This is intriguing, as soluble PD-L1 has been detected in the sera from patients with cancer. PD-L1-specific CTL may boost immunity by the killing of immunosuppressive tumor cells as well as regulatory cells. However, PD-L1-specific CTLs may as well suppress immunity by the elimination of normal immune cells especially PD-L1 expressing mature dendritic cells.
Collapse
Affiliation(s)
- Shamaila Munir
- Center for Cancer Immune Therapy, Department of Hematology and Oncology, Copenhagen University Hospital, Herlev, Herlev Ringvej, Herlev, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ T cells in latently infected trigeminal ganglia: a novel immune evasion mechanism. J Virol 2011; 85:9127-38. [PMID: 21715478 DOI: 10.1128/jvi.00587-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following ocular herpes simplex virus 1 (HSV-1) infection of C57BL/6 mice, HSV-specific (HSV-gB(498-505) tetramer(+)) CD8(+) T cells are induced, selectively retained in latently infected trigeminal ganglia (TG), and appear to decrease HSV-1 reactivation. The HSV-1 latency-associated transcript (LAT) gene, the only viral gene that is abundantly transcribed during latency, increases reactivation. Previously we found that during latency with HSV-1 strain McKrae-derived viruses, more of the total TG resident CD8 T cells expressed markers of exhaustion with LAT(+) virus compared to LAT(-) virus. Here we extend these findings to HSV-1 strain 17syn+-derived LAT(+) and LAT(-) viruses and to a virus expressing just the first 20% of LAT. Thus, the previous findings were not an artifact of HSV-1 strain McKrae, and the LAT function involved mapped to the first 1.5 kb of LAT. Importantly, to our knowledge, we show here for the first time that during LAT(+) virus latency, most of the HSV-1-specific TG resident CD8 T cells were functionally exhausted, as judged by low cytotoxic function and decreased gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. This resulted in LAT(-) TG having more functional HSV-gB(498-505) tetramer(+) CD8(+) T cells compared to LAT(+) TG. In addition, LAT expression, in the absence of other HSV-1 gene products, appeared to be able to directly or indirectly upregulate both PD-L1 and major histocompatibility complex class I (MHC-I) on mouse neuroblastoma cells (Neuro2A). These findings may constitute a novel immune evasion mechanism whereby the HSV-1 LAT directly or indirectly promotes functional exhaustion (i.e., dysfunction) of HSV-specific CD8(+) T cells in latently infected TG, resulting in increased virus reactivation.
Collapse
|
11
|
Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1–Infected Patients on Treatment. J Acquir Immune Defic Syndr 2011; 56:118-24. [DOI: 10.1097/qai.0b013e3181fbab9f] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Yantha J, Tsui H, Winer S, Song A, Wu P, Paltser G, Ellis J, Dosch HM. Unexpected acceleration of type 1 diabetes by transgenic expression of B7-H1 in NOD mouse peri-islet glia. Diabetes 2010; 59:2588-96. [PMID: 20522597 PMCID: PMC3279538 DOI: 10.2337/db09-1209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autoimmune target tissues in type 1 diabetes include pancreatic β-cells and peri-islet Schwann cells (pSC)--the latter active participants or passive bystanders in pre-diabetic autoimmune progression. To distinguish between these alternatives, we sought to suppress pSC autoimmunity by transgenic expression of the negative costimulatory molecule B7-H1 in NOD pSC. RESEARCH DESIGN AND METHODS A B7-H1 transgene was placed under control of the glial fibrillary acidic protein (GFAP) promoter. Transgenic and wild-type NOD mice were compared for transgene PD-1 affinities, diabetes development, insulitis, and pSC survival. Mechanistic studies included adoptive type 1 diabetes transfer, B7-H1 blockade, and T-cell autoreactivity and sublineage distribution. RESULTS Transgenic and endogenous B7-H1 bound PD-1 with equal affinities. Unexpectedly, the transgene generated islet-selective CD8(+) bias with accelerated rather than suppressed diabetes progression. T-cells of diabetic transgenics transferred type 1 diabetes faster. There were no earlier pSC losses due to conceivable transgene toxicity, but transgenic pSC loss was enhanced by 8 weeks, preceded by elevated GFAP autoreactivity, with high-affinity T-cells targeting the major NOD K(d)-GFAP epitope, p253-261. FoxP3(+) regulatory T- and CD11c(+) dendritic cell pools were unaffected. CONCLUSIONS In contrast with transgenic B7-H1 in NOD mouse β-cells, transgenic B7-H1 in pSC promotes rather than protects from type 1 diabetes. Here, ectopic B7-H1 enhanced the pathogenicity of effector T-cells, demonstrating that pSC can actively impact diabetes progression-likely through modification of intraislet T-cell selection. Although pSC cells emerge as a new candidate for therapeutic targets, caution is warranted with regard to the B7-H1-PD1 axis, where B7-H1 overexpression can lead to accelerated autoimmune disease.
Collapse
Affiliation(s)
- Jason Yantha
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hubert Tsui
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Shawn Winer
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Aihua Song
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ping Wu
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Geoff Paltser
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - H.-Michael Dosch
- Neuroscience and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Pediatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: H.-Michael Dosch,
| |
Collapse
|
13
|
Seyerl M, Kirchberger S, Majdic O, Seipelt J, Jindra C, Schrauf C, Stöckl J. Human rhinoviruses induce IL-35-producing Treg via induction of B7-H1 (CD274) and sialoadhesin (CD169) on DC. Eur J Immunol 2010; 40:321-9. [PMID: 19950173 DOI: 10.1002/eji.200939527] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IL-35 is a heterodimer of EBV-induced gene 3 and of the p35 subunit of IL-12, and recently identified as an inhibitory cytokine produced by natural Treg in mice, but not in humans. Here we demonstrate that DC activated by human rhinoviruses (R-DC) induce IL-35 production and release, as well as a suppressor function in CD4(+) and CD8(+) T cells derived from human peripheral blood but not in naïve T cells from cord blood. The induction of IL-35-producing T cells by R-DC was FOXP3-independent, but blocking of B7-H1 (CD274) and sialoadhesin (CD169) on R-DC with mAb against both receptors prevented the induction of IL-35. Thus, the combinatorial signal delivered by R-DC to T cells via B7-H1 and sialoadhesin is crucial for the induction of human IL-35(+) Treg. These results demonstrate a novel pathway and its components for the induction of immune-inhibitory T cells.
Collapse
Affiliation(s)
- Maria Seyerl
- Institute of Immunology, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Lee H, Kim JH, Yang SY, Kong J, Oh M, Jeong DH, Chung JI, Bae KB, Shin JY, Hong KH, Choi I. Peripheral blood gene expression of B7 and CD28 family members associated with tumor progression and microscopic lymphovascular invasion in colon cancer patients. J Cancer Res Clin Oncol 2010; 136:1445-52. [PMID: 20140740 DOI: 10.1007/s00432-010-0800-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/23/2009] [Indexed: 12/27/2022]
Abstract
PURPOSE To associate the global gene expression of B7/CD28 family transcripts with pathologic features of colon cancer, we determined the B7/CD28 family transcripts in peripheral blood mononuclear cells (PBMCs) from normal subjects and patients with adenomatous polyps and colon cancer, and correlated the results with pathologic features of colon cancer. METHODS PBMCs from age-matched normal subjects and patients with adenomatous polyps and colon cancer were analyzed for peripheral blood transcripts (PBTs) of B7/CD28 family using real-time PCR. Differences in expression levels of B7/CD28 PBTs across all cancer stages and between colon cancer patients with or without microscopic lymphovascular invasion (LVI) were analyzed. RESULTS The results showed a significant upregulation of PBTs of co-inhibitory molecules such as B7-H3 and PD-1 and a significant PBT downregulation of co-stimulatory molecules including CD28 and ICOS in colon cancer patients. Furthermore, the increase of B7-H3 PBT was strongly associated with tumor invasion (P = 0.025) and advanced TNM stages (P = 0.019), whereas the decline of co-stimulatory ligand B7-H2 PBT was related to regional lymph node metastasis (P = 0.028) and aggressive tumor invasion (P = 0.031). In addition, the ratios of PBT expression of CD28 family to B7 family such as CTLA-4 to B7-H2 and PD-1 to B7-H2 were significantly higher in colon cancer patients with microscopic LVI than in those without LVI (P = 0.001 and P = 0.016, respectively). CONCLUSIONS Our results suggest that B7/CD28 family PBTs may serve as valuable markers reflecting the pathological features of colon cancer.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Microbiology and Immunology, Bio-Marker Research Center for Personalized Therapy, Inje University College of Medicine, Busan, 614-735, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Downey JS, Imami N. T-cell dysfunction in HIV-1 infection: targeting the inhibitors. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.09.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since AIDS emerged almost three decades ago, there have been considerable advances in the field of antiretroviral chemotherapy for those chronically infected with HIV-1. However, this therapy is noncurative and as our understanding of HIV-1 immunopathogenesis increases, it is becoming apparent that further therapeutic interventions are required to reverse the devastating effects of HIV-1 infection worldwide. While viral clearance remains the principle goal of HIV-1 treatment, this article describes immunotherapeutic options that target the immunological effects of the virus, to reduce its presence in the body and counteract viral-induced T-cell dysfunction and inhibition. Such approaches may augment existing antiretroviral therapy to overturn virus-induced T-cell anergy in the infected host, improving levels of immune control that reduce viremia and decrease the rate of transmission.
Collapse
Affiliation(s)
- Jocelyn S Downey
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Nesrina Imami
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
16
|
Larrubia JR, Benito-Martínez S, Miquel J, Calvino M, Sanz-de-Villalobos E, Parra-Cid T. Costimulatory molecule programmed death-1 in the cytotoxic response during chronic hepatitis C. World J Gastroenterol 2009; 15:5129-40. [PMID: 19891011 PMCID: PMC2773891 DOI: 10.3748/wjg.15.5129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV)-specific CD8+ T cells play an important role in the resolution of HCV infection. Nevertheless, during chronic hepatitis C these cells lack their effector functions and fail to control the virus. HCV has developed several mechanisms to escape immune control. One of these strategies is the up-regulation of negative co-stimulatory molecules such us programmed death-1 (PD-1). This molecule is up-regulated on intrahepatic and peripheral HCV-specific cytotoxic T cells during acute and chronic phases of the disease, whereas PD-1 expression is low in resolved infection. PD-1 expressing HCV-specific CD8+ T cells are exhausted with impairment of several effector mechanisms, such as: type-1 cytokine production, expansion ability after antigen encounter and cytotoxic ability. However, PD-1 associated exhaustion can be restored by blocking the interaction between PD-1 and its ligand (PD-L1). After this blockade, HCV-specific CD8+ T cells reacquire their functionality. Nevertheless, functional restoration depends on PD-1 expression level. High PD-1-expressing intrahepatic HCV-specific CD8+ T cells do not restore their effector abilities after PD-1/PD-L1 blockade. The mechanisms by which HCV is able to induce PD-1 up-regulation to escape immune control are unknown. Persistent TCR stimulation by a high level of HCV antigens could favour early PD-1 induction, but the interaction between HCV core protein and gC1q receptor could also participate in this process. The PD-1/PD-L1 pathway modulation could be a therapeutic strategy, in conjunction with the regulation of others co-stimulatory pathways, in order to restore immune response against HCV to succeed in clearing the infection.
Collapse
|
17
|
B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood 2009; 114:2149-58. [PMID: 19597183 DOI: 10.1182/blood-2009-04-216671] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stromal elements present within the tumor microenvironment may suppress host immunity and promote the growth of malignant lymphocytes in B cell-derived non-Hodgkin lymphoma (NHL). In contrast, little is known about the microenvironment's role in T cell-derived NHL. B7-H1 (PD-L1, CD274), a member of the B7 family of costimulatory/co-inhibitory ligands expressed by both malignant cells and stromal cells within the tumor microenvironment, has emerged as an important immune modulator capable of suppressing host immunity. Therefore, B7-H1 expression and function were analyzed in cutaneous and peripheral T-cell NHL. B7-H1 was expressed by tumor cells, monocytes, and monocyte-derived cells within the tumor microenvironment in T-cell NHL and was found to inhibit T-cell proliferation and promote the induction of FoxP3(+) regulatory T cells. Collectively, the data presented provide the first evidence implicating B7-H1 in the suppression of host immunity in T-cell lymphoproliferative disorders and suggest that the targeting of B7-H1 may represent a novel therapeutic approach.
Collapse
|
18
|
Liu Y, Zeng B, Zhang Z, Zhang Y, Yang R. B7-H1 on myeloid-derived suppressor cells in immune suppression by a mouse model of ovarian cancer. Clin Immunol 2008; 129:471-81. [PMID: 18790673 DOI: 10.1016/j.clim.2008.07.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/26/2008] [Accepted: 07/31/2008] [Indexed: 01/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing hosts and are associated with immune suppression. Here, we described high level of expression of B7-H1 (CD274), PD-1 (CD279) and CTLA4 (CD152) by Gr-1(+)CD11b(+) MDSCs obtained from both ascites and spleens of mice bearing the 1D8 ovarian carcinoma, whereas B7-DC (CD273), CD40 and CD86 were absent. In contrast, B7-H1, PD-1 and CTLA-4 expression was not detected on Gr-1(+)CD11b(+) cells from naive mice. Expression of B7-H1 by Gr-1(+)CD11b(+) cells from naive mice could be induced by co-culture with 1D8 ovarian carcinoma cells. Gr-1(+)CD11b(+) cells derived from 1D8 tumor-bearing mice markedly suppressed antigen-specific immune responses, whereas Gr-1(+)CD11b(+) cells from naive mice did not. siRNA-mediated knockdown of B7-H1 in Gr-1(+)CD11b(+) cells of 1D8 tumor-bearing mice alleviated suppression of antigen-specific immune responses. Suppression of antigen-specific immune responses via B7-H1 on Gr-1(+)CD11b(+) myeloid cells was mediated by CD4(+)CD25(+) Foxp3(+) T regulatory cells and required PD-1. Antibody blockade of either B7-H1 or PD-1 retarded the growth of 1D8 tumor in mice. This suggests that expression of B7-H1 on Gr-1(+)CD11b(+) myeloid cells triggered by the 1D8 mouse model of ovarian carcinoma suppresses antigen-specific immunity via interaction with PD-1 on CD4(+)CD25(+) Foxp3(+) regulatory T cells.
Collapse
Affiliation(s)
- Yu Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, 300071, China
| | | | | | | | | |
Collapse
|
19
|
Boasso A, Hardy AW, Landay AL, Martinson JL, Anderson SA, Dolan MJ, Clerici M, Shearer GM. PDL-1 upregulation on monocytes and T cells by HIV via type I interferon: restricted expression of type I interferon receptor by CCR5-expressing leukocytes. Clin Immunol 2008; 129:132-44. [PMID: 18650129 DOI: 10.1016/j.clim.2008.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 02/07/2023]
Abstract
The programmed death (PD)-1 interacts with its ligand (PDL-1) delivering a negative signal to T cells. During human immunodeficiency virus (HIV)-1 infection PD-1 and PDL-1 expressions are increased. Here we show that monocytes and CCR5(+) T cells of HIV-uninfected donors upregulated PDL-1 upon in vitro exposure to HIV. HIV-induced PDL-1 required interferon (IFN)-alpha, but not IFN-gamma, production. Inhibition of endocytosis, required for HIV-induced IFN-alpha production, prevented PDL-1 upregulation. IFN-alpha-inducing Toll-like receptor (TLR) agonists increased PDL-1 on monocytes and CCR5(+) T cells. CD80 and CD86 were also increased on monocytes and CCR5(+) T cells after HIV exposure, but only CD80 was IFN-alpha-dependent. IFN-alpha-receptor subunit 2 (IFNAR2), was expressed only by CCR5(+) T cells and monocytes, explaining why these leukocytes responded to HIV-induced IFN-alpha. Finally, T cell proliferation was improved by PDL-1 blockade in HIV-treated PBMC. In the setting of HIV infection, IFN-alpha may negatively affect T cell responses by inducing PDL-1.
Collapse
Affiliation(s)
- Adriano Boasso
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Despite aggressive multi-modality therapy including surgery, radiation, and chemotherapy, the prognosis for patients with malignant primary brain tumors remains very poor. Moreover, the non-specific nature of conventional therapy for brain tumors often results in incapacitating damage to surrounding normal brain and systemic tissues. Thus, there is an urgent need for the development of therapeutic strategies that precisely target tumor cells while minimizing collateral damage to neighboring eloquent cerebral cortex. The rationale for using the immune system to target brain tumors is based on the premise that the inherent specificity of immunologic reactivity could meet the clear need for more specific and precise therapy. The success of this modality is dependent on our ability to understand the mechanisms of immune regulation within the central nervous system (CNS), as well as counter the broad defects in host cell-mediated immunity that malignant gliomas are known to elicit. Recent advances in our understanding of tumor-induced and host-mediated immunosuppressive mechanisms, the development of effective strategies to combat these suppressive effects, and a better understanding of how to deliver immunologic effector molecules more efficiently to CNS tumors have all facilitated significant progress toward the realization of true clinical benefit from immunotherapeutic treatment of malignant gliomas.
Collapse
Affiliation(s)
- Duane A Mitchell
- Division of Neurosurgery, Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Duke, NC 27710, USA.
| | | | | |
Collapse
|
21
|
Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008; 82:3078-89. [PMID: 18184707 DOI: 10.1128/jvi.01812-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8(+) T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) alpha and beta chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR alpha and TCR beta chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
Collapse
|
22
|
Habicht A, Kewalaramani R, Vu MD, Demirci G, Blazar BR, Sayegh MH, Li XC. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo. Am J Transplant 2007; 7:2683-92. [PMID: 17924994 DOI: 10.1111/j.1600-6143.2007.01999.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Programmed death-1 (PD-1) is a recently identified coinhibitory molecule that belongs to the CD28 superfamily. PD-1 has two ligands PD-L1 and PD-L2. There is some evidence that PD-L1 and PD-L2 serve distinct functions, but their exact function in alloimmunity remains unclear. In the present study, we used a GVHD-like model that allows detailed analyses of T-cell activation at a single cell level in vivo to examine the role of PD-1/PD-L1 and PD-1/PD-L2 interactions in regulating proliferation of CD4(+) and CD8(+) T cells in response to alloantigen stimulation. We found that both CD4(+) and CD8(+) T cells proliferated vigorously in vivo and that PD-L1 and PD-L2 exhibit strikingly different effect on T-cell proliferation. While blocking PD-L1 did not affect the in vivo proliferation of CD4(+) and CD8(+) T cells regardless of CD28 costimulation, blocking PD-L2 resulted in a marked increase in the responder frequency of CD8(+) T-cells in vivo. The effect of PD-L2 on the CD8(+) T-cell proliferation is regulated by CD28 costimulation and by the CD4(+) T cells. We conclude that PD-L1 and PD-L2 function differently in regulating alloreactive T-cell activation in vivo, and PD-L2 is predominant in this model in limiting alloreactive CD8(+) T-cell proliferation.
Collapse
Affiliation(s)
- A Habicht
- Transplantation Research Center, Brigham and Women's Hospital and the Children's Hospital of Boston, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Mohamadzadeh M, Chen L, Schmaljohn AL. How Ebola and Marburg viruses battle the immune system. Nat Rev Immunol 2007; 7:556-67. [PMID: 17589545 DOI: 10.1038/nri2098] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The filoviruses Ebola and Marburg have emerged in the past decade from relative obscurity to serve now as archetypes for some of the more intriguing and daunting challenges posed by such agents. Public imagination is captured by deadly outbreaks of these viruses and reinforced by the specter of bioterrorism. As research on these agents has accelerated, it has been found increasingly that filoviruses use a combination of familiar and apparently new ways to baffle and battle the immune system. Filoviruses have provided thereby a new lens through which to examine the immune system itself.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- US Army Medical Research Institute for Infectious Diseases, Frederick, Maryland, USA.
| | | | | |
Collapse
|
24
|
Martin-Orozco N, Dong C. Inhibitory costimulation and anti-tumor immunity. Semin Cancer Biol 2007; 17:288-98. [PMID: 17683946 PMCID: PMC1995405 DOI: 10.1016/j.semcancer.2007.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/08/2007] [Accepted: 06/07/2007] [Indexed: 12/31/2022]
Abstract
Costimulation was originally shown to be important in T-cell activation and effector differentiation. Recent characterization of B7/butyrophilin and members of the CD28 superfamily has revealed a large number of negative costimulatory molecules that dampen T-cell activation and regulate immune tolerance. Some of these molecules have been shown to be upregulated in the tumor microenvironment and may serve as potential targets for augmenting anti-tumor immunity. In this article, we summarize recent developments in the field of inhibitory costimulation and discuss the future direction of therapeutic manipulation of inhibitory costimulation in tumor immunotherapy.
Collapse
Affiliation(s)
- Natalia Martin-Orozco
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, TX, USA.
| | | |
Collapse
|
25
|
Beswick EJ, Pinchuk IV, Das S, Powell DW, Reyes VE. Expression of the programmed death ligand 1, B7-H1, on gastric epithelial cells after Helicobacter pylori exposure promotes development of CD4+ CD25+ FoxP3+ regulatory T cells. Infect Immun 2007; 75:4334-41. [PMID: 17562772 PMCID: PMC1951191 DOI: 10.1128/iai.00553-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During Helicobacter pylori infection, T cells are recruited to the gastric mucosa, but the host T-cell response is not sufficient to clear the infection. Some of the recruited T cells respond in a polarized manner to a Th1 response, while others become anergic. We have previously shown that T-cell anergy may be induced during infection by the interaction of T cells with B7-H1, which is up-regulated on the gastric epithelium during H. pylori infection. Recently, regulatory T (Treg) cells with a CD4(+) CD25(high) FoxP3(+) phenotype were found at an increased frequency in the gastric mucosa of biopsy specimens from H. pylori-infected patients. While Treg cells are important in maintaining tolerance, they can also suppress immune responses during infection. In this study, we examined the induction of the Treg phenotype when naïve T cells were incubated with gastric epithelial cells exposed to H. pylori. The frequency of this phenotype was markedly decreased when B7-H1 was blocked with monoclonal antibodies or its expression was blocked with small interfering RNA. The functional role of these Treg cells was assessed in proliferation assays when the cells were cocultured with activated T cells, which effectively decreased proliferation of the cells.
Collapse
Affiliation(s)
- Ellen J Beswick
- Departmen tof Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
26
|
Lu M, Menne S, Yang D, Xu Y, Roggendorf M. Immunomodulation as an option for the treatment of chronic hepatitis B virus infection: preclinical studies in the woodchuck model. Expert Opin Investig Drugs 2007; 16:787-801. [PMID: 17501692 DOI: 10.1517/13543784.16.6.787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic hepatitis B virus infection based on immunomodulation are now under investigation. The woodchuck model for hepatitis B virus infection has emerged as a useful animal model for the evaluation of such approaches, after developing necessary assays and reagents for immunologic studies in this model. Conventional and novel vaccines such as DNA vaccines were tested in woodchucks for their ability to induce protective immune responses against challenge infection with the woodchuck hepatitis virus (WHV). Furthermore, immunotherapeutic approaches for the control of chronic hepadnaviral infection were evaluated in woodchucks. Immunizations with WHV proteins and DNA vaccines led to the development of antibodies to the WHV surface antigen and to a significant decrease of viral load in chronically WHV-infected woodchucks. Viral vector-mediated gene transfer was explored for the delivery of antiviral cytokines IFN-alpha in woodchucks and resulted in the decrease of viral replication. It is now generally accepted that a combination of antiviral treatment and immunization will be necessary to achieve successful immunomodulation with a long-term control of chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
27
|
Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC, Precopio ML, Schacker T, Roederer M, Douek DC, Koup RA. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. ACTA ACUST UNITED AC 2006; 203:2281-92. [PMID: 16954372 PMCID: PMC2118095 DOI: 10.1084/jem.20061496] [Citation(s) in RCA: 717] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here, we report on the expression of programmed death (PD)-1 on human virus-specific CD8+ T cells and the effect of manipulating signaling through PD-1 on the survival, proliferation, and cytokine function of these cells. PD-1 expression was found to be low on naive CD8+ T cells and increased on memory CD8+ T cells according to antigen specificity. Memory CD8+ T cells specific for poorly controlled chronic persistent virus (HIV) more frequently expressed PD-1 than memory CD8+ T cells specific for well-controlled persistent virus (cytomegalovirus) or acute (vaccinia) viruses. PD-1 expression was independent of maturational markers on memory CD8+ T cells and was not directly associated with an inability to produce cytokines. Importantly, the level of PD-1 surface expression was the primary determinant of apoptosis sensitivity of virus-specific CD8+ T cells. Manipulation of PD-1 led to changes in the ability of the cells to survive and expand, which, over several days, affected the number of cells expressing cytokines. Therefore, PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo.
Collapse
Affiliation(s)
- Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|