1
|
Feng F, Luo K, Yuan X, Lan T, Wang S, Xu X, Lu Z. Aerobic Exercise Protects against Cardiotoxin-Induced Skeletal Muscle Injury in a DDAH1-Dependent Manner. Antioxidants (Basel) 2024; 13:1069. [PMID: 39334728 PMCID: PMC11428882 DOI: 10.3390/antiox13091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme that regulates nitric oxide (NO) signaling through the degradation of asymmetric dimethylarginine (ADMA). Previous studies have revealed a link between the beneficial effects of aerobic exercise and the upregulation of DDAH1 in bones and hearts. We previously reported that skeletal muscle DDAH1 plays a protective role in cardiotoxin (CTX)-induced skeletal muscle injury and regeneration. To determine the effects of aerobic exercise on CTX-induced skeletal muscle injury and the role of DDAH1 in this process, wild-type (WT) mice and skeletal muscle-specific Ddah1-knockout (Ddah1MKO) mice were subjected to swimming training for 8 weeks and then injected with CTX. In WT mice, swimming training for 8 weeks significantly promoted skeletal muscle regeneration and attenuated inflammation, oxidative stress, and apoptosis in the gastrocnemius (GA) muscle after CTX injection. These phenomena were associated with increases in the protein expression of PAX7, myogenin, MEF2A, eNOS, SOD2, and peroxiredoxin 5 and decreases in iNOS expression in GA muscles. Swimming training also decreased serum ADMA levels and increased serum nitrate/nitrite (NOx) levels and skeletal muscle DDAH1 expression. Interestingly, swimming training in Ddah1MKO mice had no obvious effect on CTX-induced skeletal muscle injury or regeneration and did not repress the CTX-induced inflammatory response, superoxide generation, or apoptosis. In summary, our data suggest that DDAH1 is important for the protective effect of aerobic exercise on skeletal muscle injury and regeneration.
Collapse
Affiliation(s)
- Fei Feng
- Sport and Health Science Department, Nanjing Sport Institute, Nanjing 210000, China
| | - Kai Luo
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Nakashima M, Suga N, Yoshikawa S, Matsuda S. Caveolin and NOS in the Development of Muscular Dystrophy. Int J Mol Sci 2024; 25:8771. [PMID: 39201459 PMCID: PMC11354531 DOI: 10.3390/ijms25168771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/02/2024] Open
Abstract
Caveolin is a structural protein within caveolae that may be involved in transmembrane molecular transport and/or various intercellular interactions within cells. Specific mutations of caveolin-3 in muscle fibers are well known to cause limb-girdle muscular dystrophy. Altered expression of caveolin-3 has also been detected in Duchenne muscular dystrophy, which may be a part of the pathological process leading to muscle weakness. Interestingly, it has been shown that the renovation of nitric oxide synthase (NOS) in sarcolemma with muscular dystrophy could improve muscle health, suggesting that NOS may be involved in the pathology of muscular dystrophy. Here, we summarize the notable function of caveolin and/or NOS in skeletal muscle fibers and discuss their involvement in the pathology as well as possible tactics for the innovative treatment of muscular dystrophies.
Collapse
Affiliation(s)
| | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Ghosh S, Arshi MU, Ghosh S, Jash M, Sen S, Mamchaoui K, Bhattacharyya S, Rana NK, Ghosh S. Discovery of Quinazoline and Quinoline-Based Small Molecules as Utrophin Upregulators via AhR Antagonism for the Treatment of Duchenne Muscular Dystrophy. J Med Chem 2024; 67:9260-9276. [PMID: 38771158 DOI: 10.1021/acs.jmedchem.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease caused by the absence of a dystrophin protein. Elevating utrophin, a dystrophin paralogue, offers an alternative therapeutic strategy for treating DMD, irrespective of the mutation type. Herein, we report the design and synthesis of novel quinazoline and quinoline-based small molecules as potent utrophin modulators screened via high throughput In-Cell ELISA in C2C12 cells. Remarkably, lead molecule SG-02, identified from a library of 70 molecules, upregulates utrophin 2.7-fold at 800 nM in a dose-dependent manner, marking the highest upregulation within the nanomolar range. SG-02's efficacy was further validated through DMD patient-derived cells, demonstrating a significant 2.3-fold utrophin expression. Mechanistically, SG-02 functions as an AhR antagonist, with excellent binding affinity (Kd = 41.68 nM). SG-02 also enhances myogenesis, as indicated by an increased MyHC expression. ADME evaluation supports SG-02's oral bioavailability. Overall, SG-02 holds promise for addressing the global DMD population.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Mohammad Umar Arshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Kamel Mamchaoui
- Inserm, Institut de Myologie, Centre de Recherche en Myologie,Sorbonne Université, F-75013 Paris, France
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nirmal Kumar Rana
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
4
|
Escobar-Huertas JF, Vaca-González JJ, Guevara JM, Ramirez-Martinez AM, Trabelsi O, Garzón-Alvarado DA. Duchenne and Becker muscular dystrophy: Cellular mechanisms, image analysis, and computational models: A review. Cytoskeleton (Hoboken) 2024; 81:269-286. [PMID: 38224155 DOI: 10.1002/cm.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The muscle is the principal tissue that is capable to transform potential energy into kinetic energy. This process is due to the transformation of chemical energy into mechanical energy to enhance the movements and all the daily activities. However, muscular tissues can be affected by some pathologies associated with genetic alterations that affect the expression of proteins. As the muscle is a highly organized structure in which most of the signaling pathways and proteins are related to one another, pathologies may overlap. Duchenne muscular dystrophy (DMD) is one of the most severe muscle pathologies triggering degeneration and muscle necrosis. Several mathematical models have been developed to predict muscle response to different scenarios and pathologies. The aim of this review is to describe DMD and Becker muscular dystrophy in terms of cellular behavior and molecular disorders and to present an overview of the computational models implemented to understand muscle behavior with the aim of improving regenerative therapy.
Collapse
Affiliation(s)
- J F Escobar-Huertas
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne Cedex, France
| | - Juan Jairo Vaca-González
- Escuela de pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede la Paz, Cesar, Colombia
| | - Johana María Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Olfa Trabelsi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne Cedex, France
| | - D A Garzón-Alvarado
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Molinaro M, Torrente Y, Villa C, Farini A. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review. Int J Mol Sci 2024; 25:631. [PMID: 38203802 PMCID: PMC10778889 DOI: 10.3390/ijms25010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.
Collapse
Affiliation(s)
- Monica Molinaro
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| |
Collapse
|
6
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
7
|
Den Hartog L, Asakura A. Implications of notch signaling in duchenne muscular dystrophy. Front Physiol 2022; 13:984373. [PMID: 36237531 PMCID: PMC9553129 DOI: 10.3389/fphys.2022.984373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
This review focuses upon the implications of the Notch signaling pathway in muscular dystrophies, particularly Duchenne muscular dystrophy (DMD): a pervasive and catastrophic condition concerned with skeletal muscle degeneration. Prior work has defined the pathogenesis of DMD, and several therapeutic approaches have been undertaken in order to regenerate skeletal muscle tissue and ameliorate the phenotype. There is presently no cure for DMD, but a promising avenue for novel therapies is inducing muscle regeneration via satellite cells (muscle stem cells). One specific target using this approach is the Notch signaling pathway. The canonical Notch signaling pathway has been well-characterized and it ultimately governs cell fate decision, cell proliferation, and induction of differentiation. Additionally, inhibition of the Notch signaling pathway has been directly implicated in the deficits seen with muscular dystrophies. Here, we explore the connection between the Notch signaling pathway and DMD, as well as how Notch signaling may be targeted to improve the muscle degeneration seen in muscular dystrophies.
Collapse
|
8
|
Song MH, Yoo J, Oh JG, Kook H, Park WJ, Jeong D. Matricellular Protein CCN5 Gene Transfer Ameliorates Cardiac and Skeletal Dysfunction in mdx/utrn (±) Haploinsufficient Mice by Reducing Fibrosis and Upregulating Utrophin Expression. Front Cardiovasc Med 2022; 9:763544. [PMID: 35557546 PMCID: PMC9088811 DOI: 10.3389/fcvm.2022.763544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration due to dystrophin gene mutations. Patients with DMD initially experience muscle weakness in their limbs during adolescence. With age, patients develop fatal respiratory and cardiac dysfunctions. During the later stages of the disease, severe cardiac fibrosis occurs, compromising cardiac function. Previously, our research showed that the matricellular protein CCN5 has antifibrotic properties. Therefore, we hypothesized that CCN5 gene transfer would ameliorate cardiac fibrosis and thus improve cardiac function in DMD-induced cardiomyopathy. We utilized mdx/utrn (±) haploinsufficient mice that recapitulated the DMD-disease phenotypes and used an adeno-associated virus serotype-9 viral vector for CCN5 gene transfer. We evaluated the onset of cardiac dysfunction using echocardiography and determined the experimental starting point in 13-month-old mice. Two months after CCN5 gene transfer, cardiac function was significantly enhanced, and cardiac fibrosis was ameliorated. Additionally, running performance was improved in CCN5 gene-transfected mice. Furthermore, in silico gene profiling analysis identified utrophin as a novel transcriptional target of CCN5. This was supplemented by a utrophin promoter assay and RNA-seq analysis, which confirmed that CCN5 was directly associated with utrophin expression. Our results showed that CCN5 may be a promising therapeutic molecule for DMD-induced cardiac and skeletal dysfunction.
Collapse
Affiliation(s)
- Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hyun Kook
- Basic Research Laboratory, Chonnam National University Medical School, Gwangju, South Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dongtak Jeong
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| |
Collapse
|
9
|
Koike TE, Dell Aquila RA, Silva KS, Aoki MS, Miyabara EH. Glutamine supplementation improves contractile function of regenerating soleus muscles from rats. J Muscle Res Cell Motil 2022; 43:87-97. [PMID: 35201551 DOI: 10.1007/s10974-022-09615-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
This study evaluated the effects of glutamine supplementation immediately after freezing injury on morphological and contractile function of regenerating soleus muscles from rats. Young male Wistar rats were subjected to cryolesion of soleus muscles, and immediately after received a daily supplementation of glutamine (1 g/kg/day). The muscles were evaluated on post-injury days 3 and 10. Glutamine-supplemented injured muscles had a lower number of CD11b positive immune cells and higher mRNA levels of IL-4 compared to those from the cryolesioned muscles analyzed on post-injury day 3. The mRNA and protein expression levels of the myogenic transcription factor MyoD were also higher in glutamine-supplemented injured muscles than in injured muscles examined on post-cryolesion day 3. In addition, glutamine-supplemented injured muscles had a higher size of their regenerating myofibers, attenuated decline in maximum tetanic strength and improved fatigue resistance compared to those from injured muscles evaluated on post-cryolesion day 10. No effect was observed in uninjured muscles supplemented with glutamine. Our results suggest that glutamine supplementation improves the resolution of inflammation, as well as the size and functional recovery of regenerating myofibers from soleus muscles by accelerating the up-regulation of IL-4 and MyoD expression. Future non-pharmacological rehabilitation studies are warranted to investigate the effect of glutamine supplementation on the outcome of injured skeletal muscles.
Collapse
Affiliation(s)
- Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo A Dell Aquila
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Kellana S Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil
| | - Marcelo S Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo, SP, 03828-000, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
10
|
Singh S, Singh T, Kunja C, Dhoat NS, Dhania NK. Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy. Eur J Pharmacol 2021; 912:174568. [PMID: 34656607 DOI: 10.1016/j.ejphar.2021.174568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Muscular dystrophy is a well-known genetically heterogeneous group of rare muscle disorders. This progressive disease causes the breakdown of skeletal muscles over time and leads to grave weakness. This breakdown is caused by a diverse pattern of mutations in dystrophin and dystrophin associated protein complex. These mutations lead to the production of altered proteins in response to which, the body stimulates production of various cytokines and immune cells, particularly reactive oxygen species and NFκB. Immune cells display/exhibit a dual role by inducing muscle damage and muscle repair. Various anti-oxidants, anti-inflammatory and glucocorticoid drugs serve as potent therapeutics for muscular dystrophy. Along with the above mentioned therapeutics, induced pluripotent stem cells also serve as a novel approach paving a way for personalized treatment. These pluripotent stem cells allow regeneration of large numbers of regenerative myogenic progenitors that can be administered in muscular dystrophy patients which assist in the recovery of lost muscle fibers. In this review, we have summarized gene-editing, immunological and induced pluripotent stem cell based therapeutics for muscular dystrophy treatment.
Collapse
Affiliation(s)
- Shagun Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Tejpal Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Chaitanya Kunja
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Navdeep S Dhoat
- Department of Pediatrics Surgery, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Narender K Dhania
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India.
| |
Collapse
|
11
|
Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, Hoque ME. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules 2021; 26:699. [PMID: 33572728 PMCID: PMC7865392 DOI: 10.3390/molecules26030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Bee Chin Ang
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hendrik Simon Cornelis Metselaar
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| |
Collapse
|
12
|
Suntar I, Sureda A, Belwal T, Sanches Silva A, Vacca RA, Tewari D, Sobarzo-Sánchez E, Nabavi SF, Shirooie S, Dehpour AR, Xu S, Yousefi B, Majidinia M, Daglia M, D'Antona G, Nabavi SM. Natural products, PGC-1 α , and Duchenne muscular dystrophy. Acta Pharm Sin B 2020; 10:734-745. [PMID: 32528825 PMCID: PMC7276681 DOI: 10.1016/j.apsb.2020.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a transcriptional coactivator that binds to a diverse range of transcription factors. PPARγ coactivator 1 (PGC-1) coactivators possess an extensive range of biological effects in different tissues, and play a key part in the regulation of the oxidative metabolism, consequently modulating the production of reactive oxygen species, autophagy, and mitochondrial biogenesis. Owing to these findings, a large body of studies, aiming to establish the role of PGC-1 in the neuromuscular system, has shown that PGC-1 could be a promising target for therapies targeting neuromuscular diseases. Among these, some evidence has shown that various signaling pathways linked to PGC-1α are deregulated in muscular dystrophy, leading to a reduced capacity for mitochondrial oxidative phosphorylation and increased reactive oxygen species (ROS) production. In the light of these results, any intervention aimed at activating PGC-1 could contribute towards ameliorating the progression of muscular dystrophies. PGC-1α is influenced by different patho-physiological/pharmacological stimuli. Natural products have been reported to display modulatory effects on PPARγ activation with fewer side effects in comparison to synthetic drugs. Taken together, this review summarizes the current knowledge on Duchenne muscular dystrophy, focusing on the potential effects of natural compounds, acting as regulators of PGC-1α.
Collapse
Key Words
- AAV, adeno-associated virus
- AMP, adenosine monophosphate
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- ASO, antisense oligonucleotides
- ATF2, activating transcription factor 2
- ATP, adenosine triphosphate
- BMD, Becker muscular dystrophy
- COPD, chronic obstructive pulmonary disease
- CREB, cyclic AMP response element-binding protein
- CnA, calcineurin a
- DAGC, dystrophin-associated glycoprotein complex
- DGC, dystrophin–glycoprotein complex
- DMD, Duchenne muscular dystrophy
- DRP1, dynamin-related protein 1
- DS, Down syndrome
- ECM, extracellular matrix
- EGCG, epigallocatechin-3-gallate
- ERRα, estrogen-related receptor alpha
- FDA, U. S. Food and Drug Administration
- FGF, fibroblast growth factor
- FOXO1, forkhead box class-O1
- GABP, GA-binding protein
- GPX, glutathione peroxidase
- GSK3b, glycogen synthase kinase 3b
- HCT, hydrochlorothiazide
- HDAC, histone deacetylase
- HIF-1α, hypoxia-inducible factors
- IL, interleukin
- LDH, lactate dehydrogenase
- MCP-1, monocyte chemoattractant protein-1
- MD, muscular dystrophy
- MEF2, myocyte enhancer factor 2
- MSCs, mesenchymal stem cells
- Mitochondrial oxidative phosphorylation
- Muscular dystrophy
- MyoD, myogenic differentiation
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NMJ, neuromuscular junctions
- NO, nitric oxide
- NOS, NO synthase
- Natural product
- PDGF, platelet derived growth factor
- PGC-1, peroxisome proliferator-activated receptor γ coactivator 1
- PPARγ activation
- PPARγ, peroxisome proliferator-activated receptor γ
- Peroxisome proliferator-activated receptor γ coactivator 1α
- ROS, reactive oxygen species
- Reactive oxygen species
- SIRT1, silent mating type information regulation 2 homolog 1
- SOD, superoxide dismutase
- SPP1, secreted phosphoprotein 1
- TNF-α, tumor necrosis factor-α
- UCP, uncoupling protein
- VEGF, vascular endothelial growth factor
- cGMP, cyclic guanosine monophosphate
- iPSCs, induced pluripotent stem cells
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
|
13
|
Co-Transplantation of Bone Marrow-MSCs and Myogenic Stem/Progenitor Cells from Adult Donors Improves Muscle Function of Patients with Duchenne Muscular Dystrophy. Cells 2020; 9:cells9051119. [PMID: 32365922 PMCID: PMC7290387 DOI: 10.3390/cells9051119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder associated with a progressive deficiency of dystrophin that leads to skeletal muscle degeneration. In this study, we tested the hypothesis that a co-transplantation of two stem/progenitor cell populations, namely bone marrow-derived mesenchymal stem cells (BM-MSCs) and skeletal muscle-derived stem/progenitor cells (SM-SPCs), directly into the dystrophic muscle can improve the skeletal muscle function of DMD patients. Three patients diagnosed with DMD, confirmed by the dystrophin gene mutation, were enrolled into a study approved by the local Bioethics Committee (no. 79/2015). Stem/progenitor cells collected from bone marrow and skeletal muscles of related healthy donors, based on HLA matched antigens, were expanded in a closed MC3 cell culture system. A simultaneous co‑transplantation of BM-MSCs and SM-SPCs was performed directly into the biceps brachii (two patients) and gastrocnemius (one patient). During a six‑month follow‑up, the patients were examined with electromyography (EMG) and monitored for blood kinase creatine level. Muscle biopsies were examined with histology and assessed for dystrophin at the mRNA and protein level. A panel of 27 cytokines was analysed with multiplex ELISA. We did not observe any adverse effects after the intramuscular administration of cells. The efficacy of BM‑MSC and SM‑SPC application was confirmed through an EMG assessment by an increase in motor unit parameters, especially in terms of duration, amplitude range, area, and size index. The beneficial effect of cellular therapy was confirmed by a decrease in creatine kinase levels and a normalised profile of pro-inflammatory cytokines. BM-MSCs may support the pro-regenerative potential of SM-SPCs thanks to their trophic, paracrine, and immunomodulatory activity. Both applied cell populations may fuse with degenerating skeletal muscle fibres in situ, facilitating skeletal muscle recovery. However, further studies are required to optimise the dose and timing of stem/progenitor cell delivery.
Collapse
|
14
|
Saclier M, Bonfanti C, Antonini S, Angelini G, Mura G, Zanaglio F, Taglietti V, Romanello V, Sandri M, Tonelli C, Petroni K, Cassano M, Messina G. Nutritional intervention with cyanidin hinders the progression of muscular dystrophy. Cell Death Dis 2020; 11:127. [PMID: 32071288 PMCID: PMC7028923 DOI: 10.1038/s41419-020-2332-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.
Collapse
Affiliation(s)
- Marielle Saclier
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Stefania Antonini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giuseppe Angelini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Federica Zanaglio
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Valentina Taglietti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Tonelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Katia Petroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Marco Cassano
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
15
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
16
|
Isolation and characterization of myogenic precursor cells from human cremaster muscle. Sci Rep 2019; 9:3454. [PMID: 30837559 PMCID: PMC6401155 DOI: 10.1038/s41598-019-40042-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.
Collapse
|
17
|
Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy. Cell Death Dis 2018; 9:776. [PMID: 29991677 PMCID: PMC6039566 DOI: 10.1038/s41419-018-0792-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/24/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023]
Abstract
Duchenne muscle dystrophy (DMD) is a genetic disorder characterized by progressive skeletal muscle weakness. Dystrophin deficiency induces instability of the sarcolemma during muscle contraction that leads to muscle necrosis and replacement of muscle by fibro-adipose tissue. Several therapies have been developed to counteract the fibrotic process. We report the effects of nintedanib, a tyrosine kinase inhibitor, in the mdx murine model of DMD. Nintedanib reduced proliferation and migration of human fibroblasts in vitro and decreased the expression of fibrotic genes such as COL1A1, COL3A1, FN1, TGFB1, and PDGFA. We treated seven mdx mice with 60 mg/kg/day nintedanib for 1 month. Electrophysiological studies showed an increase in the amplitude of the motor action potentials and an improvement of the morphology of motor unit potentials in the animals treated. Histological studies demonstrated a significant reduction of the fibrotic areas present in the skeletal muscles. Analysis of mRNA expression from muscles of treated mice showed a reduction in Col1a1, Col3a1, Tgfb1, and Pdgfa. Western blot showed a reduction in the expression of collagen I in skeletal muscles. In conclusion, nintedanib reduced the fibrotic process in a murine model of dystrophinopathy after 1 month of treatment, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
|
18
|
Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29536116 PMCID: PMC6154032 DOI: 10.1007/s00005-018-0509-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies represent a group of diseases which may develop in several forms, and severity of the disease is usually associated with gene mutations. In skeletal muscle regeneration and in muscular dystrophies, both innate and adaptive immune responses are involved. The regenerative potential of mesenchymal stem/stromal cells (MSCs) of bone marrow origin was confirmed by the ability to differentiate into diverse tissues and by their immunomodulatory and anti-inflammatory properties by secretion of a variety of growth factors and anti-inflammatory cytokines. Skeletal muscle comprises different types of stem/progenitor cells such as satellite cells and non-satellite stem cells including MSCs, interstitial stem cells positive for stress mediator PW1 expression and negative for PAX7 called PICs (PW1+/PAX7− interstitial cells), fibro/adipogenic progenitors/mesenchymal stem cells, muscle side population cells and muscle resident pericytes, and all of them actively participate in the muscle regeneration process. In this review, we present biological properties of MSCs of bone marrow origin and a heterogeneous population of muscle-resident stem/progenitor cells, their interaction with the inflammatory environment of dystrophic muscle and potential implications for cellular therapies for muscle regeneration. Subsequently, we propose—based on current research results, conclusions, and our own experience—hypothetical mechanisms for modulation of the complete muscle regeneration process to treat muscular dystrophies.
Collapse
|
19
|
Khadilkar SV, Yadav RS, Patel BA. Duchenne and Becker Muscular Dystrophies. Neuromuscul Disord 2018. [DOI: 10.1007/978-981-10-5361-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Persichini T, Funari A, Colasanti M, Sacchetti B. Clonogenic, myogenic progenitors expressing MCAM/CD146 are incorporated as adventitial reticular cells in the microvascular compartment of human post-natal skeletal muscle. PLoS One 2017; 12:e0188844. [PMID: 29186180 PMCID: PMC5706678 DOI: 10.1371/journal.pone.0188844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Recent observation identifies subendothelial (mural) cells expressing MCAM, a specific system of clonogenic, self-renewing, osteoprogenitors (a.k.a, "mesenchymal stem cells") in the microvascular compartment of post-natal human bone marrow (BM). In this study, we used MCAM/CD146, as a marker to localize, isolate and assay subendothelial clonogenic cells from the microvasculature of postnatal human skeletal muscle. We show here that these cells share with their BM counterpart, anatomic position (subendothelial/adventitial) and ex vivo clonogenicity (CFU-Fs). When assayed under the stringent conditions, these cells display a high spontaneous myogenic potential (independent of co-culture with myoblasts or of in vivo fusion with local myoblasts), which is otherwise only attained in cultures of satellite cells. These muscle-derived mural cells activated a myogenic program in culture. Cultured CD146+ cells expressed the myogenic factors (Pax7, Pax3 and Myf5), NCAM/CD56, desmin as well as proteins characteristic of more advanced myogenic differentiation, such as myosin heavy chain. In vivo, these cells spontaneously generate myotubes and myofibrils. These data identify the anatomy and phenotype of a novel class of committed myogenic progenitor in human post-natal skeletal muscle of subendothelial cells associated with the abluminal surface of microvascular compartment distinct from satellite cells.
Collapse
Affiliation(s)
| | - Alessia Funari
- Department of Molecular Medicine, University “Sapienza”, Rome, Italy
| | | | - Benedetto Sacchetti
- Department of Science, University ROMA TRE, Rome, Italy
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
21
|
Syverud BC, Lin E, Nagrath S, Larkin LM. Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation. Tissue Eng Part C Methods 2017; 24:32-41. [PMID: 28946802 DOI: 10.1089/ten.tec.2017.0316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle satellite cells have tremendous therapeutic potential in cell therapy or skeletal muscle tissue engineering. Obtaining a sufficiently pure satellite cell population, however, presents a significant challenge. We hypothesized that size differences between satellite cells and fibroblasts, two primary cell types obtained from skeletal muscle dissociation, would allow for label-free, inertial separation in a microfluidic device, termed a "Labyrinth," and that these purified satellite cells could be used to engineer skeletal muscle. Throughout tissue fabrication, Labyrinth-purified cells were compared with unsorted controls to assess the efficiency of this novel sorting process and to examine potential improvements in myogenic proliferation, differentiation, and tissue function. Immediately after dissociation and Labyrinth sorting, cells were immunostained to identify myogenic cells and fibroblast progenitors. Remaining cells were cultured for 14 days to form a confluent monolayer that was induced to delaminate and was captured as a 3D skeletal muscle construct. During monolayer development, myogenic proliferation (BrdU assay on Day 4), differentiation and myotube fusion index (α-actinin on Day 11), and myotube structural development (light microscopy on Day 14) were assessed. Isometric tetanic force production was measured in 3D constructs on Day 16. Immediately following sorting, unsorted cells exhibited a myogenic purity of 39.9% ± 3.99%, and this purity was enriched approximately two-fold to 75.5% ± 1.59% by microfluidic separation. The BrdU assay on Day 4 similarly showed significantly enhanced myogenic proliferation: in unsorted controls 47.0% ± 2.77% of proliferating cells were myogenic, in comparison to 61.7% ± 2.55% following purification. Myogenic differentiation and fusion, assessed by fusion index quantification, showed improvement from 82.7% ± 3.74% in control to 92.3% ± 2.04% in the purified cell population. Myotube density in unsorted controls, 18.6 ± 3.26 myotubes/mm2, was significantly enriched in the purified cell population to 33.9 ± 3.74 myotubes/mm2. Constructs fabricated from Labyrinth-purified cells also produced significantly greater tetanic forces (143.6 ± 16.9 μN) than unsorted controls (70.7 ± 8.03 μN). These results demonstrate the promise of microfluidic sorting in purifying isolated satellite cells. This unique technology could assist researchers in translating the regenerative potential of satellite cells to cell therapies and engineered tissues.
Collapse
Affiliation(s)
- Brian C Syverud
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Eric Lin
- 2 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Sunitha Nagrath
- 2 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Lisa M Larkin
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan.,3 Department of Molecular and Integrated Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
22
|
Cottle BJ, Lewis FC, Shone V, Ellison-Hughes GM. Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther 2017; 8:158. [PMID: 28676130 PMCID: PMC5496597 DOI: 10.1186/s13287-017-0612-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The development of cellular therapies to treat muscle wastage with disease or age is paramount. Resident muscle satellite cells are not currently regarded as a viable cell source due to their limited migration and growth capability ex vivo. This study investigated the potential of muscle-derived PW1+/Pax7- interstitial progenitor cells (PICs) as a source of tissue-specific stem/progenitor cells with stem cell properties and multipotency. METHODS Sca-1+/PW1+ PICs were identified on tissue sections from hind limb muscle of 21-day-old mice, isolated by magnetic-activated cell sorting (MACS) technology and their phenotype and characteristics assessed over time in culture. Green fluorescent protein (GFP)-labelled PICs were used to determine multipotency in vivo in a tumour formation assay. RESULTS Isolated PICs expressed markers of pluripotency (Oct3/4, Sox2, and Nanog), were clonogenic, and self-renewing with >60 population doublings, and a population doubling time of 15.8 ± 2.9 h. PICs demonstrated an ability to generate both striated and smooth muscle, whilst also displaying the potential to differentiate into cell types of the three germ layers both in vitro and in vivo. Moreover, PICs did not form tumours in vivo. CONCLUSION These findings open new avenues for a variety of solid tissue engineering and regeneration approaches, utilising a single multipotent stem cell type isolated from an easily accessible source such as skeletal muscle.
Collapse
Affiliation(s)
- Beverley J Cottle
- Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Shepherd's House, Rm 4.16, Guy's Campus, London, SE1 1UL, UK
| | - Fiona C Lewis
- Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Shepherd's House, Rm 4.16, Guy's Campus, London, SE1 1UL, UK
| | - Victoria Shone
- Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Shepherd's House, Rm 4.16, Guy's Campus, London, SE1 1UL, UK
| | - Georgina M Ellison-Hughes
- Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Shepherd's House, Rm 4.16, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
23
|
Perrin A, Rousseau J, Tremblay JP. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:68-79. [PMID: 28325301 PMCID: PMC5363410 DOI: 10.1016/j.omtn.2016.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022]
Abstract
Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies.
Collapse
Affiliation(s)
- Arnaud Perrin
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada
| | - Joël Rousseau
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada
| | - Jacques P Tremblay
- Unité de Génétique humaine, Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, 2705 Boulevard Laurier, QC G1V4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, QC G1V0A6, Canada.
| |
Collapse
|
24
|
Badylak SF, Dziki JL, Sicari BM, Ambrosio F, Boninger ML. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 2016; 103:128-136. [DOI: 10.1016/j.biomaterials.2016.06.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
|
25
|
Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016; 3:15. [PMID: 27447481 PMCID: PMC4958098 DOI: 10.1186/s40634-016-0051-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Satellite cells are tissue resident muscle stem cells required for postnatal skeletal muscle growth and repair through replacement of damaged myofibers. Muscle regeneration is coordinated through different mechanisms, which imply cell-cell and cell-matrix interactions as well as extracellular secreted factors. Cellular dynamics during muscle regeneration are highly complex. Immune, fibrotic, vascular and myogenic cells appear with distinct temporal and spatial kinetics after muscle injury. Three main phases have been identified in the process of muscle regeneration; a destruction phase with the initial inflammatory response, a regeneration phase with activation and proliferation of satellite cells and a remodeling phase with maturation of the regenerated myofibers. Whereas relatively minor muscle injuries, such as strains, heal spontaneously, severe muscle injuries form fibrotic tissue that impairs muscle function and lead to muscle contracture and chronic pain. Current therapeutic approaches have limited effectiveness and optimal strategies for such lesions are not known yet. Various strategies, including growth factors injections, transplantation of muscle stem cells in combination or not with biological scaffolds, anti-fibrotic therapies and mechanical stimulation, may become therapeutic alternatives to improve functional muscle recovery.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopaedic Surgery, Geneva University Hospitals & Faculty of Medicine, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland.
| | - Jacques Menetrey
- Department of Orthopaedic Surgery, Geneva University Hospitals & Faculty of Medicine, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| |
Collapse
|
26
|
Godi C, Ambrosi A, Nicastro F, Previtali SC, Santarosa C, Napolitano S, Iadanza A, Scarlato M, Natali Sora MG, Tettamanti A, Gerevini S, Cicalese MP, Sitzia C, Venturini M, Falini A, Gatti R, Ciceri F, Cossu G, Torrente Y, Politi LS. Longitudinal MRI quantification of muscle degeneration in Duchenne muscular dystrophy. Ann Clin Transl Neurol 2016; 3:607-22. [PMID: 27606343 PMCID: PMC4999593 DOI: 10.1002/acn3.319] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the usefulness of magnetic resonance imaging (MRI) in detecting the progression of Duchenne muscular dystrophy (DMD) by quantification of fat infiltration (FI) and muscle volume index (MVI, a residual-to-total muscle volume ratio). METHODS Twenty-six patients (baseline age: 5-12 years) with genetically proven DMD were longitudinally analyzed with lower limb 3T MRI, force measurements, and functional tests (Gowers, 10-m time, North Star Ambulatory Assessment, 6-min walking test). Five age-matched controls were also examined, with a total of 85 MRI studies. Semiquantitative (scores) and quantitative MRI (qMRI) analyses (signal intensity ratio - SIR, lower limb MVI, and individual muscle MVI) were carried out. Permutation and regression analyses according to both age and functional test-outcomes were calculated. Age-related quantitative reference curves of SIRs and MVIs were generated. RESULTS FI was present on glutei and adductor magnus in all patients since the age of 5, with a proximal-to-distal progression and selective sparing of sartorius and gracilis. Patients' qMRI measures were significantly different from controls' and among age classes. qMRI were more sensitive than force measurements and functional tests in assessing disease progression, allowing quantification also after loss of ambulation. Age-related curves with percentile values were calculated for SIRs and MVIs, to provide a reference background for future experimental therapy trials. SIRs and MVIs significantly correlated with all clinical measures, and could reliably predict functional outcomes and loss of ambulation. INTERPRETATIONS qMRI-based indexes are sensitive measures that can track the progression of DMD and represent a valuable tool for follow-up and clinical studies.
Collapse
Affiliation(s)
- Claudia Godi
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Alessandro Ambrosi
- CUSSB University Centre for Biomedical Sciences Vita-Salute San Raffaele University Milan Italy
| | - Francesca Nicastro
- Laboratory of Analysis and Rehabilitation of Motor Function Division of Neuroscience San Raffaele Scientific Institute Milan Italy
| | - Stefano C Previtali
- Division of Neuroscience Institute of Experimental Neurology (INSpe) San Raffaele Scientific Institute Milan Italy
| | - Corrado Santarosa
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Sara Napolitano
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) and Pediatric Immunohematology and Bone Marrow Transplantation Unit San Raffaele Scientific Institute Milan Italy
| | - Antonella Iadanza
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Marina Scarlato
- Division of Neuroscience Institute of Experimental Neurology (INSpe) San Raffaele Scientific Institute Milan Italy
| | - Maria Grazia Natali Sora
- Division of Neuroscience Institute of Experimental Neurology (INSpe) San Raffaele Scientific Institute Milan Italy
| | - Andrea Tettamanti
- Laboratory of Analysis and Rehabilitation of Motor Function Division of Neuroscience San Raffaele Scientific Institute Milan Italy
| | - Simonetta Gerevini
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) and Pediatric Immunohematology and Bone Marrow Transplantation Unit San Raffaele Scientific Institute Milan Italy
| | - Clementina Sitzia
- Stem Cell Laboratory Department of Pathophysiology and Transplantation Universitá degli Studi di Milano Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico Centro Dino Ferrari, Milan Italy
| | - Massimo Venturini
- Radiology Department San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Andrea Falini
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Roberto Gatti
- Laboratory of Analysis and Rehabilitation of Motor Function Division of Neuroscience San Raffaele Scientific Institute Milan Italy
| | - Fabio Ciceri
- Hematology and BMT Unit San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy
| | - Giulio Cossu
- Institute of Inflammation and Repair University of Manchester Manchester United Kingdom
| | - Yvan Torrente
- Stem Cell Laboratory Department of Pathophysiology and Transplantation Universitá degli Studi di Milano Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico Centro Dino Ferrari, Milan Italy
| | - Letterio S Politi
- Neuroradiology Department Neuroradiology Research Group and CERMAC San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milan Italy; Neuroimaging Research Division of Hematology/Oncology Boston Children's Hospital Boston MA USA; Department of Pediatrics Harvard Medical School Boston MA USA; University of Massachusetts Memorial Medical Center and University of Massachusetts Medical School Worcester MA USA
| |
Collapse
|
27
|
Ghobadi AF, Letteri R, Parelkar SS, Zhao Y, Chan-Seng D, Emrick T, Jayaraman A. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation. Biomacromolecules 2016; 17:546-57. [DOI: 10.1021/acs.biomac.5b01462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmadreza F. Ghobadi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716 United States
| | - Rachel Letteri
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sangram S. Parelkar
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Yue Zhao
- Quantum
Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Delphine Chan-Seng
- Institut Charles
Sadron UPR22-CNRS, 23 rue du Loess, 67034 Strasbourg, France
| | - Todd Emrick
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716 United States
- Department
of Materials Science and Engineering, University of Delaware, 201 DuPont
Hall, Newark, Delaware 19716 United States
| |
Collapse
|
28
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
29
|
Sivakumar M, Dineshshankar J, Sunil PM, Nirmal RM, Sathiyajeeva J, Saravanan B, Senthileagappan AR. Stem cells: An insight into the therapeutic aspects from medical and dental perspectives. J Pharm Bioallied Sci 2015; 7:S361-71. [PMID: 26538878 PMCID: PMC4606620 DOI: 10.4103/0975-7406.163453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The recent advancements in the field of stem cell (SC) biology have increased the hope of achieving the definitive treatments for the diseases which are now considered incurable such as diabetes, Parkinson's disease and other chronic long standing conditions. To achieve this possibility, it is necessary to understand the basic concepts of SC biology to utilize in various advanced techniques of regenerative medicine including tissue engineering and gene therapy. This article highlights the types of SCs available and their therapeutic capacity in regenerative medical and dental fields.
Collapse
Affiliation(s)
- Muniapillai Sivakumar
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Janardhanam Dineshshankar
- Department of Oral Pathology and Microbiology, Vivekanandha Dental College for Women, Tiruchengode, Namakkal, Tamil Nadu, India
| | - P M Sunil
- Department of Oral Pathology and Microbiology, Sree Anjaneya Institute of Dental Sciences, Calicut, Kerala, India
| | - R Madhavan Nirmal
- Department of Oral Pathology and Microbiology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - J Sathiyajeeva
- Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Balasubramanian Saravanan
- Department of Oral and Maxillofacial Surgery, Madha Dental College and Hospital, Kundrathur, Chennai, Tamil Nadu, India
| | - A R Senthileagappan
- Department of Pedodontics, Chettinad Dental College and Research Institute, Chettinad Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
La Colla A, Pronsato L, Milanesi L, Vasconsuelo A. 17β-Estradiol and testosterone in sarcopenia: Role of satellite cells. Ageing Res Rev 2015; 24:166-77. [PMID: 26247846 DOI: 10.1016/j.arr.2015.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022]
Abstract
The loss of muscle mass and strength with aging, referred to as sarcopenia, is a prevalent condition among the elderly. Although the molecular mechanisms underlying sarcopenia are unclear, evidence suggests that an age-related acceleration of myocyte loss via apoptosis might be responsible for muscle perfomance decline. Interestingly, sarcopenia has been associated to a deficit of sex hormones which decrease upon aging. The skeletal muscle ability to repair and regenerate itself would not be possible without satellite cells, a subpopulation of cells that remain quiescent throughout life. They are activated in response to stress, enabling them to guide skeletal muscle regeneration. Thus, these cells could be a key factor to overcome sarcopenia. Of importance, satellite cells are 17β-estradiol (E2) and testosterone (T) targets. In this review, we summarize potential mechanisms through which these hormones regulate satellite cells activation during skeletal muscle regeneration in the elderly. The advance in its understanding will help to the development of potential therapeutic agents to alleviate and treat sarcopenia and other related myophaties.
Collapse
|
31
|
Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm 2015; 2015:805172. [PMID: 26508819 PMCID: PMC4609834 DOI: 10.1155/2015/805172] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle mass is subject to rapid changes according to growth stimuli inducing both hypertrophy, through increased protein synthesis, and hyperplasia, activating the myogenic program. Muscle wasting, characteristic of several pathological states associated with local or systemic inflammation, has been for long considered to rely on the alteration of myofiber intracellular pathways regulated by both hormones and cytokines, eventually leading to impaired anabolism and increased protein breakdown. However, there are increasing evidences that even alterations of the myogenic/regenerative program play a role in the onset of muscle wasting, even though the precise mechanisms involved are far from being fully elucidated. The comprehension of the links potentially occurring between impaired myogenesis and increased catabolism would allow the definition of effective strategies aimed at counteracting muscle wasting. The first part of this review gives an overview of skeletal muscle intracellular pathways determining fiber size, while the second part considers the cells and the regulatory pathways involved in the myogenic program. In both parts are discussed the evidences supporting the role of inflammation in impairing muscle homeostasis and myogenesis, potentially determining muscle atrophy.
Collapse
|
32
|
Servais L, Montus M, Guiner CL, Ben Yaou R, Annoussamy M, Moraux A, Hogrel JY, Seferian AM, Zehrouni K, Le Moing AG, Gidaro T, Vanhulle C, Laugel V, Butoianu N, Cuisset JM, Sabouraud P, Cances C, Klein A, Leturcq F, Moullier P, Voit T. Non-Ambulant Duchenne Patients Theoretically Treatable by Exon 53 Skipping have Severe Phenotype. J Neuromuscul Dis 2015; 2:269-279. [PMID: 27858743 PMCID: PMC5240539 DOI: 10.3233/jnd-150100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Exon skipping therapy is an emerging approach in Duchenne Muscular Dystrophy (DMD). Antisense oligonucleotides that induce skipping of exon 51, 44, 45, or 53 are currently being evaluated in clinical trials. These trials were designed on the basis of data available in general DMD population. OBJECTIVES Our objective was to compare the clinical and functional statuses of non-ambulant DMD patients theoretically treatable by exon 53 skipping and of DMD patients with other mutations. METHODS We first compared fifteen non-ambulant DMD patients carrying deletions theoretically treatable by exon 53 skipping (DMD-53) with fifteen closely age-matched DMD patients with mutations not treatable by exon 53 skipping (DMD-all-non-53) then with fifteen DMD patients carrying deletions not treatable by exon 53 skipping (DMD-del-non-53). RESULTS We found that DMD-53 patients had a lower left ventricular ejection fraction, more contractures and they tend to have weaker grips and pinch strengths than other DMD patients. DMD-53 patients lost ambulation significantly younger than other DMD patients. This result was confirmed by comparing ages at loss of ambulation in all non-ambulant DMD patients of the DMD cohort identified in a molecular diagnostic lab. CONCLUSIONS These prospective and retrospective data demonstrate that DMD-53 patients have clinically more severe phenotypes than other DMD patients.
Collapse
Affiliation(s)
- Laurent Servais
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | | | - Caroline Le Guiner
- Généthon, Evry, France
- Atlantic Gene Therapies, INSERM UMR, Nantes, France
| | - Rabah Ben Yaou
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
- Laboratoire de biochimie et génétique moléculaire, Hôpital Cochin, APHP, Paris, France
| | - Mélanie Annoussamy
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Amélie Moraux
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Andreea M. Seferian
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Karima Zehrouni
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Anne-Gaëlle Le Moing
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Teresa Gidaro
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| | - Catherine Vanhulle
- Service de Pédiatrie, Centre Hospitalier Universitaire (CHU), Rouen, France
| | - Vincent Laugel
- Service de Pédiatrie, Centre Hospitalier Universitaire (CHU), Strasbourg, France
| | - Nina Butoianu
- Pediatric Neurology Clinic, Alexandru Obregia Hospital, Bucharest, Romania
| | - Jean-Marie Cuisset
- Service de Neuropédiatrie, Centre hospitalier régional universitaire et faculté de médecine, Lille, France
| | - Pascal Sabouraud
- Service de Pédiatrie A, Hôpital Américain, CHU de Reims, Reims, France
| | - Claude Cances
- Service de Neurologie Pédiatrique, Hôpital des Enfants, Toulouse, France
| | - Andrea Klein
- Department of pediatric neurology, University Children’s Hospital, Zurich, Switzerland
| | - France Leturcq
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
- Laboratoire de biochimie et génétique moléculaire, Hôpital Cochin, APHP, Paris, France
| | - Philippe Moullier
- Généthon, Evry, France
- Atlantic Gene Therapies, INSERM UMR, Nantes, France
| | - Thomas Voit
- Institut de Myologie, Groupe hospitalier La Pitié Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
33
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
34
|
Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell Therapy for Stress Urinary Incontinence. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:365-76. [PMID: 25789845 DOI: 10.1089/ten.teb.2014.0627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.
Collapse
Affiliation(s)
- Melanie L Hart
- 1 Clinical Research Group KFO 273, Department of Urology, University of Tübingen , Tübingen, Germany
| | - Ander Izeta
- 2 Tissue Engineering Laboratory, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | - Bastian Amend
- 4 Department of Urology, University of Tübingen , Tuebingen, Germany
| | - Jan E Brinchmann
- 5 Department of Immunology, Oslo University Hospital, Oslo, Norway
- 6 Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|
35
|
Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet 2015; 24:3814-29. [PMID: 25859011 DOI: 10.1093/hmg/ddv125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Ectopic calcification as well as fatty and fibrotic tissue accumulation occurs in skeletal muscle during the disease progression of Duchenne muscular dystrophy (DMD), a degenerative muscle disorder caused by mutations in the dystrophin gene. The cellular origin and the environmental cues responsible for this ectopic calcification, fatty and fibrotic infiltration during the disease progression, however, remain unknown. Based on a previously published preplate technique, we isolated two distinct populations of muscle-derived cells from skeletal muscle: (i) a rapidly adhering cell population, which is non-myogenic, Pax7(-) and express the mesenchymal stem cell (MSC) marker platelet-derived growth factor receptor alpha; hence, we termed this population of cells non-myogenic MSCs (nmMSCs); and (ii) a slowly adhering cell population which is Pax7(+) and highly myogenic, termed muscle progenitor cells (MPCs). Previously, we demonstrated that the rapid progression of skeletal muscle histopathologies in dystrophin/utrophin knockout (dys(-/-) utro(-/-) dKO) mice is closely associated with a rapid depletion of the MPC population pool. In the current study, we showed that in contrast to the MPCs, the nmMSCs become activated during the disease progression in dKO mice, displaying increased proliferation and differentiation potentials (adipogenesis, osteogenesis and fibrogenesis). We also found that after co-culturing the dKO-nmMSCs with dKO-MPCs, the myogenic differentiation potential of the dKO-MPCs was reduced. This effect was found to be potentially mediated by the secretion of secreted frizzled-related protein 1 by the dKO-nmMSCs. We therefore posit that the rapid occurrence of fibrosis, ectopic calcification and fat accumulation, in dKO mice, is not only attributable to the rapid depletion of the MPC pool, but is also the consequence of nmMSC activation. Results from this study suggest that approaches to alleviate muscle weakness and wasting in DMD patients should not only target the myogenic MPCs but should also attempt to prevent the activation of the nmMSCs.
Collapse
Affiliation(s)
- Jihee Sohn
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Bing Wang
- Stem Cell Research Center, Department of Orthopaedic Surgery and
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Yang X. Stem cell transplantation for treating Duchenne muscular dystrophy: A Web of Science-based literature analysis. Neural Regen Res 2015; 7:1744-51. [PMID: 25624797 PMCID: PMC4302457 DOI: 10.3969/j.issn.1673-5374.2012.22.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation for treating Duchenne muscular dystrophy. CONCLUSION: The publications on stem cell transplantation for treating Duchenne muscular dystrophy were relatively few. It also needs more research to confirm that stem cell therapy is a reliable treatment for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Cell Therapy Center, Chinese PLA 463 Hospital, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
37
|
Ankala A, da Silva C, Gualandi F, Ferlini A, Bean LJH, Collins C, Tanner AK, Hegde MR. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol 2014; 77:206-14. [PMID: 25380242 DOI: 10.1002/ana.24303] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Neuromuscular diseases (NMDs) are a group of >200 highly genetically as well as clinically heterogeneous inherited genetic disorders that affect the peripheral nervous and muscular systems, resulting in gross motor disability. The clinical and genetic heterogeneities of NMDs make disease diagnosis complicated and expensive, often involving multiple tests. METHODS To expedite the molecular diagnosis of NMDs, we designed and validated several next generation sequencing (NGS)-based comprehensive gene panel tests that include complementary deletion and duplication testing through comparative genomic hybridization arrays. Our validation established the targeted gene panel test to have 100% sensitivity and specificity for single nucleotide variant detection. To compare the clinical diagnostic yields of single gene (NMD-associated) tests with the various NMD NGS panel tests, we analyzed data from all clinical tests performed at the Emory Genetics Laboratory from October 2009 through May 2014. We further compared the clinical utility of the targeted NGS panel test with that of exome sequencing (ES). RESULTS We found that NMD comprehensive panel testing has a 3-fold greater diagnostic yield (46%) than single gene testing (15-19%). Sanger fill-in of low-coverage exons, copy number variation analysis, and thorough in-house validation of the assay all complement panel testing and allow the detection of all types of causative pathogenic variants, some of which (about 18%) may be missed by ES. INTERPRETATION Our results strongly indicate that for molecular diagnosis of heterogeneous disorders such as NMDs, targeted panel testing has the highest clinical yield and should therefore be the preferred first-tier approach.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
39
|
Circulating Muscle-specific miRNAs in Duchenne Muscular Dystrophy Patients. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e177. [PMID: 25050825 PMCID: PMC4121518 DOI: 10.1038/mtna.2014.29] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023]
Abstract
Noninvasive biomarkers with diagnostic value and prognostic applications have long been desired to replace muscle biopsy for Duchenne muscular dystrophy (DMD) patients. Growing evidence indicates that circulating microRNAs are biomarkers to assess pathophysiological status. Here, we show that the serum levels of six muscle-specific miRNAs (miR-1/206/133/499/208a/208b, also known as myomiRs) were all elevated in DMD patients (P < 0.01). The receiver operating characteristic curves of circulating miR-206, miR-499, miR-208b, and miR-133 levels reflected strong separation between Becker's muscular dystrophy (BMD) and DMD patients (P < 0.05). miR-206, miR-499, and miR-208b levels were positively correlated with both age and type IIc muscle fiber content in DMD patients (2–6 years), indicating that they might represent the stage of disease as well as the process of regeneration. miR-499 and miR-208b levels were correlated with slow and fast fiber content and might reflect the ratio of slow to fast fibers in DMD patient (>6 years). Fibroblast growth factor, transforming growth factor-β, and tumor necrosis factor-α could affect the secretion of myomiRs, suggesting that circulating myomiRs might reflect the effects of cytokines and growth factors on degenerating and regenerating muscles. Collectively, our data indicated that circulating myomiRs could serve as promising biomarkers for DMD diagnosis and disease progression.
Collapse
|
40
|
Meregalli M, Farini A, Sitzia C, Torrente Y. Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 2014; 5:48. [PMID: 24575052 PMCID: PMC3921573 DOI: 10.3389/fphys.2014.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Clementina Sitzia
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| |
Collapse
|
41
|
Abi-Nader KN, Rodeck CH, David AL. Prenatal gene therapy for the early treatment of genetic disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Hollingsworth KG, Garrood P, Eagle M, Bushby K, Straub V. Magnetic resonance imaging in duchenne muscular dystrophy: Longitudinal assessment of natural history over 18 months. Muscle Nerve 2013; 48:586-8. [DOI: 10.1002/mus.23879] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Kieren G. Hollingsworth
- Newcastle Magnetic Resonance Centre; Institute of Cellular Medicine, Campus for Ageing and Vitality, Newcastle University; Newcastle upon Tyne NE4 5PL UK
| | - Penny Garrood
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| | - Michelle Eagle
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| | - Kate Bushby
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| | - Volker Straub
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
43
|
Fishman JM, Tyraskis A, Maghsoudlou P, Urbani L, Totonelli G, Birchall MA, De Coppi P. Skeletal muscle tissue engineering: which cell to use? TISSUE ENGINEERING PART B-REVIEWS 2013; 19:503-15. [PMID: 23679017 DOI: 10.1089/ten.teb.2013.0120] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue-engineered skeletal muscle is urgently required to treat a wide array of devastating congenital and acquired conditions. Selection of the appropriate cell type requires consideration of several factors which amongst others include, accessibility of the cell source, in vitro myogenicity at high efficiency with the ability to maintain differentiation over extended periods of time, susceptibility to genetic manipulation, a suitable mode of delivery and finally in vivo differentiation giving rise to restoration of structural morphology and function. Potential stem-progenitor cell sources include and are not limited to satellite cells, myoblasts, mesoangioblasts, pericytes, muscle side-population cells, CD133(+) cells, in addition to embryonic stem cells, mesenchymal stem cells, amniotic fluid stem cells and induced pluripotent stem (iPS) cells. The relative merits and inherent limitations of these cell types within the field of tissue-engineering are discussed in the light of current research. Recent advances in the field of iPS cells should bear the fruits for some exciting developments within the field in the forthcoming years.
Collapse
|
44
|
McDonald CM, Henricson EK, Abresch RT, Han JJ, Escolar DM, Florence JM, Duong T, Arrieta A, Clemens PR, Hoffman EP, Cnaan A. The cooperative international neuromuscular research group Duchenne natural history study--a longitudinal investigation in the era of glucocorticoid therapy: design of protocol and the methods used. Muscle Nerve 2013; 48:32-54. [PMID: 23677550 PMCID: PMC4147958 DOI: 10.1002/mus.23807] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED Contemporary natural history data in Duchenne muscular dystrophy (DMD) is needed to assess care recommendations and aid in planning future trials. METHODS The Cooperative International Neuromuscular Research Group (CINRG) DMD Natural History Study (DMD-NHS) enrolled 340 individuals, aged 2-28 years, with DMD in a longitudinal, observational study at 20 centers. Assessments obtained every 3 months for 1 year, at 18 months, and annually thereafter included: clinical history; anthropometrics; goniometry; manual muscle testing; quantitative muscle strength; timed function tests; pulmonary function; and patient-reported outcomes/health-related quality-of-life instruments. RESULTS Glucocorticoid (GC) use at baseline was 62% present, 14% past, and 24% GC-naive. In those ≥6 years of age, 16% lost ambulation over the first 12 months (mean age 10.8 years). CONCLUSIONS Detailed information on the study methodology of the CINRG DMD-NHS lays the groundwork for future analyses of prospective longitudinal natural history data. These data will assist investigators in designing clinical trials of novel therapeutics.
Collapse
Affiliation(s)
- Craig M McDonald
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of California, Davis, 4860 Y Street, Suite 3850, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sirabella D, De Angelis L, Berghella L. Sources for skeletal muscle repair: from satellite cells to reprogramming. J Cachexia Sarcopenia Muscle 2013; 4:125-36. [PMID: 23314905 PMCID: PMC3684700 DOI: 10.1007/s13539-012-0098-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/28/2012] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle regeneration is the process that ensures tissue repair after damage by injury or in degenerative diseases such as muscular dystrophy. Satellite cells, the adult skeletal muscle progenitor cells, are commonly considered to be the main cell type involved in skeletal muscle regeneration. Their mechanism of action in this process is extensively characterized. However, evidence accumulated in the last decade suggests that other cell types may participate in skeletal muscle regeneration. Although their actual contribution to muscle formation and regeneration is still not clear; if properly manipulated, these cells may become new suitable and powerful sources for cell therapy of skeletal muscle degenerative diseases. Mesoangioblasts, vessel associated stem/progenitor cells with high proliferative, migratory and myogenic potential, are very good candidates for clinical applications and are already in clinical experimentation. In addition, pluripotent stem cells are very promising sources for regeneration of most tissues, including skeletal muscle. Conditions such as muscle cachexia or aging that severely alter homeostasis may be counteracted by transplantation of donor and/or recruitment and activation of resident muscle stem/progenitor cells. Advantages and limitations of different cell therapy approaches will be discussed.
Collapse
Affiliation(s)
- Dario Sirabella
- />Department of Biomedical Engineering, Columbia University, 2920 Broadway, New York, NY 10027-7164 USA
| | - Luciana De Angelis
- />DAHFMO, Unit of Histology and Medical Embryology, University of Roma “La Sapienza”, Via Scarpa, 14, 00161 Rome, Italy
| | - Libera Berghella
- />IRCCS Fondazione S. Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
- />HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| |
Collapse
|
46
|
Beckman SA, Chen WCW, Tang Y, Proto JD, Mlakar L, Wang B, Huard J. Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2013; 33:2004-12. [PMID: 23723372 DOI: 10.1161/atvbaha.112.301166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. APPROACH AND RESULTS MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZ-MDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. CONCLUSIONS The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF.
Collapse
Affiliation(s)
- Sarah A Beckman
- Departments of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Konieczny P, Swiderski K, Chamberlain JS. Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 2013; 47:649-63. [PMID: 23553671 DOI: 10.1002/mus.23738] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 12/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disorder that affects 1 in 3,500 boys. Despite years of research and considerable progress in understanding the molecular mechanism of the disease and advancement of therapeutic approaches, there is no cure for DMD. The current treatment options are limited to physiotherapy and corticosteroids, and although they provide a substantial improvement in affected children, they only slow the course of the disorder. On a more optimistic note, more recent approaches either significantly alleviate or eliminate muscular dystrophy in murine and canine models of DMD and importantly, many of them are being tested in early phase human clinical trials. This review summarizes advancements that have been made in viral and nonviral gene therapy as well as stem cell therapy for DMD with a focus on the replacement and repair of the affected dystrophin gene.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington 98105, USA
| | | | | |
Collapse
|
48
|
Onori A, Pisani C, Strimpakos G, Monaco L, Mattei E, Passananti C, Corbi N. UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation. BMC Mol Biol 2013; 14:3. [PMID: 23363418 PMCID: PMC3576267 DOI: 10.1186/1471-2199-14-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible. Results We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus. Conclusions This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.
Collapse
Affiliation(s)
- Annalisa Onori
- Institute of Molecular Biology and Pathology CNR, Department of Molecular Medicine, University Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Meregalli M, Farini A, Belicchi M, Parolini D, Cassinelli L, Razini P, Sitzia C, Torrente Y. Perspectives of stem cell therapy in Duchenne muscular dystrophy. FEBS J 2013. [DOI: 10.1111/febs.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirella Meregalli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Andrea Farini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Marzia Belicchi
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Daniele Parolini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Letizia Cassinelli
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Paola Razini
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Clementina Sitzia
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| | - Yvan Torrente
- Laboratorio Cellule Staminali; Dipartimento di Fisiopatologia medico-chirurgica e dei Trapianti; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan; Italy
| |
Collapse
|
50
|
Jackson MF, Hoversten KE, Powers JM, Trobridge GD, Rodgers BD. Genetic manipulation of myoblasts and a novel primary myosatellite cell culture system: comparing and optimizing approaches. FEBS J 2013; 280:827-39. [PMID: 23173931 DOI: 10.1111/febs.12072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 11/30/2022]
Abstract
The genetic manipulation of skeletal muscle cells in vitro is notoriously difficult, especially when using undifferentiated muscle cell lines (myoblasts) or primary muscle stem cells (myosatellites). We therefore optimized methods of gene transfer by overexpressing green fluorescent protein (GFP) in mouse C2C12 cells and in a novel system, primary rainbow trout myosatellite cells. A common lipid-based transfection reagent was used (Lipofectamine 2000) along with three different viral vectors: adeno-associated virus serotype 2 (AAV2), baculovirus (BAC) and lentivirus. Maximal transfection efficiencies of 49% were obtained in C2C12 cells after optimizing cell density and reagent : DNA ratio, although the GFP signal rapidly dissipated with proliferation and was not maintained with differentiation. The transduction efficiency of AAV2 was optimized to 65% by extending incubation time and decreasing cell density, although only 30% of cells retained expression after passing. A viral comparison revealed that lentivirus was most efficient at transducing C2C12 myoblasts as 97% of cells were transduced with only 10(6) viral genomes (vg) compared to 54% with 10(8) vg AAV2 and 23% with 10(9) vg BAC. Lentivirus also transduced 90% of primary trout myosatellites compared to 1-10% with AAV2 and BAC. The phosphoglycerate kinase 1 (pgk) promoter was 10-fold more active than the cytomegalovirus immediate-early promoter in C2C12 cells and both were effective in trout myosatellites. Maximal transduction of C2C12 myotubes was achieved by differentiating myoblasts previously transduced with lentivirus and the pgk promoter. Thus, our optimized protocol proved highly effective in diverse muscle cell systems and could therefore help overcome a common technological barrier.
Collapse
Affiliation(s)
- Melissa F Jackson
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164-6351, USA
| | | | | | | | | |
Collapse
|