1
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
2
|
Wei Y, Jiang H, Li F, Chai C, Xu Y, Xing M, Deng W, Wang H, Zhu Y, Yang S, Yu Y, Wang W, Wei Y, Guo Y, Tian J, Du J, Guo Z, Wang Y, Zhao Q. Extravascular administration of IGF1R antagonists protects against aortic aneurysm in rodent and porcine models. Sci Transl Med 2024; 16:eadh1763. [PMID: 38691618 DOI: 10.1126/scitranslmed.adh1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaping Xu
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mengmeng Xing
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuexin Zhu
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Weihai 264400, China
| | - Wenming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Liu S, Xue YJ, Yin RP, Wu BS, Yu YW, Zhou YY, Wang J, Ji KT. 3, 4-Benzopyrene (Bap) aggravated abdominal aortic aneurysm formation by targeting pyroptosis in smooth muscle cells through ET-1 mediated NLRP3-inflammasome activation. Int Immunopharmacol 2023; 124:110851. [PMID: 37651853 DOI: 10.1016/j.intimp.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1β and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Cardiology, The First People's Hospital oF Jiashan, Jiaxing, Zhejiang 314100, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ri-Peng Yin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying-Ying Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jie Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Fu Y, Liu H, Li K, Wei P, Alam N, Deng J, Li M, Wu H, He X, Hou H, Xia C, Wang R, Wang W, Bai L, Xu B, Li Y, Wu Y, Liu E, Zhao S. C-reactive protein deficiency ameliorates experimental abdominal aortic aneurysms. Front Immunol 2023; 14:1233807. [PMID: 37753091 PMCID: PMC10518468 DOI: 10.3389/fimmu.2023.1233807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Background C-reactive protein (CRP) levels are elevated in patients with abdominal aortic aneurysms (AAA). However, it has not been investigated whether CRP contributes to AAA pathogenesis. Methods CRP deficient and wild type (WT) male mice were subjected to AAA induction via transient intra-aortic infusion of porcine pancreatic elastase. AAAs were monitored by in situ measurements of maximal infrarenal aortic external diameters immediately prior to and 14 days following elastase infusion. Key AAA pathologies were assessed by histochemical and immunohistochemical staining procedures. The influence of CRP deficiency on macrophage activation was evaluated in peritoneal macrophages in vitro. Results CRP protein levels were higher in aneurysmal than that in non-aneurysmal aortas. Aneurysmal aortic dilation was markedly suppressed in CRP deficient (aortic diameter: 1.08 ± 0.11 mm) as compared to WT (1.21 ± 0.08 mm) mice on day 14 after elastase infusion. More medial elastin was retained in CRP deficient than in WT elastase-infused mice. Macrophage accumulation was significantly less in aneurysmal aorta from CRP deficient than that from WT mice. Matrix metalloproteinase 2 expression was also attenuated in CRP deficient as compared to WT aneurysmal aortas. CRP deficiency had no recognizable influence on medial smooth muscle loss, lymphocyte accumulation, aneurysmal angiogenesis, and matrix metalloproteinase 9 expression. In in vitro assays, mRNA levels for tumor necrosis factor α and cyclooxygenase 2 were reduced in lipopolysaccharide activated peritoneal macrophages from CRP deficient as compared to wild type mice. Conclusion CRP deficiency suppressed experimental AAAs by attenuating aneurysmal elastin destruction, macrophage accumulation and matrix metalloproteinase 2 expression.
Collapse
Affiliation(s)
- Yu Fu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kexin Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Panpan Wei
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Naqash Alam
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Meng Li
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haibin Wu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xue He
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Haiwen Hou
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Congcong Xia
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Yankui Li
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yi Wu
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Du L, Wang X, Chen S, Guo X. The AIM2 inflammasome: A novel biomarker and target in cardiovascular disease. Pharmacol Res 2022; 186:106533. [PMID: 36332811 DOI: 10.1016/j.phrs.2022.106533] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic sensor that recognises the double-strand DNA. AIM2 inflammasome is a protein platform in the cell that initiates innate immune responses by cleaving pro-caspase-1 and converting IL-1β and IL-18 to their mature forms. Additionally, AIM2 inflammasome promotes pyroptosis by converting Gasdermin-D (GSDMD) to GSDMD-N fragments. An increasing number of studies have indicated the important and decisive roles of the AIM2 inflammasome, IL-1β, and pyroptosis in cardiovascular diseases, such as coronary atherosclerosis, myocardial infarction, ischaemia/reperfusion injury, heart failure, aortic aneurysm and ischaemic stroke. Here, we review the molecular mechanism of the activation and effect of the AIM2 inflammasome in cardiovascular disease, revealing new insights into pathogenic factors that may be targeted to treat cardiovascular disease and related dysfunctions.
Collapse
Affiliation(s)
- Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion? Cells 2022; 11:cells11061043. [PMID: 35326494 PMCID: PMC8947535 DOI: 10.3390/cells11061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Abdominal aortic aneurysm (AAA) is a silent, progressive disease with significant mortality from rupture. Whilst screening programmes are now able to detect this pathology early in its development, no therapeutic intervention has yet been identified to halt or retard aortic expansion. The inability to obtain aortic tissue from humans at early stages has created a necessity for laboratory models, yet it is essential to create a timeline of events from EARLY to END stage AAA progression. (2) We used a previously validated ex vivo porcine bioreactor model pre-treated with protease enzyme to create “aneurysm” tissue. Mechanical properties, histological changes in the intact vessel wall, and phenotype/function of vascular smooth muscle cells (SMC) cultured from the same vessels were investigated. (3) The principal finding was significant hyperproliferation of SMC from EARLY stage vessels, but without obvious histological or SMC aberrancies. END stage tissue exhibited histological loss of α-smooth muscle actin and elastin; mechanical impairment; and, in SMC, multiple indications of senescence. (4) Aortic SMC may offer a therapeutic target for intervention, although detailed studies incorporating intervening time points between EARLY and END stage are required. Such investigations may reveal mechanisms of SMC dysfunction in AAA development and hence a therapeutic window during which SMC differentiation could be preserved or reinstated.
Collapse
|
8
|
Åström Malm I, De Basso R, Blomstrand P, Wågsäter D. Association of IL-10 and CRP with Pulse Wave Velocity in Patients with Abdominal Aortic Aneurysm. J Clin Med 2022; 11:jcm11051182. [PMID: 35268272 PMCID: PMC8911398 DOI: 10.3390/jcm11051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Markers of inflammation and arterial stiffness are predictors of cardiovascular morbidity and events, but their roles in the mechanisms and progression of abdominal aortic aneurysm (AAA) in males have not been fully investigated. This study explored possible associations between inflammatory marker levels and arterial stiffness in males with AAA. Methods: A total of 270 males (191 AAA and 79 controls) were included in the study. Arterial stiffness was assessed using non-invasive applanation tonometry to measure the regional pulse wave velocity between the carotid and femoral arteries and the carotid and radial arteries. Blood samples were obtained, and interleukin-10 (IL-10) and CRP levels were analysed. Results: Subjects with an AAA had higher levels of IL-10 (21.5 ± 14.0 ng/mL versus 16.6 ± 9.3 ng/mL) compared to controls (p = 0.007). In the AAA cohort, subjects with T2DM showed higher levels of IL-10 (26.4 ± 17.3 versus 20.4 ± 13.0, p = 0.036). We observed a positive correlation between PWVcf and CRP in the control group (r = 0.332) but not the AAA group. PWVcf and CRP were negatively correlated (r = 0.571) in the T2DM subjects treated with metformin in the AAA group. Conclusion: Arterial stiffness is related to the degree of inflammation reflected by CRP and IL-10 levels in males with an AAA. IL-10 is negatively correlated with arterial stiffness in these subjects. This finding suggests that IL-10 may decrease arterial stiffness in males with AAA. The negative correlation between CRP and PWVcf in males with T2DM treated with metformin may indicate that metformin influences the arterial wall to decrease stiffness in subjects with AAA.
Collapse
Affiliation(s)
- Ida Åström Malm
- Department of Natural Sciences and Biomedicine, School of Health and Welfare, Jönköping University, SE-551 11 Jönköping, Sweden; (R.D.B.); (P.B.)
- Correspondence:
| | - Rachel De Basso
- Department of Natural Sciences and Biomedicine, School of Health and Welfare, Jönköping University, SE-551 11 Jönköping, Sweden; (R.D.B.); (P.B.)
| | - Peter Blomstrand
- Department of Natural Sciences and Biomedicine, School of Health and Welfare, Jönköping University, SE-551 11 Jönköping, Sweden; (R.D.B.); (P.B.)
- Department of Clinical Physiology, County Hospital Ryhov, SE-551 85 Jönköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden;
| |
Collapse
|
9
|
Wu S, Liu S, Chen N, Zhang C, Zhang H, Guo X. Genome-Wide Identification of Immune-Related Alternative Splicing and Splicing Regulators Involved in Abdominal Aortic Aneurysm. Front Genet 2022; 13:816035. [PMID: 35251127 PMCID: PMC8892299 DOI: 10.3389/fgene.2022.816035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism of AAA formation is still poorly understood and has not been fully elucidated. The study was designed to identify the immune-related genes, immune-RAS in AAA using bioinformatics methods. The GSE175683 datasets were downloaded from the GEO database. The DEseq2 software was used to identify differentially expressed genes (DEGs). SUVA pipeline was used to quantify AS events and RAS events. KOBAS 2.0 server was used to identify GO terms and KEGG pathways to sort out functional categories of DEGs. The CIBERSORT algorithm was used with the default parameter for estimating immune cell fractions. Nine samples from GSE175683 were used to construct the co-disturbed network between expression of SFs and splicing ratio of RAS events. PCA analysis was performed by R package factoextra to show the clustering of samples, and the pheatmap package in R was used to perform the clustering based on Euclidean distance. The results showed that there were 3,541 genes significantly differentially expressed, of which 177 immune-related genes were upregulated and 48 immune-related genes were downregulated between the WT and WTA group. Immune-RAS events were mainly alt5P and IR events, and about 60% of it was complex splicing events in AAA. The WT group and the WTA group can be clearly distinguished in the first principal component by using the splicing ratio of immune-RAS events. Two downregulated genes, Nr4a1 and Nr4a2, and eight upregulated genes, Adipor2, Akt2, Bcl3, Dhx58, Pparg, Ptgds, Sytl1, and Vegfa were identified among the immune-related genes with RAS and DEGs. Eighteen differentially expressed SFs were identified and displayed by heatmap. The proportion of different types of cells and ratio of the average ratio of different cells were quite different. Both M1 and M2 types of macrophages and plasma cells were upregulated, while M0 type was downregulated in AAA. The proportion of plasma cells in the WTA group had sharply increased. There is a correlation between SF expression and immune cells/immune-RAS. Sf3b1, a splicing factor with significantly different expression, was selected to bind on a mass of immune-related genes. In conclusion, our results showed that immune-related genes, immune-RAS, and SFs by genome-wide identification were involved in AAA.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibiao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| |
Collapse
|
10
|
Kano M, Nishibe T, Dardik A, Iwahashi T, Ogino H. Association of High-Sensitivity C-Reactive Protein With Aneurysm Sac Shrinkage in Patients Undergoing Endovascular Abdominal Aneurysm Repair. J Endovasc Ther 2021; 29:866-873. [PMID: 34969319 DOI: 10.1177/15266028211067738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The factors associated with aneurysm sac shrinkage after endovascular aneurysm repair (EVAR) are not well established. As inflammation is implicated in aneurysm pathophysiology, we hypothesized that high-sensitivity C-reactive protein (hsCRP) was associated with aneurysm sac shrinkage after EVAR and compared the preoperative level of hsCRP between patients with and without postoperative aneurysm sac shrinkage after EVAR. METHODS From November 2013 to April 2019, 143 patients undergoing EVAR using Gore C3 Excluder (W. L. Gore & Associates, Inc, Flagstaff, Arizona) at our university hospital were included in this study. Aneurysm sac size was compared between that on baseline preoperative computed tomography (CT) and that on postoperative CT scans. A change in aneurysm sac size ≥5 mm was considered to be significant, whether due to enlargement or shrinkage. RESULTS Aneurysm sac size showed a significant decrease from 50.6 ± 9.8 mm to 47.1 ± 10.3 mm at 1 year. At 1 year postoperatively, aneurysm sac shrinkage (≥5 mm) was observed in 48 patients (34%), a stable aneurysm sac was noted in 93 patients (65%), and aneurysm sac enlargement was noted in 2 patients (1.4%). The mean preoperative hsCRP was 0.33 ± 0.54 mg/dL. Univariable analysis showed that preoperative hsCRP (p=0.029) and the presence of a renal cyst (p=0.002) were associated with aneurysm sac shrinkage. Multivariable analysis showed that preoperative hsCRP [>0.19mg/dL] (odds ratio [OR] = 0.22; 95% confidence interval [CI] = 0.05-0.96; p=0.042), and the presence of a renal cyst (OR = 0.31; 95% CI = 0.15-0.67; p=0.002) were independent risk factors for aneurysm sac shrinkage after EVAR. CONCLUSIONS The level of preoperative hsCRP was independently associated with aneurysm sac shrinkage after EVAR in patients with abdominal aortic aneurysms. These data suggest that the high level of hsCRP can be a negative predictor for aneurysm sac shrinkage after EVAR.
Collapse
Affiliation(s)
- Masaki Kano
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Alan Dardik
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Toru Iwahashi
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Wortmann M, Peters AS, Erhart P, Körfer D, Böckler D, Dihlmann S. Inflammasomes in the Pathophysiology of Aortic Disease. Cells 2021; 10:cells10092433. [PMID: 34572082 PMCID: PMC8468335 DOI: 10.3390/cells10092433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
Aortic diseases comprise aneurysms, dissections, and several other pathologies. In general, aging is associated with a slow but progressive dilation of the aorta, along with increased stiffness and pulse pressure. The progression of aortic disease is characterized by subclinical development or acute presentation. Recent evidence suggests that inflammation participates causally in different clinical manifestations of aortic diseases. As of yet, diagnostic imaging and surveillance is mainly based on ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI). Little medical therapy is available so far to prevent or treat the majority of aortic diseases. Endovascular therapy by the introduction of covered stentgrafts provides the main treatment option, although open surgery and implantation of synthetic grafts remain necessary in many situations. Because of the risks associated with surgery, there is a need for identification of pharmaceutical targets interfering with the pathophysiology of aortic remodeling. The participation of innate immunity and inflammasome activation in different cell types is common in aortic diseases. This review will thus focus on inflammasome activities in vascular cells of different chronic and acute aortic diseases and discuss their role in development and progression. We will also identify research gaps and suggest promising therapeutic targets, which may be used for future medical interventions.
Collapse
|
12
|
Humphrey JD. Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After. JOURNAL OF ELASTICITY 2021; 145:49-75. [PMID: 34483462 PMCID: PMC8415366 DOI: 10.1007/s10659-020-09809-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Collapse
Affiliation(s)
- J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
13
|
Summerhill VI, Sukhorukov VN, Eid AH, Nedosugova LV, Sobenin IA, Orekhov AN. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomol Concepts 2021; 12:55-67. [PMID: 34115932 DOI: 10.1515/bmc-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex degenerative vascular disease, with considerable morbidity and mortality rates among the elderly population. The mortality of AAA is related to aneurysm expansion (the enlargement of the aortic diameter up to 30 mm and above) and the subsequent rupture. The pathogenesis of AAA involves several biological processes, including aortic mural inflammation, oxidative stress, vascular smooth muscle cell apoptosis, elastin depletion, and degradation of the extracellular matrix. Mitochondrial dysfunction was also found to be associated with AAA formation. The evidence accumulated to date supports a close relationship between environmental and genetic factors in AAA initiation and progression. However, a comprehensive pathophysiological understanding of AAA formation remains incomplete. The open surgical repair of AAA is the only therapeutic option currently available, while a specific pharmacotherapy is still awaited. Therefore, there is a great need to clarify pathophysiological cellular and molecular mechanisms underlying AAA formation that would help to develop effective pharmacological therapies. In this review, pathophysiological aspects of AAA development with a special focus on mitochondrial dysfunction and genetic associations were discussed.
Collapse
Affiliation(s)
- Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut-Lebanon
| | - Ludmila V Nedosugova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, Moscow 119991, Russia
| | - Igor A Sobenin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| |
Collapse
|
14
|
Abstract
A 66-year-old man with a history of non-small cell lung cancer treated with nivolumab underwent contrast-enhanced CT and FDG PET/CT. No recurrence was demonstrated; however, soft-tissue thickening that showed delayed contrast enhancement and FDG uptake was detected around an abdominal aortic aneurysm. After discontinuation of nivolumab, the periaortic lesion disappeared within 2 months, indicating nivolumab-induced periaortitis. Immune checkpoint inhibitors such as nivolumab can cause vasculitis and periaortitis, a potentially fatal condition, as immune-related adverse events. The underlying aortic aneurysm may have contributed to genesis of periaortitis. FDG PET/CT can be useful for detecting periaortitis and excluding other forms of vasculitis.
Collapse
|
15
|
Nikiphorou E, Galloway J, Fragoulis GE. Overview of IgG4-related aortitis and periaortitis. A decade since their first description. Autoimmun Rev 2020; 19:102694. [PMID: 33121641 DOI: 10.1016/j.autrev.2020.102694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Aortic involvement is relatively common in the context of IgG4-related disease (IgG4-RD). It includes IgG4-aortitis, and IgG4-(chronic) periaortitis (IgG4-CP). The latter overlaps with IgG4-retroperitoneal fibrosis (IgG4-RPF). Aortic wall thickening which characterizes these entities along with the presence of periaortic tissue in IgG4-CP, are often accompanied by aortic aneurysms, which belong to the group of the so-called inflammatory aneurysms. Both the thoracic and abdominal aorta can be affected. Aortitis appears to involve more often the former, while the opposite is the case for IgG4-CP. There is a lack of definitions and different classification criteria have been used to describe these entities. This report provides an overview on the current evidence of aortic involvement in IgG4-RD. It discusses the clinical, epidemiologic, serologic and histopathologic characteristics, as well as the imaging techniques used for their diagnosis and the therapeutic options and treatment outcomes. The differential diagnosis and underlying pathogenetic mechanisms are also discussed.
Collapse
Affiliation(s)
- Elena Nikiphorou
- Centre for Rheumatic Diseases, School of Immunology and Microbial Sciences, King's College London, King's Hospital, London, United Kingdom
| | - James Galloway
- Centre for Rheumatic Diseases, School of Immunology and Microbial Sciences, King's College London, King's Hospital, London, United Kingdom.
| | - George E Fragoulis
- First Department of Propaedeutic and Internal Medicine, "Laiko" Hospital, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
16
|
Piacentini L, Werba JP, Bono E, Saccu C, Tremoli E, Spirito R, Colombo GI. Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2019; 39:237-249. [PMID: 30567485 DOI: 10.1161/atvbaha.118.311803] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Perivascular adipose tissue (PVAT) is thought to play a role in vascular homeostasis and in the pathogenesis of large vessel diseases, including abdominal aortic aneurysm (AAA). Herein, we tested the hypothesis that locally restricted transcriptional profiles characterize PVAT surrounding AAA, indicating specific dysfunctions associated with the disease. Approach and Results- Using a paired sample design to limit the effects of interindividual variation, we performed a microarray-based investigation of the PVAT transcriptome in 30 patients with AAA, comparing the adipose layer of the dilated abdominal aorta with that of the not-dilated aortic neck in each patient. Furthermore, we used a state-of-the-art data mining procedure to remove the effect of confounders produced by high-throughput gene expression techniques. We found substantial differences in PVAT gene expression clearly distinguishing the dilated from the not-dilated aorta, which increased in number and magnitude with increasing AAA diameter. Comparisons with other adipose depots (omental or subcutaneous fat) confirmed that gene expression changes are locally restricted. We dissected putative mechanisms associated with AAA PVAT dysfunction through a functional enrichment network analysis: both innate and adaptive immune-response genes along with genes related to cell-death pathways, metabolic processes of collagen, sphingolipids, aminoglycans, and extracellular matrix degradation were strongly overrepresented in PVAT of AAA compared with PVAT of the not-dilated aorta. Conclusions- Our results support a possible function of PVAT in AAA pathogenesis and suggest that AAA is an immunologic disease with an underlying autoimmune component. Interfering with these disease-specific pathways would clarify their precise role in AAA pathogenesis.
Collapse
Affiliation(s)
- Luca Piacentini
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - José Pablo Werba
- Atherosclerosis Prevention Unit (J.P.W.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Elisa Bono
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Claudio Saccu
- Department of Cardiovascular Surgery of the University of Milan (C.S., R.S.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Elena Tremoli
- Scientific Direction (E.T.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rita Spirito
- Department of Cardiovascular Surgery of the University of Milan (C.S., R.S.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gualtiero Ivanoe Colombo
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
17
|
Cosic L, Theivendren M, Spanger M, Weinberg L. Popliteal pseudoaneurysm after FOLFOX chemotherapy for metastatic colorectal cancer. Int J Surg Case Rep 2019; 63:1-4. [PMID: 31494411 PMCID: PMC6734032 DOI: 10.1016/j.ijscr.2019.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Popliteal artery aneurysms are a rare occurrence in the general population. We present the case of a male who developed a popliteal artery pseudoaneurysm following chemotherapy for metastatic colorectal cancer. CASE PRESENTATION A 49-year old male presented with a popliteal artery pseudoaneurysm after completing four two-weekly cycles of FOLFOX chemotherapy. There was no history of infection, knee trauma, inflammatory diseases, or any family history of cardiovascular disease or aneurysms. Examination revealed a tender pulsatile mass in the right popliteal fossa with calf oedema. Computed tomography angiography demonstrated a right popliteal pseudoaneurysm, that was treated with endovascular stent grafting. DISCUSSION Anecdotal evidence suggests a link between chemotherapy and the rapid development of abdominal aortic aneurysms exists. Aneurysms have been reported following cisplatin and 5-fluorouracil treatment and trans-arterial administration of irinotecan, a key component of chemotherapy. Chemotherapeutic agents have also been shown to compromise the integrity of the vascular wall through apoptosis of endothelial and smooth muscle cells. In our case, the pseudoaneurysm developed acutely after treatment with FOLFOX, therefore a mechanistic association is plausible. CONCLUSION Differentiating aneurysms as false (pseudo) or true is important to help determine the underlying aetiology. Common causes of pseudoaneurysms include arterial blunt or penetrating trauma. True aneurysms commonly develop from inflammatory atherosclerosis, however mycotic infection, inflammatory arteritis, and entrapment syndrome should be excluded. There may be some evidence to suggest a genetic predisposition to popliteal artery aneurysms. Anecdotal evidence suggests a weak association between chemotherapy and aneurysm progression, warranting further investigation into a causative link.
Collapse
Affiliation(s)
- Luka Cosic
- Department of Anaesthesia, Austin Hospital, Heidelberg, Victoria, 3084, Australia
| | - Mayo Theivendren
- Department of Vascular Surgery, Austin Hospital, Victoria, 3084, Australia
| | - Manfred Spanger
- Department of Radiology, Box Hill Hospital, Box Hill, Victoria, 3128, Australia
| | - Laurence Weinberg
- Department of Anaesthesia, Austin Hospital, Heidelberg, Victoria, 3084, Australia; Department of Surgery, Austin Health, University of Melbourne, Victoria, 3084, Australia.
| |
Collapse
|
18
|
Erhart P, Cakmak S, Grond-Ginsbach C, Hakimi M, Böckler D, Dihlmann S. Inflammasome activity in leucocytes decreases with abdominal aortic aneurysm progression. Int J Mol Med 2019; 44:1299-1308. [PMID: 31432101 PMCID: PMC6713432 DOI: 10.3892/ijmm.2019.4307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. The present extended immunohistochemistry study aimed to characterize inflammation in AAA and aortic control samples. In specific, the composition of the infiltrating immune cells and the expression of five inflammasome components in these immune cells were evaluated, in order to characterize their role in AAA development. A total of 104 biopsies from 48 AAA patients and 40 healthy specimens from organ donors were evaluated for their grade of inflammation. Infiltrating leukocytes were characterized by specific markers (CD3, CD20 and CD68), intramural localization and inflammasome protein expression [NLR family pyrin domain containing 3 (NLRP3), absent in melanoma 2 (AIM2), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), Caspase-1 and Caspase-5]. Macrophages, B and T lymphocytes were detected to a similar extent in grade 1, 2 and 3 AAA specimens, whereas in control samples, B and T lymphocytes were rarely observed in grade 1 lesions. Expression frequencies of NLRP3, AIM2 and Caspase-5 were significantly higher in grade 1 lesions of AAA samples compared with grade 1 lesions in control samples. Finally, AIM2, ASC, and Caspase-5 displayed significantly lower expression frequencies in grade 3 compared with grade 2 AAA specimens, and all inflammasome components were less frequently detected in grade 3 than in grade 1 lesions of AAA. This indicates that inflammasome activities decrease with AAA progression in infiltrating leukocytes. No statistically significant association was found for grade 2 and grade 3 lesions and total leukocyte count, C-reactive protein levels, maximal aortic diameter, plasma cholesterol level or biomechanical parameters (derived from finite element analysis) of the respective patients. Overall, the aortic wall of AAA contained lymphocytes and macrophages with different states of activity. The present data suggested that therapeutic inhibition of specific inflammasome components might counteract AAA development and progression.
Collapse
Affiliation(s)
- Philipp Erhart
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Sinan Cakmak
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
19
|
Huang Q, Huang QY, Sun Y, Wu S. High-Throughput Data Reveals Novel Circular RNAs via Competitive Endogenous RNA Networks Associated with Human Intracranial Aneurysms. Med Sci Monit 2019; 25:4819-4830. [PMID: 31254341 PMCID: PMC6615076 DOI: 10.12659/msm.917081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Little is known about epigenetic regulation of intracranial aneurysms (IAs). Circular non-coding RNAs (circRNAs) play crucial roles in cardiovascular diseases, but they have received scant research attention regarding their relationship with IAs. This study aimed to explore new pathological mechanisms of IA through circRNA expression profiles and to provide novel therapeutic strategies. Material/Methods The comprehensive circRNA and mRNA expression profiles were detected by RNA-Seq in human IA walls and superficial temporal arteries (STAs). The RNA-Seq findings were validated by qRT-PCR. GO and KEGG analyses indicated the functions of these circRNAs. A competing endogenous RNA (ceRNA) network was constructed to reveal the circRNA-miRNA-mRNA relationship. Two newly discovered circRNAs were further detected in peripheral blood of IA patients and healthy people to clarify their expression patterns in the periphery. Results Many differentially expressed circRNAs are closely involved in immune/inflammatory response and cell adhesion/adherens junction. The novel circRNAs (hsa_circ_0072309 and hsa_circ_0008433) regulate DDR2 and MMP2, respectively, which are associated with SMC dysfunction and vascular injury through ceRNA. Moreover, we found differential expression of these 2 circRNAs in the peripheral blood of IA patients, and the expression pattern of hsa_circ_0072309 had central and peripheral consistency. Conclusions To the best of our knowledge, this is the first study to perform circRNA sequencing analysis of IAs. hsa_circ_0072309 and hsa_circ_0008433 are novel and pivotal circRNAs related to IAs. This study provides new insights into therapeutic targets and biomarkers for IA patients.
Collapse
Affiliation(s)
- Qing Huang
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland).,The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qiu-Yu Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yi Sun
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Siying Wu
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
20
|
Xia Q, Zhang J, Han Y, Zhang X, Jiang H, Lun Y, Wu X, Gang Q, Liu Z, Böckler D, Duan Z, Xin S. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm. FEBS Open Bio 2019; 9:1137-1143. [PMID: 31001930 PMCID: PMC6551495 DOI: 10.1002/2211-5463.12643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Abdominal arterial aneurysm (AAA) shares many features with autoimmune diseases and appears to be a T-cell-mediated process. In addition, certain epigenetic changes, including DNA methylation, are associated with AAA. In this study, we investigated epigenetic modifications in regulatory T cells (Tregs) from AAA patients. We used flow cytometry to sort FOXP3+ CD4+ CD25+ Tregs from the peripheral blood of AAA patients and from healthy controls (HC), and then detected DNA methylation and histone modifications by ELISA. The DNA methylation rate of Tregs was significantly higher in AAA patients than in the HC group (0.159 ± 0.08% vs 0.098 ± 0.03%, P < 0.05), while the acetylation rates of H3 and H3K9 histones were lower in the AAA than in the HC group. We also examined the expression of mRNA encoding enzymes that catalyze making and removing epigenetic modifications by real-time PCR: we found that mRNA levels of DNA methyltransferase (DNMT) 1 and DNMT3A were higher in the AAA than in the HC group, mRNA levels of methyl-CpG-binding domain protein (MBD) 2 and MBD4 were higher in the AAA than in the HC group (MBD2: 6.21 ± 2.57 vs 3.04 ± 1.45; MBD4: 7.76 ± 3.48 vs 4.97 ± 3.10; both P < 0.05), and mRNA levels of histone deacetylase (HDAC) 1 and HDAC5 were significantly up-regulated in the AAA compared with the HC group (HDAC1: 2.17 ± 1.18 vs 1.51 ± 0.99; HDAC5: 1.35 ± 0.49 vs 0.94 ± 0.76; both P < 0.05). Together, our results reveal that rates of DNA methylation and histone modifications of Tregs are significantly altered in AAA patients.
Collapse
Affiliation(s)
- Qian Xia
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Yanshuo Han
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Zhang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Han Jiang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Yu Lun
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Qingwei Gang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Zhimin Liu
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University of Heidelberg, Heidelberg, Germany
| | - Zhiquan Duan
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Téo FH, de Oliveira RTD, Villarejos L, Mamoni RL, Altemani A, Menezes FH, Blotta MHSL. Characterization of CD4 + T Cell Subsets in Patients with Abdominal Aortic Aneurysms. Mediators Inflamm 2018; 2018:6967310. [PMID: 30686933 PMCID: PMC6327259 DOI: 10.1155/2018/6967310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/28/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mediators produced by CD4+ T lymphocytes are involved in the pathogenesis of aneurysmal lesions in abdominal aortic aneurysm (AAA) patients. The aim of this study was to identify and characterize the CD4+ T cell subsets involved in human AAA. METHODS The CD4+ T cell subsets in 30 human aneurysmal lesions were determined using flow cytometry (FC) and immunohistochemistry (IHC). The peripheral blood mononuclear cells (PBMCs) from patients with AAA were also analyzed by FC and compared with control subjects. RESULTS Human aneurysmal lesions contained IFN-γ, IL-12p35, IL-4, IL-23p19, IL-17R, and IL-22 positive cells. PBMCs from AAA patients had higher expression levels of IFN-γ, TNF-α, IL-4, and IL-22 when compared to controls. CONCLUSIONS Our results show the presence of TH1, TH2, TH17, and TH22 subsets in aneurysmal lesions of AAA patients and suggest that these cells may be mainly activated in situ, where they can induce tissue degradation and contribute to the pathogenesis of AAA.
Collapse
Affiliation(s)
- Fábio Haach Téo
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Rômulo Tadeu Dias de Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Liana Villarejos
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Ronei Luciano Mamoni
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
- Faculty of Medicine of Jundiai, Jundiai, São Paulo 13202-550, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Fabio Husemann Menezes
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Maria Heloisa Souza Lima Blotta
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| |
Collapse
|
22
|
Parvizi M, Petersen AH, van Spreuwel-Goossens CAFM, Kluijtmans SGJM, Harmsen MC. Perivascular scaffolds loaded with adipose tissue-derived stromal cells attenuate development and progression of abdominal aortic aneurysm in rats. J Biomed Mater Res A 2018; 106:2494-2506. [DOI: 10.1002/jbm.a.36445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/05/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- M. Parvizi
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - A. H. Petersen
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | | | | | - M. C. Harmsen
- Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
23
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
24
|
Tilson MD. Autoimmunity in the Abdominal Aortic Aneurysm and its Association with Smoking. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2018; 5:159-167. [PMID: 29766007 DOI: 10.12945/j.aorta.2017.17.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Smoking increases the risk of abdominal aortic aneurysm (AAA) in both humans and mice, although the underlying mechanisms are not completely understood. An adventitial aortic antigen, AAAP-40, has been partially sequenced. It has motifs with similarities to all three fibrinogen chains and appears to be connected in evolution to a large family of proteins called fibrinogen-related proteins. Fibrinogen may undergo non-enzymatic nitration, which may result from exposure to nitric oxide in cigarette smoke. Nitration of proteins renders them more immunogenic. It has recently been reported that anti-fibrinogen antibody promotes AAA development in mice. Also, anti-fibrinogen antibodies are present in patients with AAA. These matters are reviewed in the overall context of autoimmunity in AAA. The evidence suggests that smoking amplifies an auto-immune reaction that is critical to the pathogenesis of AAA.
Collapse
Affiliation(s)
- M David Tilson
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
25
|
Jiang H, Xin S, Yan Y, Lun Y, Yang X, Zhang J. Abnormal acetylation of FOXP3 regulated by SIRT-1 induces Treg functional deficiency in patients with abdominal aortic aneurysms. Atherosclerosis 2018. [DOI: 10.1016/j.atherosclerosis.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Targeting Interleukin-1β Protects from Aortic Aneurysms Induced by Disrupted Transforming Growth Factor β Signaling. Immunity 2017; 47:959-973.e9. [DOI: 10.1016/j.immuni.2017.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 10/26/2017] [Indexed: 01/11/2023]
|
27
|
Riber SS, Ali M, Bergseth SH, Stubbe J, Stenger M, Behr-Rasmussen C, Lindholt JS. Induction of autoimmune abdominal aortic aneurysm in pigs - A novel large animal model. Ann Med Surg (Lond) 2017; 20:26-31. [PMID: 28702183 PMCID: PMC5485555 DOI: 10.1016/j.amsu.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 11/23/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a common disease with a high mortality. Many animal models have been developed to further understand the pathogenesis of the disease, but no large animal model has been developed to investigate the autoimmune aspect of AAA formation. The aim of this study was to develop a large animal model for abdominal aortic aneurysm induction through autoimmunity by performing sheep-to-pig xenotransplantation. Methods Six pigs underwent a xenotransplantation procedure where the infrarenal porcine aorta was replaced by a decellularized sheep aorta. In the following 47 days, the AP-diameter of the xenografts was measured using ultrasound once a week. All xenografts were harvested for histological analyses. Results All the xenografts formed aneurysms with a mean increase in AP-diameter of 80.98 ± 30.20% (p < 0.005). The ultrasound measurements demonstrated a progressive aneurysmal expansion with no sign of halting towards the end of the follow-up period. Histology showed destruction of tunica media and the elastic tissue, neointimal hyperplasia, adventitial thickening with neovascularization, infiltration of lymphocytes and granulocytes, and in some cases intramural haemorrhaging. Conclusion We developed a novel large animal AAA model by infrarenal aortic sheep-to-pig xenograph transplantation resulting in autoimmune AAA induction with continuously progressive aneurysmal growth. This model can be used to provide a better understand the autoimmune aspect of AAA formation in large animals. An Experimental study of decellularized aortic xenografts from sheeps implanted into the abdominal aorta in pigs. The study shows that it’s possible to induce autoimmune AAA with progressive expansion in pigs. The induced autoimmune AAAs in pigs where presence already at day 28. Intraluminal mural thrombus development also occurred in this study. The study also examined the efficiency of SDS with DNase-I as decellularizing detergents on sheep aorta.
Collapse
Affiliation(s)
- Sara Schødt Riber
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark
| | - Mulham Ali
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Sara Hveding Bergseth
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark.,Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Denmark
| | - Michael Stenger
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark
| | - Carsten Behr-Rasmussen
- The Cardiovascular Research Unit, Department of Vascular Surgery, Viborg Hospital, Denmark
| | - Jes Sanddal Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark.,Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Denmark.,The Cardiovascular Research Unit, Department of Vascular Surgery, Viborg Hospital, Denmark
| |
Collapse
|
28
|
Shi Y, Yang CQ, Wang SW, Li W, Li J, Wang SM. Characterization of Fc gamma receptor IIb expression within abdominal aortic aneurysm. Biochem Biophys Res Commun 2017; 485:295-300. [DOI: 10.1016/j.bbrc.2017.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
|
29
|
Fernandez-García CE, Burillo E, Lindholt JS, Martinez-Lopez D, Pilely K, Mazzeo C, Michel JB, Egido J, Garred P, Blanco-Colio LM, Martin-Ventura JL. Association of ficolin-3 with abdominal aortic aneurysm presence and progression. J Thromb Haemost 2017; 15:575-585. [PMID: 28039962 DOI: 10.1111/jth.13608] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 02/05/2023]
Abstract
Essentials Abdominal aortic aneurysm (AAA) is asymptomatic and its evolution unpredictable. To find novel potential biomarkers of AAA, microvesicles are an excellent source of biomarkers. Ficolin-3 is increased in microvesicles obtained from activated platelets and AAA tissue. Increased ficolin-3 plasma levels are associated with AAA presence and progression. SUMMARY Background Abdominal aortic aneurysm (AAA) patients are usually asymptomatic and AAA evolution is unpredictable. Ficolin-3, mainly synthesized by the liver, is a molecule of the lectin complement-activation pathway involved in AAA pathophysiology. Objectives To define extra-hepatic sources of ficolin-3 in AAA and investigate the role of ficolin-3 as a biomarker of the presence and progression of AAA. Methods Microvesicles (exosomes and microparticles) were isolated from culture-conditioned medium of ADP-activated platelets, as well as from AAA tissue-conditioned medium (thrombus and wall). Ficolin-3 levels were analyzed by western-blot, real-time PCR, immunohistochemistry and ELISA. Results Increased ficolin-3 levels were observed in microvesicles isolated from activated platelets. Similarly, microvesicles released from AAA tissue display increased ficolin-3 levels as compared with those from healthy tissue. Moreover, ficolin-3 mRNA levels in the AAA wall were greatly increased compared with healthy aortic walls. Immunohistochemistry of AAA tissue demonstrated increased ficolin-3, whereas little staining was present in healthy walls. Finally, increased ficolin-3 levels were observed in AAA patients' plasma (n = 478) compared with control plasma (n = 176), which persisted after adjustment for risk factors (adjusted odds ratio [OR], 5.29; 95% confidence interval [CI], 3.27, 8.57)]. Moreover, a positive association of ficolin-3 with aortic diameter (Rho, 0.25) and need for surgical repair was observed, also after adjustment for potential confounding factors (adjusted hazard ratio, 1.55; 95% CI, 1.11, 2.15). Conclusions In addition to its hepatic expression, ficolin-3 may be released into the extracellular medium via microvesicles, by both activated cells and pathological AAA tissue. Ficolin-3 plasma levels are associated with the presence and progression of AAA, suggesting its potential role as a biomarker of AAA.
Collapse
Affiliation(s)
- C-E Fernandez-García
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
| | - E Burillo
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
| | - J S Lindholt
- Department of Thoracic, Heart and Vascular Surgery, University Hospital of Odense, Odense, Denmark
| | - D Martinez-Lopez
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
| | - K Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Sect.7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - C Mazzeo
- Department of Cell Biology and Immunology, Molecular Biology Center/CSIC-UAM, Madrid, Spain
| | - J-B Michel
- Inserm, U1148, Université Paris 7, CHU X-Bichat, Paris, France
| | - J Egido
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - P Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Sect.7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - L M Blanco-Colio
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - J L Martin-Ventura
- Vascular Research Laboratory, FIIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
30
|
Li J, Krishna SM, Golledge J. The Potential Role of Kallistatin in the Development of Abdominal Aortic Aneurysm. Int J Mol Sci 2016; 17:ijms17081312. [PMID: 27529213 PMCID: PMC5000709 DOI: 10.3390/ijms17081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular condition that causes permanent dilation of the abdominal aorta, which can lead to death due to aortic rupture. The only treatment for AAA is surgical repair, and there is no current drug treatment for AAA. Aortic inflammation, vascular smooth muscle cell apoptosis, angiogenesis, oxidative stress and vascular remodeling are implicated in AAA pathogenesis. Kallistatin is a serine proteinase inhibitor, which has been shown to have a variety of functions, potentially relevant in AAA pathogenesis. Kallistatin has been reported to have inhibitory effects on tumor necrosis factor alpha (TNF-α) signaling induced oxidative stress and apoptosis. Kallistatin also inhibits vascular endothelial growth factor (VEGF) and Wnt canonical signaling, which promote inflammation, angiogenesis, and vascular remodeling in various pre-clinical experimental models. This review explores the potential protective role of kallistatin in AAA pathogenesis.
Collapse
Affiliation(s)
- Jiaze Li
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, 4811 Townsville, Australia.
| |
Collapse
|
31
|
Abstract
During apoptosis or activation, cells can release a subcellular structure, called a membrane microvesicle (also known as microparticle) into the extracellular environment. Microvesicles bud-off as a portion of cell membrane with its associated proteins and lipids surrounding a cytosolic core that contains intracellular proteins, lipids, and nucleic acids (DNA, RNA, siRNA, microRNA, lncRNA). Biologically active molecules on the microvesicle surface and encapsulated within can act on recipient cells as a novel mode of intercellular communication. Apoptosis has long been known to be involved in the development of diseases of autoimmunity. Abnormally persistent microvesicles, particularly apoptotic microvesicles, can accelerate autoimmune responses locally in specific organs and tissues as well as systemically. In this review, we focus on studies implicating microvesicles in the pathogenesis of autoimmune diseases and their complications.
Collapse
|
32
|
Jiang H, Xia Q, Xin S, Lun Y, Song J, Tang D, Liu X, Ren J, Duan Z, Zhang J. Abnormal Epigenetic Modifications in Peripheral T Cells from Patients with Abdominal Aortic Aneurysm Are Correlated with Disease Development. J Vasc Res 2016; 52:404-13. [PMID: 27194055 DOI: 10.1159/000445771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that abdominal aortic aneurysm (AAA) is a T-cell-mediated autoimmune condition. This study investigates the epigenetic modifications that occur in the T cells of AAA patients and evaluates the correlation of these modifications with disease development. METHODS AND RESULTS Peripheral T cells were collected from 101 AAA patients and 102 healthy controls (HCs). DNA methylation and histone acetylation levels were measured by ELISA. Methyl-CpG-binding domain, DNA methyltransferase (DNMT) and histone deacetylase (HDAC) mRNA levels were determined by real-time PCR. DNA from the T cells of the AAA patients exhibited significant hypomethylation compared with the HCs (1.6-fold, p < 0.0001). Expression of DNMT1 at the mRNA level in the T cells of the AAA patients was 1.52-fold lower than that of the HCs (p < 0.0001). The extent of DNA methylation in the AAA patients was negatively correlated with the corresponding aortic diameter (r = -0.498, p < 0.0001). H3 (1.59-fold, p < 0.0001) and H3K14 (2.15-fold, p < 0.0001) acetylation levels in the T cells of the AAA patients were higher than those of the HCs, but the HDAC1 mRNA level was 2.33-fold lower than that of the HCs (p < 0.0001). CONCLUSIONS DNA methylation and the histone modification status are significantly altered in the T cells of AAA patients. These changes could play a pivotal role in the activation of pathological immune responses and may influence AAA development.
Collapse
Affiliation(s)
- Han Jiang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Spadaccio C, Coccia R, Perluigi M, Pupo G, Schininà ME, Giorgi A, Blarzino C, Nappi F, Sutherland FW, Chello M, Di Domenico F. Redox proteomic analysis of serum from aortic anerurysm patients: insights on oxidation of specific protein target. MOLECULAR BIOSYSTEMS 2016; 12:2168-77. [PMID: 27122311 DOI: 10.1039/c6mb00152a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidative stress is undoubtedly one of the main players in abdominal aortic aneurysm (AAA) pathophysiology.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Department of Cardiothoracic Surgery
- West of Scotland Heart and Lung Centre
- Golden Jubilee National Hospital
- Glasgow G81 4DY
- UK
| | - Raffaella Coccia
- Department of Biochemical Sciences
- Sapienza University of Rome
- Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences
- Sapienza University of Rome
- Italy
| | - Gilda Pupo
- Department of Biochemical Sciences
- Sapienza University of Rome
- Italy
| | | | | | - Carla Blarzino
- Department of Biochemical Sciences
- Sapienza University of Rome
- Italy
| | - Francesco Nappi
- Cardiac Surgery Centre Cardiologique du Nord de Saint-Denis
- Paris
- France
| | - Fraser W. Sutherland
- Department of Cardiothoracic Surgery
- West of Scotland Heart and Lung Centre
- Golden Jubilee National Hospital
- Glasgow G81 4DY
- UK
| | - Massimo Chello
- Department of Cardiovascular Sciences
- University Campus Bio Medico of Rome
- Italy
| | | |
Collapse
|
34
|
Owens AP, Edwards TL, Antoniak S, Geddings JE, Jahangir E, Wei WQ, Denny JC, Boulaftali Y, Bergmeier W, Daugherty A, Sampson UK, Mackman N. Platelet Inhibitors Reduce Rupture in a Mouse Model of Established Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2015; 35:2032-2041. [PMID: 26139462 PMCID: PMC4552620 DOI: 10.1161/atvbaha.115.305537] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/17/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Rupture of abdominal aortic aneurysms causes a high morbidity and mortality in the elderly population. Platelet-rich thrombi form on the surface of aneurysms and may contribute to disease progression. In this study, we used a pharmacological approach to examine a role of platelets in established aneurysms induced by angiotensin II infusion into hypercholesterolemic mice. APPROACH AND RESULTS Administration of the platelet inhibitors aspirin or clopidogrel bisulfate to established abdominal aortic aneurysms dramatically reduced rupture. These platelet inhibitors reduced abdominal aortic platelet and macrophage recruitment resulting in decreased active matrix metalloproteinase-2 and matrix metalloproteinase-9. Platelet inhibitors also resulted in reduced plasma concentrations of platelet factor 4, cytokines, and components of the plasminogen activation system in mice. To determine the validity of these findings in human subjects, a cohort of aneurysm patients were retrospectively analyzed using developed and validated algorithms in the electronic medical record database at Vanderbilt University. Similar to mice, administration of aspirin or P2Y12 inhibitors was associated with reduced death among patients with abdominal aortic aneurysm. CONCLUSIONS These results suggest that platelets contribute to abdominal aortic aneurysm progression and rupture.
Collapse
Affiliation(s)
- A. Phillip Owens
- Department of Medicine Division of Hematology and Oncology, UNC McAllister Heart Institute University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA Phone: 919-843-3961
| | - Todd L Edwards
- Department of Medicine, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
- Division of Epidemiology, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
| | - Silvio Antoniak
- Department of Medicine Division of Hematology and Oncology, UNC McAllister Heart Institute University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA Phone: 919-843-3961
| | - Julia E. Geddings
- Department of Medicine Division of Hematology and Oncology, UNC McAllister Heart Institute University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA Phone: 919-843-3961
| | - Eiman Jahangir
- Department of Cardiovascular Diseases John Ochsner Heart and Vascular Institute Ochsner Clinical School - The University of Queensland School of Medicine New Orleans, LA 70115 Phone: 504-392-3131
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
| | - Yacine Boulaftali
- Department of Medicine Division of Hematology and Oncology, UNC McAllister Heart Institute University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA Phone: 919-843-3961
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, UNC McAllister Heart Institute University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA Phone: 919-843-3961
| | - Alan Daugherty
- Saha Cardiovascular Research Center University of Kentucky Lexington, KY 40536 Phone: 859-323-3512
| | - Uchechukwu K.A. Sampson
- Department of Medicine, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center Nashville, TN 37203 Phone: 615-322-3652
| | - Nigel Mackman
- Department of Medicine Division of Hematology and Oncology, UNC McAllister Heart Institute University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA Phone: 919-843-3961
| |
Collapse
|
35
|
|
36
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Yan H, Cui B, Zhang X, Fu X, Yan J, Wang X, Lv X, Chen Z, Hu Z. Antagonism of toll-like receptor 2 attenuates the formation and progression of abdominal aortic aneurysm. Acta Pharm Sin B 2015; 5:176-87. [PMID: 26579444 PMCID: PMC4629243 DOI: 10.1016/j.apsb.2015.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disorder with high mortality. Accumulating evidence shows that toll-like receptor 2 (TLR2) plays a critical role in the regulation of wound-repairing process after tissue injury. We wondered if TLR2 signaling contributed to the pathogenesis of AAA and that targeting TLR2 would attenuate AAA development and progression. In this study, enhanced expression of TLR2 and its ligands were observed in human AAA tissue. Neutralization of TLR2 protected against AAA development and caused established AAA to regress in mouse models of AAA. In addition, TLR2-deficient mice also failed to develop AAA. The prophylactic and therapeutic effects of blocking TLR2 were accompanied by a significant resolution of inflammation and vascular remodeling, as indicated by the decreased expression or activity of MMP-2/9, α-SMA, inflammatory cytokines, and transcription factors NF-κB, AP-1 and STAT1/3 in AAA tissue. Mechanistically, blocking TLR2 decreased the expression and interaction of TLR2 and several endogenous ligands, which diminished chronic inflammation and vascular remodeling in the vascular tissue of AAA. Our studies indicate that the interactions between TLR2 and its endogenous ligands contribute to the pathogenesis of AAA and that targeting TLR2 offers great potential toward the development of therapeutic agents against AAA.
Collapse
Key Words
- AAA, abdominal aortic aneurysm
- AP-1, activator protein-1
- Abdominal aortic aneurysm
- Ang II, angiotensin II
- DAMP, damage associated molecular pattern
- DAMPs
- DHE, dihydroethidium
- HMGB1, high mobility group B-1
- HSP, heat shock protein
- IOD, integrated optical density
- Immune microenvironment
- MCP-1, monocyte chemoattractant protein-1
- MMP, matrix metalloproteinase
- NF-κB, nuclear factor kappa B
- PAMP, pathogen-associated molecular pattern
- PRRs, pattern recognition receptors
- RAMPs, resolution-associated molecular patterns
- ROS, reactive oxygen species
- STAT1/3, signal transducer and activator of transcription 1/3
- TLR, toll-like receptor
- TLR2
- Th2, type 2 T help
- VVG, Verhoeff van Gieson
- Vascular remodeling
- WT, wide-type
- bip, binding immunoglobulin protein
- α-SMA, α-smooth muscle actin
Collapse
|
38
|
Bailey MA, Aggarwal R, Bridge KI, Griffin KJ, Iqbal F, Phoenix F, Purdell-Lewis J, Thomas T, Johnson AB, Ariëns RAS, Scott DJA, Ajjan RA. Aspirin therapy is associated with less compact fibrin networks and enhanced fibrinolysis in patients with abdominal aortic aneurysm. J Thromb Haemost 2015; 13:795-801. [PMID: 25660763 DOI: 10.1111/jth.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Thrombotic changes in fibrin networks contribute to increased cardiovascular risk in patients with abdominal aortic aneurysm (AAA). Given that aspirin modulates the fibrin network, we aimed to determine if aspirin therapy is associated with changes in ex-vivo fibrin clot characteristics in AAA patients and also conducted an exploratory analysis of 5-year mortality in these individuals. METHODS We recruited 145 male patients, divided into controls (aortic diameter < 3 cm, n = 49), AAA not taking aspirin (AAA-Asp, n = 50) and AAA on 75 mg day(-1) aspirin (AAA+Asp, n = 46), matched for aneurysm size. Characteristics of clots made from plasma and plasma-purified fibrinogen were investigated using turbidimetric analysis, permeation studies, and confocal and electron microscopy. Plasma fibrinogen, D-dimer and inflammatory marker levels were also measured. RESULTS Maximum absorbance (MA) of plasma clots from controls was lower than that of AAA patients not on aspirin (AAA-Asp) at 0.30 ± 0.01 and 0.38 ± 0.02 au, respectively (P = 0.002), whereas aspirin-treated subjects had MA similar to controls (0.31 ± 0.02 P = 0.9). Plasma clot lysis time displayed an identical pattern at 482 ± 15, 597 ± 24 and 517 ± 27 s for control, AAA-Asp and AAA+Asp (P = 0.001 and P = 0.8). The lysis time of clots made from purified fibrinogen of AAA-Asp was longer than that of AAA+Asp patients (756 ± 47 and 592 ± 52 s, respectively; P = 0.041). Permeation studies and confocal and electron microscopy showed increased clot density in AAA-Asp compared with the AAA+Asp group. Mortality in AAA-Asp and AAA+Asp was similar, despite increased cardiovascular risk in the latter group, and both exhibited higher mortality than controls. CONCLUSION Aspirin improves fibrin clot characteristics in patients with AAA, which may have important clinical implications.
Collapse
Affiliation(s)
- M A Bailey
- Division of Cardiovascular & Diabetes Research, School of Medicine, The Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK; The Leeds Vascular Institute, The Leeds General Infirmary, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Macrae FL, Evans HL, Bridge KI, Johnson A, Scott DJA, Ariëns RAS. Common FXIII and fibrinogen polymorphisms in abdominal aortic aneurysms. PLoS One 2014; 9:e112407. [PMID: 25384012 PMCID: PMC4226572 DOI: 10.1371/journal.pone.0112407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
Introduction Abdominal aortic aneurysms (AAA) are characterized by a progressive dilatation of the abdominal aorta, and are associated with a high risk of rupture once the dilatation exceeds 55 mm in diameter. A large proportion of AAA develops an intraluminal thrombus, which contributes to hypoxia, inflammation and tissue degradation. We have previously shown that patients with AAA produce clots with altered structure which is more resistant to fibrinolysis. The aim of this study was to investigate genetic polymorphisms of FXIII and fibrinogen in AAA to identify how changes to these proteins may play a role in the development of AAA. Methods Subjects of Western/European descent, ≥55 years of age (520 AAA patients and 449 controls) were genotyped for five polymorphisms (FXIII-A Val34Leu, FXIII-B His95Arg, FXIII-B Splice Variant (intron K nt29576C-G), Fib-A Thr312Ala and Fib-B Arg448Lys) by RT-PCR. Data were analysed by χ2 test and CubeX. Results The FXIII-B Arg95 allele associated with AAA (Relative risk - 1.240, CI 1.093–1.407, P = 0.006). There was no association between FXIII-A Val34Leu, FXIII-B Splice Variant, Fib-A Thr312Ala or Fib-B Arg448Lys and AAA. FXIII-B His95Arg and FXIII-B Splice variant (intron K nt29576C-G) were in negative linkage disequilibrium (D’ = −0.609, p = 0.011). Discussion The FXIII-B Arg95 variant is associated with an increased risk of AAA. These data suggest a possible role for FXIII in AAA pathogenesis.
Collapse
Affiliation(s)
- Fraser L Macrae
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Leeds institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Hannah Lee Evans
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Leeds institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Leeds institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom; Leeds Vascular Institute, The General Infirmary at Leeds, Leeds, United Kingdom
| | - Anne Johnson
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Leeds institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom; Leeds Vascular Institute, The General Infirmary at Leeds, Leeds, United Kingdom
| | - D Julian A Scott
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Leeds institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom; Leeds Vascular Institute, The General Infirmary at Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Leeds institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Carotid-femoral pulse wave velocity is negatively correlated with aortic diameter. Hypertens Res 2014; 37:926-32. [DOI: 10.1038/hr.2014.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 11/08/2022]
|
41
|
Kuivaniemi H, Ryer EJ, Elmore JR, Hinterseher I, Smelser DT, Tromp G. Update on abdominal aortic aneurysm research: from clinical to genetic studies. SCIENTIFICA 2014; 2014:564734. [PMID: 24834361 PMCID: PMC4009235 DOI: 10.1155/2014/564734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta with a diameter of at least 3.0 cm. AAAs are often asymptomatic and are discovered as incidental findings in imaging studies or when the AAA ruptures leading to a medical emergency. AAAs are more common in males than females, in individuals of European ancestry, and in those over 65 years of age. Smoking is the most important environmental risk factor. In addition, a positive family history of AAA increases the person's risk for AAA. Interestingly, diabetes has been shown to be a protective factor for AAA in many large studies. Hallmarks of AAA pathogenesis include inflammation, vascular smooth muscle cell apoptosis, extracellular matrix degradation, and oxidative stress. Autoimmunity may also play a role in AAA development and progression. In this Outlook paper, we summarize our recent studies on AAA including clinical studies related to surgical repair of AAA and genetic risk factor and large-scale gene expression studies. We conclude with a discussion on our research projects using large data sets available through electronic medical records and biobanks.
Collapse
Affiliation(s)
- Helena Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
| | - Evan J. Ryer
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA, USA
| | - James R. Elmore
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA, USA
| | - Irene Hinterseher
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Diane T. Smelser
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Gerard Tromp
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
| |
Collapse
|
42
|
Assar AN. Pharmacological therapy for patients with abdominal aortic aneurysm. Expert Rev Cardiovasc Ther 2014; 7:999-1009. [DOI: 10.1586/erc.09.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Wong YY, Golledge J, Flicker L, McCaul KA, Hankey GJ, van Bockxmeer FM, Yeap BB, Norman PE. Plasma total homocysteine is associated with abdominal aortic aneurysm and aortic diameter in older men. J Vasc Surg 2013; 58:364-70. [DOI: 10.1016/j.jvs.2013.01.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/30/2022]
|
44
|
|
45
|
Scott DJA, Allen CJ, Honstvet CA, Hanby AM, Hammond C, Johnson AB, Perry SL, Jones PF. Lymphangiogenesis in abdominal aortic aneurysm. Br J Surg 2013; 100:895-903. [DOI: 10.1002/bjs.9128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/05/2022]
Abstract
Abstract
Background
Ongoing angiogenesis is implicated in the inflammatory environment that characterizes abdominal aortic aneurysm (AAA). Although lymphangiogenesis has been associated with chronic inflammatory conditions, it has yet to be demonstrated in AAA. The aim was to determine the presence of lymphangiogenesis and to delineate the relationship between inflammation and neovascularization in AAA tissue.
Methods
AAA samples and preoperative computed tomography images were obtained from patients undergoing elective AAA repair. Control samples were age-matched abdominal aortic tissue. Specific immunostains for blood vessels (CD31, CD105), lymphatic vessels (D2-40), vascular endothelial growth factor (VEGF) A and VEGF receptor (VEGFR) 3 allowed characterization and quantitation of vasculature.
Results
The AAA wall contained high levels of inflammatory infiltrate; microvascular densities of blood (P < 0·001) and lymphatic (P = 0·003) vessels were significantly increased in AAA samples compared with controls. Maximal AAA vascularity was observed in inflammatory areas, with vessels that stained positively for CD31 (ρ = 0·625, P = 0·017), CD105 (ρ = 0·692, P = 0·009) and D2-40 (ρ = 0·675, P = 0·008) correlating positively with the extent of inflammation. Increased VEGFR-3 and VEGF-A expression was also evident within inflammatory AAA areas.
Conclusion
These findings demonstrated lymphatic vessel involvement in end-stage AAA disease, which was associated with the degree of inflammation, and confirmed the involvement of neovascularization.
Collapse
Affiliation(s)
- D J A Scott
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - C J Allen
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - C A Honstvet
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - A M Hanby
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - C Hammond
- Department of Vascular Radiology, Leeds General Infirmary, Leeds, UK
| | - A B Johnson
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - S L Perry
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - P F Jones
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|
46
|
Ando T, Iizuka N, Sato T, Chikada M, Kurokawa MS, Arito M, Okamoto K, Suematsu N, Makuuchi H, Kato T. Autoantigenicity of carbonic anhydrase 1 in patients with abdominal aortic aneurysm, revealed by proteomic surveillance. Hum Immunol 2013; 74:852-7. [PMID: 23557951 DOI: 10.1016/j.humimm.2013.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 01/25/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
Abdominal aortic aneurysm (AAA) is sometimes detected in patients with atherosclerosis. One of the histological characteristics of AAA walls is infiltration of inflammatory cells, in which autoimmunity may be involved. Thereby, we here surveyed autoantigens in AAA walls by proteomics. Specifically, we separated proteins extracted from AAA wall samples by 2-dimensional electrophoresis and detected candidate autoantigens by western blotting. One of the detected candidates was carbonic anhydrase 1 (CA1). ELISA confirmed that the autoantibodies to CA1 were detected more frequently in AAA patients (n=13) than in healthy donors (n=25) (p=0.03). Interestingly, some serum samples from the AAA patients reacted to CA1 of the AAA walls stronger than to CA1 of peripheral blood mononuclear cells from healthy donors. Our data indicate that CA1 in the AAA walls would be modified to express neo-epitope(s) and that the autoimmunity to CA1 may be involved in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Takashi Ando
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ekamp H, Haage P, Brandt AS, Roth S, Piroth W, Kamper L. [Infrarenal aortic ectasia in retroperitoneal fibrosis (RPF)]. Wien Med Wochenschr 2012. [PMID: 23179671 DOI: 10.1007/s10354-012-0155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analysed the infrarenal aortic morphology by abdominal MR-examinations of 47 RPF patients compared to a control group. A significant larger aortic calibre and higher rates of infrarenal dilatation in male RPF patients were observed. The larger aortic diameter in male RPF patients may be due to periaortic inflammation with resulting aortic ectasia and supports the classification of RPF into the spectrum of chronic periaortitis.
Collapse
Affiliation(s)
- Hendrik Ekamp
- Klinik für diagnostische und interventionelle Radiologie, HELIOS-Klinik Wuppertal, Klinikum der Privaten Universität Witten/Herdecke, Heusnerstr. 40, 42283 Wuppertal, Deutschland.
| | | | | | | | | | | |
Collapse
|
48
|
Xu J, Ehrman B, Graham LM, Eagleton MJ. Interleukin-5 is a potential mediator of angiotensin II-induced aneurysm formation in apolipoprotein E knockout mice. J Surg Res 2012; 178:512-8. [PMID: 22459292 PMCID: PMC3394914 DOI: 10.1016/j.jss.2011.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/31/2011] [Accepted: 12/08/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND The aim of this study was to evaluate alterations in Th1 and Th2 cytokines during experimental abdominal aortic aneurysm (AAA) formation. METHODS AAAs were induced in apolipoprotein E null mice by infusing angiotensin II (Ang II, 1000 ng/kg/min). Aortic homogenates were assessed at 0, 7, 14, and 28 d (n = 11/time point) for select Th1 and Th2 cytokines by ELISA. Additional mice had co-administration of anti-IgG (n = 20) or anti-IL-5 (n = 20) and were assessed at 28 d for AAA. Aortic homogenates were assessed for MMP-2 and MMP-9 expression. Mouse aortic SMC (MASMC) and peritoneal-derived macrophages were treated with IL-5 (0-40 ng/mL), and cell extracts and media (0-48 h) were assessed for MMP-2 and MMP-9 expression. RESULTS Ang II infusion was associated with a 3.4-fold (P < 0.01) and 3.6-fold (P < 0.01) increase in IL-5 and IL-10 (respectively), and a 0.6-fold reduction in IL-6, by 7 d. Anti-IL-5, but not anti-IgG, ameliorated Ang II-induced AAA formation. Up-regulation of MMP-2 and MMP-9 was observed in aneurysmal aortas, but not in the aortas obtained from mice treated with anti-IL-5. IL-5 stimulation of MASMC increased MMP-2 and MMP-9 mRNA (2.1-fold and 2.7-fold, respectively, P < 0.01) and protein (1.6-fold and 1.9-fold, respectively, P < 0.01) by 24 h. IL-5 stimulation of macrophages did not alter MMP expression. CONCLUSIONS Ang II induces increased Th2 cytokines IL-5 and IL-10 early in the course of experimental AAA formation, and inhibition of IL-5 prevents AAA formation suggesting an important role. While IL-5 is capable of up-regulating MMP-2 and MMP-9 expression in MASMC, investigations into alternate roles in AAA formation is warranted.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/genetics
- Cells, Cultured
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-5/immunology
- Interleukin-5/metabolism
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Th1 Cells/immunology
- Th2 Cells/immunology
- Vasculitis/chemically induced
- Vasculitis/immunology
- Vasculitis/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Jun Xu
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| | - Brittney Ehrman
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| | - Linda M. Graham
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| | - Matthew J. Eagleton
- Departments of Vascular Surgery and Biomedical Engineering, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, OH
| |
Collapse
|
49
|
Eagleton MJ. Inflammation in abdominal aortic aneurysms: cellular infiltrate and cytokine profiles. Vascular 2012; 20:278-83. [DOI: 10.1258/vasc.2011.201207] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) pathogenesis occurs as a result of the altered homeostasis of the aortic vessel wall structural proteins. This results in weakening, and subsequent expansion, of the aorta leading to aneurysm formation. Multiple mechanisms are involved in this process, including genetic abnormalities, biomechanical wall stress, apoptosis, and proteolytic degradation of the aortic wall. One key hallmark of this pathology, which orchestrates the interaction of the various pathologic processes, is inflammation. The inflammatory process is characterized by the infiltration of a variety of cells, which leads to the upregulation of multiple cytokines. The balance of the cellular type and resultant cytokine milieu determines the ultimate fate of the aortic wall – healing, atherosclerosis or aneurysm formation. This review highlights some of the known cellular and cytokine inflammatory events that are involved in aortic aneurysm formation.
Collapse
Affiliation(s)
- Matthew J Eagleton
- Department of Vascular Surgery, Cleveland Clinic, Lerner College of Medicine-CWRU, Cleveland, OH 44195, USA
| |
Collapse
|
50
|
Liu Z, Luo H, Zhang L, Huang Y, Liu B, Ma K, Feng J, Xie J, Zheng J, Hu J, Zhan S, Zhu Y, Xu Q, Kong W, Wang X. Hyperhomocysteinemia exaggerates adventitial inflammation and angiotensin II-induced abdominal aortic aneurysm in mice. Circ Res 2012; 111:1261-73. [PMID: 22912384 DOI: 10.1161/circresaha.112.270520] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE A number of epidemiological studies have suggested an association of hyperhomocysteinemia (HHcy) and abdominal aortic aneurysm (AAA), but discrepancies exist. In addition, we lack direct evidence supporting a causal role. OBJECTIVE We determined the association and contribution of HHcy to AAA formation. METHODS AND RESULTS We first performed a meta-analysis of studies involving 1489 subjects and found a strong association of HHcy and AAA (odds ratio, 7.39). Next, we used angiotensin II-infused male apolipoprotein E-deficient mice and tested whether HHcy contributes to AAA pathogenesis. Homocysteine (Hcy) supplement (1.8 g/L) in drinking water resulted in mild HHcy. Intriguingly, HHcy greatly increased the incidence of angiotensin II-induced AAA and aortic dissection in apolipoprotein E-deficient mice (vehicle versus Hcy: 50% versus 100%; P<0.05). Histology indicated HHcy markedly exaggerated aortic adventitial inflammation. Increased levels of proinflammatory interleukin-6 and monocyte chemoattractant protein-1 were preferentially colocalized within adventitial fibroblasts in HHcy plus angiotensin II mice, which suggested the importance of adventitial fibroblasts activation in Hcy-aggravated AAA. Hcy sequentially stimulated adventitial fibroblasts transformation into myofibroblasts, secretion of interleukin-6 and monocyte chemoattractant protein-1, and consequent recruitment of monocytes/macrophages to adventitial fibroblasts, which was abolished by the NADPH oxidase inhibitor diphenyliodonium. NADPH oxidase 4, but not other homologs of NADPH oxidase, was significantly upregulated by Hcy in adventitial fibroblasts, whereas NADPH oxidase 4 small interfering RNA silencing diminished Hcy-induced adventitial fibroblasts activation. Finally, folic acid supplement (0.071 μg/g per day) markedly reduced HHcy-aggravated angiotensin II-induced AAA formation in apolipoprotein E-deficient mice. CONCLUSIONS HHcy may aggravate AAA formation at least partially via activating adventitial fibroblast NADPH oxidase 4.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|