1
|
Arora R, Malla WA, Tyagi A, Saxena S, Mahajan S, Sajjanar B, Gandham R, Tiwari AK. Transcriptome profiling of Canine Parvovirus 2 Nonstructural gene 1(CPV2.NS1) transfected 4T1 mice mammary tumor cells to elucidate its oncolytic effects. Int J Biol Macromol 2024; 281:136620. [PMID: 39419151 DOI: 10.1016/j.ijbiomac.2024.136620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Oncolytic viral gene therapy is a directed approach to target cancer cells without affecting healthy cells of the body. Canine parvovirus (CPV2) is an oncolytic virus that precisely targets and destroys neoplastic cells by causing DNA damage, mitochondrial damage, and apoptosis. Non-structural gene 1 (NS1) of CPV, concerned with viral DNA replication is a key mediator of cytotoxicity of CPV and can specifically cause tumor cell lysis. In the present study, by using the transcriptomics approach, we tried to identify molecular pathways and key genes involved in CPV2.NS1 mediated 4T1 mice mammary tumor cell death. We identified necroptosis and mitochondrial damage-mediated apoptosis as major cell death pathways leading to CPV2.NS1 transfected 4T1 cancer cell death. Various DEGs identified in our study play an important role in pathways like the PI3K/AKT pathway, diverse metabolic pathways, MAPK signaling pathway, and FGF signaling pathway, whichare mostly dysregulated in cancerous conditions. Histone variant H2A.X genes, Capn2, and Mapk10/JNK are predicted as key genes that play a role in causing endoplasmic reticulum stress and mitochondrial damage, thereby leading to necroptosis and apoptosis. This study is a preliminary work done to identify key genes and molecular pathways involved in CPV2.NS1 mediated 4T1 cancer cells death which need to be further validated to establish this viral gene as a potent oncolytic agent.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kishanganj, BASU, Patna, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ravikumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | | |
Collapse
|
2
|
Masood M, Ding Q, Cawte AD, Rueda DS, Grimm SW, Yagüe E, El-Bahrawy M. Genetic screening for anticancer genes highlights FBLN5 as a synthetic lethal partner of MYC. Cell Commun Signal 2023; 21:295. [PMID: 37864183 PMCID: PMC10588048 DOI: 10.1186/s12964-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND When ectopically overexpressed, anticancer genes, such as TRAIL, PAR4 and ORCTL3, specifically destroy tumour cells without harming untransformed cells. Anticancer genes can not only serve as powerful tumour specific therapy tools but studying their mode of action can reveal mechanisms underlying the neoplastic transformation, sustenance and spread. METHODS Anticancer gene discovery is normally accidental. Here we describe a systematic, gain of function, forward genetic screen in mammalian cells to isolate novel anticancer genes of human origin. Continuing with over 30,000 transcripts from our previous study, 377 cell death inducing genes were subjected to screening. FBLN5 was chosen, as a proof of principle, for mechanistic gene expression profiling, comparison pathways analyses and functional studies. RESULTS Sixteen novel anticancer genes were isolated; these included non-coding RNAs, protein-coding genes and novel transcripts, such as ZNF436-AS1, SMLR1, TMEFF2, LINC01529, HYAL2, NEIL2, FBLN5, YPEL4 and PHKA2-processed transcript. FBLN5 selectively caused inhibition of MYC in COS-7 (transformed) cells but not in CV-1 (normal) cells. MYC was identified as synthetic lethality partner of FBLN5 where MYC transformed CV-1 cells experienced cell death upon FBLN5 transfection, whereas FBLN5 lost cell death induction in MCF-7 cells upon MYC knockdown. CONCLUSIONS Sixteen novel anticancer genes are present in human genome including FBLN5. MYC is a synthetic lethality partner of FBLN5. Video Abstract.
Collapse
Affiliation(s)
- Motasim Masood
- Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK
| | - Qize Ding
- Department of Medicine, Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK
| | - Adam D Cawte
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Du Cane Rd, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK
| | - David S Rueda
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Du Cane Rd, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK
| | - Stefan W Grimm
- Department of Medicine, Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK.
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Rd, London, UK.
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
3
|
Pervaiz A, Naseem N, Saleem T, Raza SM, Shaukat I, Kanwal K, Sajjad O, Iqbal S, Shams F, Ijaz B, Berger MR. Anticancer genes (NOXA, PAR-4, TRAIL) are de-regulated in breast cancer patients and can be targeted by using a ribosomal inactivating plant protein (riproximin). Mol Biol Rep 2023; 50:5209-5221. [PMID: 37127809 DOI: 10.1007/s11033-023-08477-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Anticancer genes are an endogenous defense against transformed cells as they impose antineoplastic effects upon ectopic expression. Profiling the expression of these genes is fundamental for exploring their prognostic and therapeutic relevance in cancers. Natural compounds can upregulate anticancer genes in malignant cells and thus be useful for therapeutic purposes. In this study, we identified the expression levels of anticancer genes in breast cancer clinical isolates. In addition, the purified and sequenced plant protein (riproximin) was evaluated for its potential to induce anticancer genes in two breast cancer cell lines. METHODOLOGY Expression profiles of three anticancer genes (NOXA, PAR-4, TRAIL) were identified by immunohistochemistry in 45 breast cancer clinical isolates. Breast cancer cells were exposed to riproximin and expression of the anticancer genes was determined by microarray, real-time PCR and western blot methodologies. Lastly, a bioinformatic approach was adopted to highlight the molecular/functional significance of the anticancer genes. RESULTS NOXA expression was evenly de-regulated among the clinical isolates, while PAR-4 was significantly down-regulated in majority of the breast cancer tissues. In contrast, TRAIL expression was increased in most of the clinical samples. Expression levels of the anticancer genes followed a distinct trend in accordance with the disease severity. Riproximin showed a substantial potential of inducing expression of the anticancer genes in breast cancer cells at transcriptomic and protein levels. The bioinformatic approach revealed involvement of anticancer genes in multiple cellular functions and signaling cascades. CONCLUSION Anticancer genes were de-regulated and showed discrete expression patterns in breast cancer patient samples. Riproximin effectively induced the expression of selected anticancer genes in breast cancer cells.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Nadia Naseem
- Morbid Anatomy and Histopathology Department, University of Health Sciences, Lahore, Pakistan
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Iqra Shaukat
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Osheen Sajjad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Faiza Shams
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Immundiagnostik Comp, Bensheim, Germany
| |
Collapse
|
4
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
5
|
Pervaiz A, Saleem T, Kanwal K, Raza SM, Iqbal S, Zepp M, Georges RB, Berger MR. Expression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04410-6. [PMID: 36251065 DOI: 10.1007/s00432-022-04410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ectopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC). In addition to the clinical perspective, naturally occurring compounds can be explored in parallel for inducing ACGs to achieve cancer cell-specific death. METHODOLOGY Expression profiles of three ACGs (NOXA, PAR-4, TRAIL) were identified via real-time PCR in CRC clinical isolates. Time lapse-based expression modifications in ACGs were studied in a CRC liver metastasis animal model using microarray methodology. Effects of a purified plant protein (riproximin) on selected ACGs were identified in three primary and metastatic CRC cell lines by real-time PCR. Lastly, importance of the ACGs in a cellular environment was highlighted via bioinformatic analysis. RESULTS ACGs (except NOXA) were persistently downregulated in clinical isolates when comparing the overall mean expression values with normal mucosa levels. In vivo studies showed a prominent inhibition of NOXA and PAR-4 genes in implanted CRC cells during rat liver colonization. TRAIL showed deviation from this theme while showing marked induction during the early period of liver colonization (days 3 and 6 after CRC cell implantation). Riproximin exhibited substantial potential of inducing ACGs at transcriptome levels in selected CRC cell lines. Bioinformatic analysis showed that vital molecular/functional aspects of a cell are associated with the presence of ACGs. CONCLUSION ACGs are downregulated in primary and metastatic phase of CRC. Riproximin effectively induces ACGs in CRC cells and can be exploited for clinical investigations over time.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immundiagnostik, Bensheim, Germany
| | - Rania B Georges
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Coordination Centre for Clinical Trials, University Hospital, Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immundiagnostik, Bensheim, Germany
| |
Collapse
|
6
|
Garg AD. Immunology of cell death in cancer and infection. Genes Immun 2022; 23:241-243. [PMID: 36171397 PMCID: PMC9514981 DOI: 10.1038/s41435-022-00184-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Abhishek D. Garg
- grid.5596.f0000 0001 0668 7884Cell Stress & Immunity (CSI) Lab, Department for Cellular & Molecular Medicine (CMM), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers (Basel) 2019; 11:cancers11121975. [PMID: 31817939 PMCID: PMC6966515 DOI: 10.3390/cancers11121975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.
Collapse
|
8
|
Agha Amiri S, Shahhosseini S, Zarei N, Khorasanizadeh D, Aminollahi E, Rezaie F, Zargari M, Azizi M, Khalaj V. A novel anti-CD22 scFv-apoptin fusion protein induces apoptosis in malignant B-cells. AMB Express 2017; 7:112. [PMID: 28582973 PMCID: PMC5457376 DOI: 10.1186/s13568-017-0410-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
CD22 marker is a highly internalizing antigen which is located on the surface of B-cells and is being used as a promising target for treatment of B cell malignancies. Monoclonal antibodies targeting CD22 have been introduced and some are currently under investigation in clinical trials. Building on the success of antibody drug conjugates, we developed a fusion protein consisting of a novel anti-CD22 scFv and apoptin and tested binding and therapeutic effects in lymphoma cells. The recombinant protein was expressed in E. coli and successfully purified and refolded. In vitro binding analysis by immunofluorescence and flow cytometry demonstrated that the recombinant protein specifically binds to CD22 positive Raji cells but not to CD22 negative Jurkat cells. The cytotoxic properties of scFv–apoptin were assessed by an MTT assay and Annexin V/PI flow cytometry analysis and showed that the recombinant protein induced apoptosis preferentially in Raji cells with no detectable effects in Jurkat cells. Our findings indicated that the recombinant anti-CD22 scFv–apoptin fusion protein could successfully cross the cell membrane and induce apoptosis with high specificity, make it as a promising molecule for immunotherapy of B-cell malignancies.
Collapse
|
9
|
PTD4-apoptin induces Bcl-2-insensitive apoptosis in human cervical carcinoma in vitro and in vivo. Anticancer Drugs 2017; 27:979-87. [PMID: 27548349 DOI: 10.1097/cad.0000000000000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Worldwide, cervix carcinoma is among the most dangerous cancer types, and novel therapies are under development. Cancer treatments are often hampered because of lack of specificity. The chicken anemia virus-derived apoptin induces apoptosis selectively in tumor cells and leaves normal cells unharmed. Here, we have carried out in-vitro and in-vivo studies on the cytotoxic effect of apoptin in a cervix carcinoma model. Apoptin was fused to the protein transduction domain 4 (PTD4), enabling delivery of the fusion protein across cellular membranes. PTD4-apoptin protein is located in the nuclei of human cervical carcinoma HeLa cells and in the cytoplasm of normal cells L02. By MTT and flow cytometry analysis, we have proven that PTD4-apoptin protein induced apoptosis in the cervical carcinoma cells. PTD4-apoptin enhanced the level of active executioner caspase-3. Neither caspase-3 activation nor apoptin-induced accumulation of the mitochondrial outer-membrane protein Mfn-2 was affected by ectopic Bcl-2 expression. In contrast, apoptin-mediated AKT activation was inhibited by Bcl-2. In vivo, cervix carcinoma xenografts were treated for 7 days with PTD4-apoptin protein. The PTD4-apoptin treatment induced a decrease in the cervix carcinoma, whereas the PTD4-GFP protein-treated controls expanded significantly. TUNEL analysis showed that PTD4-apoptin protein induced apoptosis in cervix carcinoma cells, in contrast to the control PTD-GFP-treated ones. Our results indicate that apoptin is a potential anticancer agent for treating cervix carcinoma.
Collapse
|
10
|
Ma YF, Ren Y, Wu CJ, Zhao XH, Xu H, Wu DZ, Xu J, Zhang XL, Ji Y. Interleukin (IL)-24 transforms the tumor microenvironment and induces anticancer immunity in a murine model of colon cancer. Mol Immunol 2016; 75:11-20. [DOI: 10.1016/j.molimm.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
|
11
|
Gupta SK, Sahoo AP, Rosh N, Gandham RK, Saxena L, Singh AK, Harish DR, Tiwari AK. Canine parvovirus NS1 induced apoptosis involves mitochondria, accumulation of reactive oxygen species and activation of caspases. Virus Res 2015; 213:46-61. [PMID: 26555166 DOI: 10.1016/j.virusres.2015.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
The non-structural protein (NS1) of parvoviruses plays an important role in viral replication and is thought to be responsible for inducing cell death. However, the detailed mechanism and the pathways involved in canine parvovirus type 2 NS1 (CPV2.NS1) induced apoptosis are not yet known. In the present study, we report that expression of CPV2.NS1 in HeLa cells arrests cells in G1 phase of the cell cycle and the apoptosis is mitochondria mediated as indicated by mitochondrial depolarization, release of cytochrome-c and activation of caspase 9. Treatment of cells with caspase 9 inhibitor Z-LEHD-FMK reduced the induction of apoptosis significantly. We also report that expression of CPV2.NS1 causes accumulation of reactive oxygen species (ROS) and treatment with an antioxidant reduces the ROS levels and the extent of apoptosis. Our results provide an insight into the mechanism of CPV2.NS1 induced apoptosis, which might prove valuable in developing NS1 protein as an oncolytic agent.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India.
| | - Aditya Prasad Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Nighil Rosh
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Lovleen Saxena
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Arvind Kumar Singh
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - D R Harish
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Ashok Kumar Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India.
| |
Collapse
|
12
|
Pervaiz A, Adwan H, Berger MR. Riproximin: A type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines. Int J Oncol 2015; 47:981-90. [PMID: 26151662 DOI: 10.3892/ijo.2015.3073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Riproximin (Rpx) is a type II ribosome inactivating protein, which was extracted and purified from the seeds of Ximenia americana. Previous studies demonstrated cytotoxicity of Rpx against a variety of cell lines originating from solid and non-solid cancers. In this study, we investigated the mechanistic aspects of Rpx in selected human and rat colorectal cancer (CRC) cell lines. Cytotoxic levels of Rpx were determined by MTT assay, while cytostatic and apoptotic effects were investigated by flow cytometry and nuclear staining procedures. Effects of Rpx exposure on colony formation/migration of CRC cells and expressional modulations in anticancer/stress-related genes were also studied. Rpx showed significant and comparable levels of cytotoxicity in CRC cells as determined by inhibitory concentration (IC) values. Similar inhibitory effects were found for clonogenicity, while more pronounced inhibition of migration was observed in response to Rpx exposure. Profound arrest in S phases of the cell cycle was noted especially in primary CRC cells. Apoptotic effects were more prominent in rat CRC cells as indicated by Annexin V-FITC assay and Hoechst 33342 nuclear staining. Rpx exposure induced significantly increased levels of the IL24/MDA-7, a well characterized anticancer gene, in all CRC cells. In addition, following Rpx treatment, high expression levels of growth arrest and DNA damage (GADD family) genes were also observed. Increased expression of two additional GADD genes (34 and 153) only in rat CRC cells (CC531) conferred higher sensitivity towards Rpx and subsequent anti-proliferative/apoptotic effects as compared to human CRC cells (SW480 and SW620). The present investigation indicates the anticancer potential of Rpx in CRC and favor further evaluation of this natural compound as therapeutic agent.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Hassan Adwan
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
13
|
AbuAli G, Chaisaklert W, Stelloo E, Pazarentzos E, Hwang MS, Qize D, Harding SV, Al-Rubaish A, Alzahrani AJ, Al-Ali A, Sanders TAB, Aboagye EO, Grimm S. The anticancer gene ORCTL3 targets stearoyl-CoA desaturase-1 for tumour-specific apoptosis. Oncogene 2015; 34:1718-28. [PMID: 24769897 PMCID: PMC4119473 DOI: 10.1038/onc.2014.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/31/2014] [Accepted: 02/20/2014] [Indexed: 12/19/2022]
Abstract
ORCTL3 is a member of a group of genes, the so-called anticancer genes, that cause tumour-specific cell death. We show that this activity is triggered in isogenic renal cells upon their transformation independently of the cells' proliferation status. For its cell death effect ORCTL3 targets the enzyme stearoyl-CoA desaturase-1 (SCD1) in fatty acid metabolism. This is caused by transmembrane domains 3 and 4, which are more efficacious in vitro than a low molecular weight drug against SCD1, and critically depend on their expression level. SCD1 is found upregulated upon renal cell transformation indicating that its activity, while not impacting proliferation, represents a critical bottleneck for tumourigenesis. An adenovirus expressing ORCTL3 leads to growth inhibition of renal tumours in vivo and to substantial destruction of patients' kidney tumour cells ex vivo. Our results indicate fatty acid metabolism as a target for tumour-specific apoptosis in renal tumours and suggest ORCTL3 as a means to accomplish this.
Collapse
Affiliation(s)
- G AbuAli
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - W Chaisaklert
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - E Stelloo
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - E Pazarentzos
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - M-S Hwang
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - D Qize
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - S V Harding
- Diabetes & Nutritional Sciences Division, King's College London, London, UK
| | - A Al-Rubaish
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - A J Alzahrani
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - A Al-Ali
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - T A B Sanders
- Diabetes & Nutritional Sciences Division, King's College London, London, UK
| | - E O Aboagye
- Division of Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - S Grimm
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK
| |
Collapse
|
14
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
15
|
|
16
|
Anticancer gene transfer for cancer gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:255-80. [PMID: 25001541 DOI: 10.1007/978-1-4471-6458-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field.
Collapse
|
17
|
Backendorf C, Noteborn MHM. Apoptin Towards Safe and Efficient Anticancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:39-59. [DOI: 10.1007/978-1-4471-6458-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Nemashkalova EL, Kazakov AS, Khasanova LM, Permyakov EA, Permyakov SE. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. Biochemistry 2013; 52:6286-99. [PMID: 23947814 DOI: 10.1021/bi400643s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region 142290, Russia
| | | | | | | | | |
Collapse
|
19
|
Li X, Wang M, Liu C, Jing X, Huang Y. TAT-modified mixed micelles as biodegradable targeting and delivering system for cancer therapeutics. J Appl Polym Sci 2013. [DOI: 10.1002/app.39744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun; 130022; China
| | - Mingzhe Wang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun; 130022; China
| | - Changbai Liu
- The Institute of Molecular Biology; Three Gorges University; Yichang; 443002; China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun; 130022; China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun; 130022; China
| |
Collapse
|
20
|
Whitaker EL, Filippov VA, Duerksen-Hughes PJ. Interleukin 24: Mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth Factor Rev 2012; 23:323-31. [DOI: 10.1016/j.cytogfr.2012.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/18/2022]
|
21
|
Zimmerman R, Peng DJ, Lanz H, Zhang YH, Danen-Van Oorschot A, Qu S, Backendorf C, Noteborn M. PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing. Cell Death Dis 2012; 3:e291. [PMID: 22476099 PMCID: PMC3358009 DOI: 10.1038/cddis.2012.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Apoptin (apoptosis-inducing protein) harbors tumor-selective characteristics making it a potential safe and effective anticancer agent. Apoptin becomes phosphorylated and induces apoptosis in a large panel of human tumor but not normal cells. Here, we used an in vitro oncogenic transformation assay to explore minimal cellular factors required for the activation of apoptin. Flag-apoptin was introduced into normal fibroblasts together with the transforming SV40 large T antigen (SV40 LT) and SV40 small t antigen (SV40 ST) antigens. We found that nuclear expression of SV40 ST in normal cells was sufficient to induce phosphorylation of apoptin. Mutational analysis showed that mutations disrupting the binding of ST to protein phosphatase 2A (PP2A) counteracted this effect. Knockdown of the ST-interacting PP2A-B56γ subunit in normal fibroblasts mimicked the effect of nuclear ST expression, resulting in induction of apoptin phosphorylation. The same effect was observed upon downregulation of the PP2A-B56δ subunit, which is targeted by protein kinase A (PKA). Apoptin interacts with the PKA-associating protein BCA3/AKIP1, and inhibition of PKA in tumor cells by treatment with H89 increased the phosphorylation of apoptin, whereas the PKA activator cAMP partially reduced it. We infer that inactivation of PP2A, in particular, of the B56γ and B56δ subunits is a crucial step in triggering apoptin-induced tumor-selective cell death.
Collapse
Affiliation(s)
- R Zimmerman
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
| | - D-J Peng
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Lanz
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
| | - Y-H Zhang
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
| | - A Danen-Van Oorschot
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
| | - S Qu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C Backendorf
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
| | - M Noteborn
- Department of Molecular Genetics, Leiden Institute for Chemistry, Leiden University, Leiden, The Netherlands
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Lanz HL, Florea BI, Noteborn MHM, Backendorf C. Development and application of an in vitro apoptin kinase assay. Anal Biochem 2011; 421:68-74. [PMID: 22080040 DOI: 10.1016/j.ab.2011.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/07/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022]
Abstract
Apoptin, a protein derived from chicken anemia virus (CAV), induces apoptosis selectively in human tumor cells as compared with normal cells. This activity depends on phosphorylation and relocation of apoptin to the nucleus of cancer cells. Here, we describe an in vitro kinase assay that allows the biochemical characterization of apoptin kinase activity in tumor cells. The kinase phosphorylates apoptin in a strictly ATP-dependent fashion and in a broad salt range. The kinase activity is present constitutively in both cytoplasm and nucleus of various human tumor cells. Q-column chromatography showed that both cytoplasmic and nuclear fractions have identical fractionation characteristics, suggesting that the same kinase is present in both cellular compartments. Kinase activity derived from positive Q-column fractions bound to amylose-maltose-binding protein (MBP)-apoptin and could be eluted with ATP only in the presence of the cofactor Mg(2+). Apparently, unphosphorylated apoptin interacts with the kinase and is released only after phosphorylation has occurred, proving that our assay recognizes the genuine apoptin kinase. This is further corroborated by the finding that apoptin is phosphorylated in vitro at positions Thr108 and Thr107, in concert with earlier in vivo observations. Our assay excludes cyclin-dependent kinase 2 (CDK2) and protein kinase C beta (PKC-β), previously nominated by two separate studies as being the genuine apoptin kinase.
Collapse
Affiliation(s)
- Henriëtte L Lanz
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | |
Collapse
|
23
|
PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo. Eur J Pharmacol 2011; 654:17-25. [DOI: 10.1016/j.ejphar.2010.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 12/12/2010] [Accepted: 12/13/2010] [Indexed: 01/19/2023]
|
24
|
RETRACTED: Synthesis and bioevaluation of aryl-guanidino polyamine conjugates targeting the polyamine transporter. Bioorg Med Chem Lett 2010; 20:6421-5. [DOI: 10.1016/j.bmcl.2010.09.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022]
|
25
|
Tsai WC, Rao YK, Lin SS, Chou MY, Shen YT, Wu CH, Geethangili M, Yang CC, Tzeng YM. Methylantcinate A induces tumor specific growth inhibition in oral cancer cells via Bax-mediated mitochondrial apoptotic pathway. Bioorg Med Chem Lett 2010; 20:6145-8. [DOI: 10.1016/j.bmcl.2010.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/20/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
|
26
|
Wang Z. MicroRNA: A matter of life or death. World J Biol Chem 2010; 1:41-54. [PMID: 21537368 PMCID: PMC3083949 DOI: 10.4331/wjbc.v1.i4.41] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 02/05/2023] Open
Abstract
Progressive cell loss due to apoptosis is a pathological hallmark implicated in a wide spectrum of degenerative diseases such as heart disease, atherosclerotic arteries and hypertensive vessels, Alzheimer’s disease and other neurodegenerative disorders. Tremendous efforts have been made to improve our understanding of the molecular mechanisms and signaling pathways involved in apoptosistic cell death. Once ignored completely or overlooked as cellular detritus, microRNAs (miRNAs) that were discovered only a decade ago, have recently taken many by surprise. The importance of miRNAs has steadily gained appreciation and miRNA biology has exploded into a massive swell of interest with enormous range and potential in almost every biological discipline because of their widespread expression and diverse functions in both animals and humans. It has been established that miRNAs are critical regulators of apoptosis of various cell types. These small molecules act by repressing the expression of either the proapoptotic or antiapoptotic genes to produce antiapoptotic or proapoptotic effects. Appealing evidence has been accumulating for the involvement of miRNAs in human diseases associated with apoptotic cell death and the potential of miRNAs as novel therapeutic targets for the treatment of the diseases. This editorial aims to convey this message and to boost up the research interest by providing a timely, comprehensive overview on regulation of apoptosis by miRNAs and a synopsis on the pathophysiologic implications of this novel regulatory network based on the currently available data in the literature. It begins with a brief introduction to apoptosis and miRNAs, followed by the description of the fundamental aspects of miRNA biogenesis and action, and the role of miRNAs in regulating apoptosis of cancer cells and cardiovascular cells. Speculations on the development of miRNAs as potential therapeutic targets are also presented. Remarks are also provided to point out the unanswered questions and to outline the new directions for the future research of the field.
Collapse
Affiliation(s)
- Zhiguo Wang
- Zhiguo Wang, Research Center, Montreal Heart Institute and Department of Medicine, University of Montreal, Montreal, PQ H1T 1C8, Canada
| |
Collapse
|