1
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Shi H, Zhu Y, Shang K, Tian T, Yin Z, Shi J, He Y, Ding J, Wang Q, Zhang F. Development of innovative multi-epitope mRNA vaccine against central nervous system tuberculosis using in silico approaches. PLoS One 2024; 19:e0307877. [PMID: 39240891 PMCID: PMC11379207 DOI: 10.1371/journal.pone.0307877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 09/08/2024] Open
Abstract
Tuberculosis(TB) of the Central nervous system (CNS) is a rare and highly destructive disease. The emergence of drug resistance has increased treatment difficulty, leaving the Bacillus Calmette-Guérin (BCG) vaccine as the only licensed preventative immunization available. This study focused on identifying the epitopes of PknD (Rv0931c) and Rv0986 from Mycobacterium tuberculosis(Mtb) strain H37Rv using an in silico method. The goal was to develop a therapeutic mRNA vaccine for preventing CNS TB. The vaccine was designed to be non-allergenic, non-toxic, and highly antigenic. Codon optimization was performed to ensure effective translation in the human host. Additionally, the secondary and tertiary structures of the vaccine were predicted, and molecular docking with TLR-4 was carried out. A molecular dynamics simulation confirmed the stability of the complex. The results indicate that the vaccine structure shows effectiveness. Overall, the constructed vaccine exhibits ideal physicochemical properties, immune response, and stability, laying a theoretical foundation for future laboratory experiments.
Collapse
Affiliation(s)
- Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Quan Wang
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Ma Q, Zhang X, Yang J, Li H, Hao Y, Feng X. Optimization of the 5' untranslated region of mRNA vaccines. Sci Rep 2024; 14:19845. [PMID: 39191885 DOI: 10.1038/s41598-024-70792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the impact of different 5' untranslated regions (UTRs) on mRNA vaccine translation efficiency, five dual-reporter gene expression plasmids with different 5'UTRs were constructed. The corresponding mRNA transcripts were transcribed and capped in vitro. By comparing the expression levels of reporter genes with different 5'UTRs, we identified the 5'UTR associated with the highest expression level. Subsequently, HIVgp145 mRNA vaccines containing various 5'UTRs were constructed and verified. The results demonstrated that mRNA 3 (β-globin 5'UTR) displayed the greatest number of green fluorescence-positive cells and the highest luciferase fluorescence intensity in the reporter gene expression system. Further, among the HIVgp145 mRNA vaccines with different 5'UTRs, mRNA 7 (β-globin 5'UTR) exhibited the highest level of expression. These findings indicate that it is feasible to use the 5'UTR of β-globin in an mRNA vaccine, laying the foundation for animal immunogenicity testing.
Collapse
Affiliation(s)
- Qi Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street #100, Xicheng District, Beijing, 100052, China
| | - Xiaoguang Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street #100, Xicheng District, Beijing, 100052, China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street #100, Xicheng District, Beijing, 100052, China
| | - Hongxia Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street #100, Xicheng District, Beijing, 100052, China
| | - Yanzhe Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street #100, Xicheng District, Beijing, 100052, China.
| | - Xia Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street #100, Xicheng District, Beijing, 100052, China.
| |
Collapse
|
4
|
Kuzmin IV, Soto Acosta R, Pruitt L, Wasdin PT, Kedarinath K, Hernandez KR, Gonzales KA, Hill K, Weidner NG, Mire C, Engdahl TB, Moon WJ, Popov V, Crowe JE, Georgiev IS, Garcia-Blanco MA, Abbott RK, Bukreyev A. Comparison of uridine and N1-methylpseudouridine mRNA platforms in development of an Andes virus vaccine. Nat Commun 2024; 15:6421. [PMID: 39080316 PMCID: PMC11289437 DOI: 10.1038/s41467-024-50774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The rodent-borne Andes virus (ANDV) causes a severe disease in humans. We developed an ANDV mRNA vaccine based on the M segment of the viral genome, either with regular uridine (U-mRNA) or N1-methylpseudouridine (m1Ψ-mRNA). Female mice immunized by m1Ψ-mRNA developed slightly greater germinal center (GC) responses than U-mRNA-immunized mice. Single cell RNA and BCR sequencing of the GC B cells revealed similar levels of activation, except an additional cluster of cells exhibiting interferon response in animals vaccinated with U-mRNA but not m1Ψ-mRNA. Similar immunoglobulin class-switching and somatic hypermutations were observed in response to the vaccines. Female Syrian hamsters were immunized via a prime-boost regimen with two doses of each vaccine. The titers of glycoprotein-binding antibodies were greater for U-mRNA construct than for m1Ψ-mRNA construct; however, the titers of ANDV-neutralizing antibodies were similar. Vaccinated animals were challenged with a lethal dose of ANDV, along with a naïve control group. All control animals and two animals vaccinated with a lower dose of m1Ψ-mRNA succumbed to infection whereas other vaccinated animals survived without evidence of virus replication. The data demonstrate the development of a protective vaccine against ANDV and the lack of a substantial effect of m1Ψ modification on immunogenicity and protection in rodents.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Mesocricetus
- Uridine
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/immunology
- Antibodies, Viral/immunology
- Orthohantavirus/immunology
- Orthohantavirus/genetics
- Antibodies, Neutralizing/immunology
- Germinal Center/immunology
- Pseudouridine/immunology
- Cricetinae
- mRNA Vaccines
- Hemorrhagic Fever, American/prevention & control
- Hemorrhagic Fever, American/immunology
- Hemorrhagic Fever, American/virology
- RNA, Viral/genetics
- RNA, Viral/immunology
- B-Lymphocytes/immunology
- Humans
- Vaccine Development
Collapse
Affiliation(s)
- Ivan V Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Ruben Soto Acosta
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Layne Pruitt
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Perry T Wasdin
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Kritika Kedarinath
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Keziah R Hernandez
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kristyn A Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kharighan Hill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole G Weidner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chad Mire
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Taylor B Engdahl
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | | | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - James E Crowe
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Robert K Abbott
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Masum MHU, Wajed S, Hossain MI, Moumi NR, Talukder A, Rahman MM. An mRNA vaccine for pancreatic cancer designed by applying in silico immunoinformatics and reverse vaccinology approaches. PLoS One 2024; 19:e0305413. [PMID: 38976715 PMCID: PMC11230540 DOI: 10.1371/journal.pone.0305413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is considered a significant global health concern. Chemotherapy and surgery are the mainstays of current pancreatic cancer treatments; however, a few cases are suitable for surgery, and most of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines, mRNA vaccines for pancreatic cancer have more promise because of their delivery, enhanced immune responses, and lower proneness to mutation. We constructed an mRNA vaccine by analyzing S100 family proteins, which are all major activators of receptors for advanced glycation end products. We applied immunoinformatic approaches, including physicochemical properties analysis, structural prediction and validation, molecular docking study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydropathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with generalized Born and surface area solvation analysis of the "Vaccine-TLR-2" (-141.07 kcal/mol) and "Vaccine-TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding affinity for the receptors. Codon optimization also provided a high expression level with a GC content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-cells and T-cells was also observed over a while, with an increased level of helper T-cells and immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for future research and therapeutic development of pancreatic cancer.
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shah Wajed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Infectiology: Biology of Infectious Diseases, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Md Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nusrat Rahman Moumi
- Medical Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Asma Talukder
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Movahed F, Darzi S, Mahdavi P, Salih Mahdi M, Qutaiba B Allela O, Naji Sameer H, Adil M, Zarkhah H, Yasamineh S, Gholizadeh O. The potential use of therapeutics and prophylactic mRNA vaccines in human papillomavirus (HPV). Virol J 2024; 21:124. [PMID: 38822328 PMCID: PMC11143593 DOI: 10.1186/s12985-024-02397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Cervical cancer (CC) and other malignant malignancies are acknowledged to be primarily caused by persistent human papillomavirus (HPV) infection. Historically, vaccinations against viruses that produce neutralizing antibodies unique to the virus have been an affordable way to manage viral diseases. CC risk is decreased, but not eliminated, by HPV vaccinations. Since vaccinations have been made available globally, almost 90% of HPV infections have been successfully avoided. On the lesions and diseases that are already present, however, no discernible treatment benefit has been shown. As a result, therapeutic vaccines that elicit immune responses mediated by cells are necessary for the treatment of established infections and cancers. mRNA vaccines possess remarkable potential in combating viral diseases and malignancy as a result of their superior industrial production, safety, and efficacy. Furthermore, considering the expeditiousness of production, the mRNA vaccine exhibits promise as a therapeutic approach targeting HPV. Given that the HPV-encoded early proteins, including oncoproteins E6 and E7, are consistently present in HPV-related cancers and pre-cancerous lesions and have crucial functions in the progression and persistence of HPV-related diseases, they serve as ideal targets for therapeutic HPV vaccines. The action mechanism of HPV and HPV-related cancer mRNA vaccines, their recent advancements in clinical trials, and the potential for their therapeutic applications are highlighted in this study, which also offers a quick summary of the present state of mRNA vaccines. Lastly, we highlight a few difficulties with mRNA HPV vaccination clinical practice and provide our thoughts on further advancements in this quickly changing sector. It is expected that mRNA vaccines will soon be produced quickly for clinical HPV prevention and treatment.
Collapse
Affiliation(s)
- Fatemeh Movahed
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Satinik Darzi
- Department Of Obstetrics and Gynecology, Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Hasna Zarkhah
- Department of Obstetrics and Gynaecology, Tabriz University of Medical Siences, Tabriz, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | |
Collapse
|
7
|
Kutikuppala LVS, Kourampi I, Kanagala RSD, Bhattacharjee P, Boppana SH. Prospects and Challenges in Developing mRNA Vaccines for Infectious Diseases and Oncogenic Viruses. Med Sci (Basel) 2024; 12:28. [PMID: 38804384 PMCID: PMC11130901 DOI: 10.3390/medsci12020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
mRNA vaccines have emerged as an optimistic technological platform for vaccine innovation in this new scientific era. mRNA vaccines have dramatically altered the domain of vaccinology by offering a versatile and rapid approach to combating infectious diseases and virus-induced cancers. Clinical trials have demonstrated efficacy rates of 94-95% in preventing COVID-19, and mRNA vaccines have been increasingly recognized as a powerful vaccine platform. Although mRNA vaccines have played an essential role in the COVID-19 pandemic, they still have several limitations; their instability and degradation affect their storage, delivery, and over-all efficiency. mRNA is typically enclosed in a transport mechanism to facilitate its entry into the target cell because it is an unstable and negatively charged molecule. For instance, mRNA that is given using lipid-nanoparticle-based vaccine delivery systems (LNPs) solely enters cells through endocytosis, establishing an endosome without damaging the cell membrane. The COVID-19 pandemic has accelerated the development of mRNA vaccine platforms used to treat and prevent several infectious diseases. This technology has the potential to change the future course of the disease by providing a safe and effective way to combat infectious diseases and cancer. A single-stranded genetic sequence found in mRNA vaccines instructs host cells to produce proteins inside ribosomes to elicit immunological responses and prepare the immune system to fight infections or cancer cells. The potential applications of mRNA vaccine technology are vast and can lead to the development of a preferred vaccine pattern. As a result, a new generation of vaccinations has gradually gained popularity and access to the general population. To adapt the design of an antigen, and even combine sequences from different variations in response to new changes in the viral genome, mRNA vaccines may be used. Current mRNA vaccines provide adequate safety and protection, but the duration of that protection can only be determined if further clinical research is conducted.
Collapse
Affiliation(s)
| | - Islam Kourampi
- Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ramya S. D. Kanagala
- Department of Medicine, Dr. KNR University of Health Sciences, Warangal 506007, India;
| | | | - Sri Harsha Boppana
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
8
|
Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, Al-malky HS, Kumarasamy V, Subramaniyan V, Abdel-Daim MM, Uti DE. Revolutionizing Cancer Treatment: Unleashing the Power of Viral Vaccines, Monoclonal Antibodies, and Proteolysis-Targeting Chimeras in the New Era of Immunotherapy. ACS OMEGA 2024; 9:7277-7295. [PMID: 38405458 PMCID: PMC10882662 DOI: 10.1021/acsomega.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
Collapse
Affiliation(s)
- Popat Mohite
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Vaishnavi Yadav
- AETs
St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Ramdas Pandhare
- MESs
College of Pharmacy, Sonai Tal-Newasa, Maharashtra 414105, India
| | - Swastika Maitra
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
- Department
of Microbiology, Adamas University, Kolkata 700 126, West Bengal, India
| | - Fayez M. Saleh
- Department
of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department
of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65431, Saudi Arabia
| | - Hamdan S. Al-malky
- Regional
Drug Information Center, Ministry of Health, Jeddah 11176, Saudi Arabia
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Savetha
Dental College, Savetha Institute of Medical and Technical Sciences, Savetha University, Chennai, Tamil Nadu 600077, India
| | - Mohamed M. Abdel-Daim
- Department
of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box
6231, Jeddah 21442, Saudi Arabia
- Pharmacology
Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel E. Uti
- Department
of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State 970001, Nigeria
| |
Collapse
|
9
|
Guo Y, Awais MM, Fei S, Xia J, Sun J, Feng M. Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals (Basel) 2024; 14:655. [PMID: 38396623 PMCID: PMC10885876 DOI: 10.3390/ani14040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (M.M.A.); (S.F.); (J.X.); (J.S.)
| |
Collapse
|
10
|
Shi J, Shen A, Cheng Y, Zhang C, Yang X. 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics 2023; 15:2721. [PMID: 38140062 PMCID: PMC10748258 DOI: 10.3390/pharmaceutics15122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inactivated vaccines are vaccines made from inactivated pathogens, typically achieved by using chemical or physical methods to destroy the virus's ability to replicate. This type of vaccine can induce the immune system to produce an immune response against specific pathogens, thus protecting the body from infection. In China, the manufacturing of inactivated vaccines has a long history and holds significant importance among all the vaccines available in the country. This type of vaccine is widely used in the prevention and control of infectious diseases. China is dedicated to conducting research on new inactivated vaccines, actively promoting the large-scale production of inactivated vaccines, and continuously improving production technology and quality management. These efforts enable China to meet the domestic demand for inactivated vaccines and gain a certain competitive advantage in the international market. In the future, China will continue to devote itself to the research and production of inactivated vaccines, further enhancing the population's health levels and contributing to social development. This study presents a comprehensive overview of the 30-year evolution of inactivated virus vaccines in China, serving as a reference for the development and production of such vaccines.
Collapse
Affiliation(s)
- Jinrong Shi
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Ailin Shen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yao Cheng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Chi Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
11
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Wei Y, Zheng L, Yang X, Luo Y, Yi C, Gou H. Identification of Immune Subtypes and Candidate mRNA Vaccine Antigens in Small Cell Lung Cancer. Oncologist 2023; 28:e1052-e1064. [PMID: 37399175 PMCID: PMC10628581 DOI: 10.1093/oncolo/oyad193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have demonstrated promising outcomes in small cell lung cancer (SCLC), but not all patients benefit from it. Thus, developing precise treatments for SCLC is a particularly urgent need. In our study, we constructed a novel phenotype for SCLC based on immune signatures. METHODS We clustered patients with SCLC hierarchically in 3 publicly available datasets according to the immune signatures. ESTIMATE and CIBERSORT algorithm were used to evaluate the components of the tumor microenvironment. Moreover, we identified potential mRNA vaccine antigens for patients with SCLC, and qRT-PCR were performed to detect the gene expression. RESULTS We identified 2 SCLC subtypes and named Immunity High (Immunity_H) and Immunity Low (Immunity_L). Meanwhile, we obtained generally consistent results by analyzing different datasets, suggesting that this classification was reliable. Immunity_H contained the higher number of immune cells and a better prognosis compared to Immunity_L. Gene-set enrichment analysis revealed that several immune-related pathways such as cytokine-cytokine receptor interaction, programmed cell death-Ligand 1 expression and programmed cell death-1 checkpoint pathway in cancer were hyperactivated in the Immunity_H. However, most of the pathways enriched in the Immunity_L were not associated with immunity. Furthermore, we identified 5 potential mRNA vaccine antigens of SCLC (NEK2, NOL4, RALYL, SH3GL2, and ZIC2), and they were expressed higher in Immunity_L, it indicated that Immunity_L maybe more suitable for tumor vaccine development. CONCLUSIONS SCLC can be divided into Immunity_H and Immunity_L subtypes. Immunity_H may be more suitable for treatment with ICIs. NEK2, NOL4, RALYL, SH3GL2, and ZIC2 may be act as potential antigens for SCLC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lingnan Zheng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yong Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Hongfeng Gou
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
13
|
Liu X, Huang P, Yang R, Deng H. mRNA Cancer Vaccines: Construction and Boosting Strategies. ACS NANO 2023; 17:19550-19580. [PMID: 37819640 DOI: 10.1021/acsnano.3c05635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In late 2020, the U.S. Food and Drug Administration (FDA) approved a lipid-based mRNA vaccine for the prevention of COVID-19, which has pushed this field to be more closely studied and motivated researchers to delve deeper into mRNA therapeutics. To date, the research on mRNA cancer vaccines has been developed rapidly, and substantial hopeful therapeutic results have been achieved against various solid tumors in clinical trials. In this review, we first introduce three main components of mRNA cancer vaccines, including mRNA antigens, adjuvants, and delivery vectors. Engineering these components can optimize the therapeutic effects of mRNA cancer vaccines. For instance, appropriate modification of mRNA structure can alleviate the poor stability and innate immunogenicity of mRNA, and the use of mRNA delivery vectors can address the issues of low delivery efficiency in vivo. Second, we emphatically discuss some strategies to further improve the efficacy of mRNA cancer vaccines, namely modulating the immunosuppressive tumor environment, optimizing administration routes, achieving targeting delivery to intended tissues or organs, and employing combination therapy. These strategies can strengthen the tumor inhibitory ability of mRNA cancer vaccines and increase the possibility of tumor elimination. Finally, we point out some challenges in the clinical practice of mRNA cancer vaccines and offer our perspectives on future developments in this rapidly evolving field. It is anticipated that mRNA cancer vaccines will be rapidly developed for clinical cancer therapy in the near future.
Collapse
Affiliation(s)
- Xiaoqing Liu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126 China
- Ministry of Education, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Pei Huang
- Ministry of Education, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126 China
| | - Hongzhang Deng
- Ministry of Education, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
14
|
Ronk AJ, Lloyd NM, Zhang M, Atyeo C, Perrett HR, Mire CE, Hastie KM, Sanders RW, Brouwer PJM, Saphire EO, Ward AB, Ksiazek TG, Alvarez Moreno JC, Thaker HM, Alter G, Himansu S, Carfi A, Bukreyev A. A Lassa virus mRNA vaccine confers protection but does not require neutralizing antibody in a guinea pig model of infection. Nat Commun 2023; 14:5603. [PMID: 37699929 PMCID: PMC10497546 DOI: 10.1038/s41467-023-41376-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.
Collapse
Affiliation(s)
- Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Min Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Caroline Atyeo
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02139, US
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology California Campus, Scripps Research, La Jolla, CA, 92037, US
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Kathryn M Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, US
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Erica Olmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, US
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology California Campus, Scripps Research, La Jolla, CA, 92037, US
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | | | - Harshwardhan M Thaker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US
| | - Galit Alter
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02139, US
| | | | | | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, US.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, 77555, US.
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, US.
| |
Collapse
|
15
|
Ramirez F, Zambrano A, Hennis R, Holland N, Lakshmanaswamy R, Chacon J. Sending a Message: Use of mRNA Vaccines to Target the Tumor Immune Microenvironment. Vaccines (Basel) 2023; 11:1465. [PMID: 37766141 PMCID: PMC10534833 DOI: 10.3390/vaccines11091465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While cancer immunotherapies have become central to treatment, challenges associated with the ability of tumors to evade the immune system remain significant obstacles. At the heart of this issue is the tumor immune microenvironment, the complex interplay of the tumor microenvironment and the immune response. Recent advances in mRNA cancer vaccines represent major progress towards overcoming some of the challenges posed by deleterious components of the tumor immune microenvironment. Indeed, major breakthroughs in mRNA vaccine technology, such as the use of replacement nucleotides and lipid nanoparticle delivery, led to the vital success of mRNA vaccine technology in fighting COVID-19. This has in turn generated massive additional interest and investment in the platform. In this review, we detail recent research in the nature of the tumor immune microenvironment and in mRNA cancer vaccines and discuss applications by which mRNA cancer vaccines, often in combination with various adjuvants, represent major areas of potential in overcoming tumor immune microenvironment-imposed obstacles. To this end, we also review current mRNA cancer vaccine clinical trials.
Collapse
Affiliation(s)
- Fabiola Ramirez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Angelica Zambrano
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Robert Hennis
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Nathan Holland
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Rajkumar Lakshmanaswamy
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| |
Collapse
|
16
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
17
|
Kim H, Kirtane AR, Kim NY, Rajesh NU, Tang C, Ishida K, Hayward AM, Langer R, Traverso G. Gastrointestinal Delivery of an mRNA Vaccine Using Immunostimulatory Polymeric Nanoparticles. AAPS J 2023; 25:81. [PMID: 37589795 PMCID: PMC10845796 DOI: 10.1208/s12248-023-00844-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
mRNA vaccines can be translated into protein antigens, in vivo, to effectively induce humoral and cellular immunity against these proteins. While current mRNA vaccines have generated potent immune responses, the need for ultracold storage conditions (- 80 °C) and healthcare professionals to administer the vaccine through the parenteral route has somewhat limited their distribution in rural areas and developing countries. Overcoming these challenges stands to transform future deployment of mRNA vaccines. In this study, we developed an mRNA vaccine that can trigger a systemic immune response through administration via the gastrointestinal (GI) tract and is stable at 4 °C. A library of cationic branched poly(β-amino ester) (PBAE) polymers was synthesized and characterized, from which a polymer with high intracellular mRNA delivery efficiency and immune stimulation capacity was down-selected. mRNA vaccines made with the lead polymer-elicited cellular and humoral immunity in mice. Furthermore, lyophilization conditions of the formulation were optimized to enable storage under refrigeration. Our results suggest that PBAE nanoparticles are potent mRNA delivery platforms that can elicit B cell and T cell activation, including antigen-specific cellular and humoral responses. This system can serve as an easily administrable, potent oral mRNA vaccine.
Collapse
Affiliation(s)
- Hyunjoon Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Ameya R Kirtane
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Yoon Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Netra Unni Rajesh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Department of Bioengineering, Stanford University, Stanford, California, 94305, USA
| | - Chaoyang Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alison M Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusettes, 02139, USA.
| |
Collapse
|
18
|
Shahrear S, Islam ABMMK. Modeling of MT. P495, an mRNA-based vaccine against the phosphate-binding protein PstS1 of Mycobacterium tuberculosis. Mol Divers 2023; 27:1613-1632. [PMID: 36006502 PMCID: PMC9406248 DOI: 10.1007/s11030-022-10515-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a contagious disease that predominantly affects the lungs, but can also spread to other organs via the bloodstream. TB affects about one-fourth population of the world. With age, the effectiveness of Bacillus Calmette-Guérin (BCG), the only authorized TB vaccine, decreases. In the quest for a prophylactic and immunotherapeutic vaccine, in this study, a hypothetical mRNA vaccine is delineated, named MT. P495, implementing in silico and immunoinformatics approaches to evaluate key aspects and immunogenic epitopes across the PstS1, a highly conserved periplasmic protein of Mycobacterium tuberculosis (Mtb). PstS1 elicited the potential to generate 99.9% population coverage worldwide. The presence of T- and B-cell epitopes across the PstS1 protein were validated using several computational prediction tools. Molecular docking and dynamics simulation confirmed stable epitope-allele interaction. Immune cell response to the antigen clearance rate was verified by the in silico analysis of immune simulation. Codon optimization confirmed the efficient translation of the mRNA in the host cell. With Toll-like receptors, the vaccine exhibited stable and strong interactions. Findings suggest that the MT. P495 vaccine probably will elicit specific immune responses against Mtb. This mRNA vaccine model is a ready source for further wet-lab validation to confirm the efficacy of this proposed vaccine candidate.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
19
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
20
|
Huang Y, Zhu X, Guo X, Zhou Y, Liu D, Mao J, Xiong Y, Deng Y, Gao X. Advances in mRNA vaccines for viral diseases. J Med Virol 2023; 95:e28924. [PMID: 37417396 DOI: 10.1002/jmv.28924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Since the onset of the pandemic caused by severe acute respiratory syndrome coronavirus 2, messenger RNA (mRNA) vaccines have demonstrated outstanding performance. mRNA vaccines offer significant advantages over conventional vaccines in production speed and cost-effectiveness, making them an attractive option against other viral diseases. This article reviewed recent advances in viral mRNA vaccines and their delivery systems to provide references and guidance for developing mRNA vaccines for new viral diseases.
Collapse
Affiliation(s)
- Yukai Huang
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuerui Zhu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Guo
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Dongying Liu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingrui Mao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Department of Pharmaceutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinghong Gao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Provincial Department of Education, Key Laboratory of Infectious Disease & Bio-Safety, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
21
|
Hajiaghapour Asr M, Dayani F, Saedi Segherloo F, Kamedi A, Neill AO, MacLoughlin R, Doroudian M. Lipid Nanoparticles as Promising Carriers for mRNA Vaccines for Viral Lung Infections. Pharmaceutics 2023; 15:1127. [PMID: 37111613 PMCID: PMC10146241 DOI: 10.3390/pharmaceutics15041127] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, there has been an increase in deaths due to infectious diseases, most notably in the context of viral respiratory pathogens. Consequently, the focus has shifted in the search for new therapies, with attention being drawn to the use of nanoparticles in mRNA vaccines for targeted delivery to improve the efficacy of these vaccines. Notably, mRNA vaccine technologies denote as a new era in vaccination due to their rapid, potentially inexpensive, and scalable development. Although they do not pose a risk of integration into the genome and are not produced from infectious elements, they do pose challenges, including exposing naked mRNAs to extracellular endonucleases. Therefore, with the development of nanotechnology, we can further improve their efficacy. Nanoparticles, with their nanometer dimensions, move more freely in the body and, due to their small size, have unique physical and chemical properties. The best candidates for vaccine mRNA transfer are lipid nanoparticles (LNPs), which are stable and biocompatible and contain four components: cationic lipids, ionizable lipids, polyethylene glycols (PEGs), and cholesterol, which are used to facilitate cytoplasmic mRNA delivery. In this article, the components and delivery system of mRNA-LNP vaccines against viral lung infections such as influenza, coronavirus, and respiratory syncytial virus are reviewed. Moreover, we provide a succinct overview of current challenges and potential future directions in the field.
Collapse
Affiliation(s)
- Mena Hajiaghapour Asr
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Dayani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Saedi Segherloo
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Ali Kamedi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Andrew O’ Neill
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
22
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
23
|
Zhang HL. Current Status and Patent Prospective of Lipid Nanoparticle for mRNA Delivery. Expert Opin Ther Pat 2023; 33:125-131. [PMID: 36958374 DOI: 10.1080/13543776.2023.2195541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
INTRODUCTION mRNA-LNP delivery is currently a research hotspot in pharmaceutics. Lipid nanoparticle has emerged in pharmaceutical industry as popular and effective vehicles for mRNA delivery. It is therefore significant to understand current landscape and recent development of lipid nanoparticle for mRNA delivery. AREAS COVERED This article provides patent landscape and recent development for mRNA-LNP delivery by US-granted patent analysis. The US-granted patents from January 2003 to December 2022 were retrieved and analyzed by using patsnap. EXPERT OPINION Globally, the present article was the first one which showed that mRNA-LNP delivery system demonstrated three therapeutic applications including vaccines, anticancer, and diseases associated with protein or enzyme deficiencies. Modernatx is most powerful company, and leads almost all technologies in mRNA-LNP field. In addition, the technologies related to lipid nanoparticle for mRNA delivery are virtually controlled by top three assignees. mRNA-LNP delivery in therapy of diseases associated with enzyme deficiencies may be a future trend. The article provides recent advances in lipid nanoparticle for mRNA delivery.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co. Ltd. Baotou, China
| |
Collapse
|
24
|
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
25
|
Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Front Immunol 2022; 13:1029069. [PMID: 36591226 PMCID: PMC9794995 DOI: 10.3389/fimmu.2022.1029069] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has emerged as a breakthrough strategy in cancer treatment. mRNA vaccines are an attractive and powerful immunotherapeutic platform against cancer because of their high potency, specificity, versatility, rapid and large-scale development capability, low-cost manufacturing potential, and safety. Recent technological advances in mRNA vaccine design and delivery have accelerated mRNA cancer vaccines' development and clinical application. In this review, we present various cancer vaccine platforms with a focus on nucleic acid vaccines. We discuss rational design and optimization strategies for mRNA cancer vaccine development. We highlight the platforms available for delivery of the mRNA vaccines with a focus on lipid nanoparticles (LNPs) based delivery systems. Finally, we discuss the limitations of mRNA cancer vaccines and future challenges.
Collapse
Affiliation(s)
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
26
|
Noureldine HA, Maamari J, El Helou MO, Chedid G, Farra A, Husni R, Mokhbat JE. The effect of the BNT162b2 vaccine on antinuclear antibody and antiphospholipid antibody levels. Immunol Res 2022; 70:800-810. [PMID: 35978253 PMCID: PMC9385410 DOI: 10.1007/s12026-022-09309-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
The Food and Drug Administration (FDA) approved the first SARS-CoV-2 mRNA vaccine (Pfizer-BioNTech) in December 2020. New adverse events have emerged since these vaccines have reached market. Although no clear association between messenger ribonucleic acid (mRNA) vaccines and autoimmunity has emerged, the significance of such an association warrants further exploration. After obtaining consent, a standardized survey on baseline characteristics and other relevant variables was conducted on unvaccinated individuals who were scheduled for vaccination and had not previously contracted COVID-19. Blood samples were collected from participants prior to the first dose, prior to the second dose, and 1 month after the second dose. All collected samples were tested for antinuclear antibody (ANA) titers using indirect immunofluorescence microscopy kits, and antiphospholipid (APS) immunoglobulin M (IgM) and immunoglobulin G (IgG) levels using an enzyme-linked immunoassay (ELISA) technique. ANA titers were positive for 9 participants out of 101 (8.9%) in the first pre-vaccination draw. For the second draw, the number of participants testing positive for ANA decreased to 5 (5%). For the last draw, 6 (5.9%) participants tested positive for ANA titers. One participant tested positive for APS IgM at the first pre-vaccination draw, 2 tested positive at the second draw, and 2 at the third draw. As for APS IgG titers, all participants tested negative in the three draws. McNemar's test for two dependent categorical outcomes was conducted on all variables and did not show a statistical significance. The McNemar test of these two composite variables (i.e., ANA/APS, first draw vs. ANA/APS, second and third draws) did not show statistical significance. The 2-sided exact significance of the McNemar test was 1.0. The Friedman test also showed no significance (p = 0.459). No association was found between BNT162b2 vaccine administration and changes in APS and ANA titers. The benefits of the BNT162b2 vaccine significantly outweigh any possible risk of autoimmune dysregulation considering the current evidence.
Collapse
Affiliation(s)
- Hussein A Noureldine
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Julian Maamari
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Othman El Helou
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Scholars in Health Research Program, Faculty of Medicine and Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Georges Chedid
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Anna Farra
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon
| | - Roula Husni
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon
| | - Jacques E Mokhbat
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon.
| |
Collapse
|
27
|
Thorn CR, Sharma D, Combs R, Bhujbal S, Romine J, Zheng X, Sunasara K, Badkar A. The journey of a lifetime - development of Pfizer's COVID-19 vaccine. Curr Opin Biotechnol 2022; 78:102803. [PMID: 36162187 PMCID: PMC9433349 DOI: 10.1016/j.copbio.2022.102803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
It would be apt to say that one of the greatest accomplishments in modern medicine has been the development of vaccines against COVID-19, which had paralyzed the entire world for more than a year. Pfizer and BioNTech codeveloped the first COVID-19 vaccine that was granted emergency-use authorization or conditional approval in several regions globally. This article is an attempt to go 'behind-the-scenes' of this development process and highlight key factors that allowed us to move with this unprecedented speed, while adhering to normal vaccine-development requirements to generate the information the regulatory authorities needed to assess the safety and effectiveness of a vaccine to prevent an infectious disease, including quality and manufacturing standards. This is also a story of how Pfizer and BioNTech leveraged our combined skill sets and experience to respond to the global health crisis to progress this program swiftly while ensuring the compliance with our high-quality standards and keeping patient safety at the forefront. We will also highlight multiple other factors that were instrumental in our success.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Divya Sharma
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Rodney Combs
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Sonal Bhujbal
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Jennifer Romine
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Xiaolu Zheng
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Khurram Sunasara
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Advait Badkar
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA.
| |
Collapse
|
28
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
30
|
Engineering Modified mRNA-Based Vaccine against Dengue Virus Using Computational and Reverse Vaccinology Approaches. Int J Mol Sci 2022; 23:ijms232213911. [PMID: 36430387 PMCID: PMC9698390 DOI: 10.3390/ijms232213911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus belonging to the family Flaviviridae and its four serotypes are responsible for dengue infections, which extend over 60 countries in tropical and subtropical areas of the world including Pakistan. During the ongoing dengue outbreak in Pakistan (2022), over 30,000 cases have been reported, and over 70 lives have been lost. The only commercialized vaccine against DENV, Dengvaxia, cannot be administered as a prophylactic measure to cure this infection due to various complications. Using machine learning and reverse vaccinology approaches, this study was designed to develop a tetravalent modified nucleotide mRNA vaccine using NS1, prM, and EIII sequences of dengue virus from Pakistani isolates. Based on high antigenicity, non-allergenicity, and toxicity profiling, B-cell epitope, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) putative vaccine targets were predicted. Molecular docking confirmed favorable interactions between T-cell epitopes and their respective HLA alleles, while normal mode analysis validated high-affinity interactions of vaccine proteins with immune receptors. In silico immune simulations confirmed adequate immune responses to eliminate the antigen and generate memory. Codon optimization, physicochemical features, nucleotide modifications, and suitable vector availability further ensured better antigen expression and adaptive immune responses. We predict that this vaccine construct may prove to be a good vaccinal candidate against dengue virus in vitro as well.
Collapse
|
31
|
Huang T, Peng L, Han Y, Wang D, He X, Wang J, Ou C. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol 2022; 13:922301. [PMID: 36090974 PMCID: PMC9458914 DOI: 10.3389/fimmu.2022.922301] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) vaccines constitute an emerging therapeutic method with the advantages of high safety and efficiency as well as easy synthesis; thus, they have been widely used in various human diseases, especially in malignant cancers. However, the mRNA vaccine technology has some limitations, such as instability and low transitive efficiency in vivo, which greatly restrict its application. The development of nanotechnology in the biomedical field offers new strategies and prospects for the early diagnosis and treatment of human cancers. Recent studies have demonstrated that Lipid nanoparticle (LNP)-based mRNA vaccines can address the poor preservation and targeted inaccuracy of mRNA vaccines. As an emerging cancer therapy, mRNA vaccines potentially have broad future applications. Unlike other treatments, cancer mRNA vaccines provide specific, safe, and tolerable treatments. Preclinical studies have used personalized vaccines to demonstrate the anti-tumor effect of mRNA vaccines in the treatment of various solid tumors, including colorectal and lung cancer, using these in a new era of therapeutic cancer vaccines. In this review, we have summarized the latest applications and progress of LNP-based mRNA vaccines in cancers, and discussed the prospects and limitations of these fields, thereby providing novel strategies for the targeted therapy of cancers.
Collapse
Affiliation(s)
- Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| |
Collapse
|
32
|
Ripoll M, Bernard MC, Vaure C, Bazin E, Commandeur S, Perkov V, Lemdani K, Nicolaï MC, Bonifassi P, Kichler A, Frisch B, Haensler J. An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates. Biomaterials 2022; 286:121570. [PMID: 35576809 PMCID: PMC9078044 DOI: 10.1016/j.biomaterials.2022.121570] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.
Collapse
Affiliation(s)
- Manon Ripoll
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | | | - Céline Vaure
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Emilie Bazin
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Sylvie Commandeur
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Vladimir Perkov
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Katia Lemdani
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Neovacs, 3 impasse Reille, 75014 Paris, France.
| | - Marie-Claire Nicolaï
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Patrick Bonifassi
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Benoit Frisch
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Jean Haensler
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| |
Collapse
|
33
|
Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022; 345:314-333. [PMID: 35331783 PMCID: PMC8935967 DOI: 10.1016/j.jconrel.2022.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.
Collapse
Affiliation(s)
- Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Irfan
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; School of Business Administration, Ilma University, Karachi 75190, Pakistan
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
34
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Wang Z, Ai Q, Huang S, Ou Y, Gao Y, Tong T, Fan H. Immune Escape Mechanism and Vaccine Research Progress of African Swine Fever Virus. Vaccines (Basel) 2022; 10:vaccines10030344. [PMID: 35334976 PMCID: PMC8949402 DOI: 10.3390/vaccines10030344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body’s inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body’s immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yating Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Tiezhu Tong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| |
Collapse
|
36
|
Farnudian-Habibi A, Mirjani M, Montazer V, Aliebrahimi S, Katouzian I, Abdolhosseini S, Rahmani A, Keyvani H, Ostad SN, Rad-Malekshahi M. Review on Approved and Inprogress COVID-19 Vaccines. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e124228. [PMID: 36060923 PMCID: PMC9420219 DOI: 10.5812/ijpr.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
The last generation of Coronavirus named COVID-19 is responsible for the recent worldwide outbreak. Concerning the widespread and quick predominance, there is a critical requirement for designing appropriate vaccines to surmount this grave problem. Correspondingly, in this revision, COVID-19 vaccines (which are being developed until March 29th, 2021) are classified into specific and non-specific categories. Specific vaccines comprise genetic-based vaccines (mRNA, DNA), vector-based, protein/recombinant protein vaccines, inactivated viruses, live-attenuated vaccines, and novel strategies including microneedle arrays (MNAs), and nanoparticles vaccines. Moreover, specific vaccines such as BCG, MRR, and a few other vaccines are considered Non-specific. What is more, according to the significance of Bioinformatic sciences in the cutting-edge vaccine design and rapid outbreak of COVID-19, herein, Bioinformatic principles including reverse vaccinology, epitopes prediction/selection and, their further applications in the design of vaccines are discussed. Last but not least, safety, challenges, advantages, and future prospects of COVID-19 vaccines are highlighted.
Collapse
Affiliation(s)
- Amir Farnudian-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Mirjani
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazer
- Department of Clinical Pharmacy, Virtual University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, 3168, Victoria, Australia
| | - Saeed Abdolhosseini
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, 14395-515 Tehran, Iran
| | - Ali Rahmani
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Xia H, Yu B, Jiang Y, Cheng R, Lu X, Wu H, Zhu B. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription. RNA Biol 2022; 19:1130-1142. [PMID: 36299232 PMCID: PMC9624206 DOI: 10.1080/15476286.2022.2139113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 10/31/2022] Open
Abstract
RNA research and applications are underpinned by in vitro transcription (IVT), but RNA impurities resulting from the enzymatic reagents severely impede downstream applications. To improve the stability and purity of synthesized RNA, we have characterized a novel single-subunit RNA polymerase (RNAP) encoded by the psychrophilic phage VSW-3 from a plateau lake. The VSW-3 RNAP is capable of carrying out in vitro RNA synthesis at low temperatures (4-25°C). Compared to routinely used T7 RNAP, VSW-3 RNAP provides a similar yield of transcripts but is insensitive to class II transcription terminators and synthesizes RNA without redundant 3'-cis extensions. More importantly, through dot-blot detection with the J2 monoclonal antibody, we found that the RNA products synthesized by VSW-3 RNAP contained a much lower amount of double-stranded RNA byproducts (dsRNA), which are produced by transcription from both directions and are significant in T7 RNAP IVT products. Taken together, the VSW-3 RNAP almost eliminates both terminal loop-back dsRNA and full-length dsRNA in IVT and thus is especially advantageous for producing RNA for in vivo use.
Collapse
Affiliation(s)
- Heng Xia
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Jiang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
38
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
39
|
Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol 2021; 19:386-410. [PMID: 35354425 PMCID: PMC8973339 DOI: 10.1080/15476286.2022.2055923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have been studied for decades, but only recently, during the COVID-19 pandemic, has the technology garnered noteworthy attention. In contrast to traditional vaccines, mRNA vaccines elicit a more balanced immune response, triggering both humoral and cellular components of the adaptive immune system. However, some inherent hurdles associated with stability, immunogenicity, in vivo delivery, along with the novelty of the technology, have generated scepticism in the adoption of mRNA vaccines. Recent developments have pushed to bypass these issues and the approval of mRNA-based vaccines to combat COVID-19 has further highlighted the feasibility, safety, efficacy, and rapid development potential of this platform, thereby pushing it to the forefront of emerging therapeutics. This review aims to demystify mRNA vaccines, delineating the evolution of the technology which has emerged as a timely solution to COVID-19 and exploring the immense potential it offers as a prophylactic option for other cryptic diseases.
Collapse
Affiliation(s)
- Nusrat Zahan Rouf
- School of Biological Sciences, Faculty of Biology, Medicine, & Health, University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Sumit Biswas
- Department of Neurophysiology, Retinal Physiology and Gene Therapy, Institute of Physiology and Pathophysiology, University of Marburg, Deutschhausstrasse. 2D-35037, Marburg, Germany
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, & Health, University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Labiba Mustabina Oishee
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Mutia Masuka Muna
- Department of Biological Sciences, University at Buffalo, Buffalo14260, New York, USA
| |
Collapse
|
40
|
Abstract
The SARS-CoV-2 infection spread rapidly throughout the world and appears to involve in both humoral and cell-mediated immunity. SARS-CoV-2 is attached to host cells via binding to the viral spike (S) proteins and its cellular receptors angiotensin-converting enzyme 2 (ACE2). Consequently, the S protein is primed with serine proteases TMPRSS2 and TMPRSS4, which facilitate the fusion of viral and cellular membranes result in the entry of viral RNA into the host cell. Vaccines are urgently required to combat the coronavirus disease 2019 (COVID-19) outbreak and aid in the recovery to pre-pandemic levels of normality. The long-term protective immunity is provided by the vaccine antigen (or pathogen)-specific immune effectors and the activation of immune memory cells that can be efficiently and rapidly reactivated upon pathogen exposure. Research efforts aimed towards the design and development of vaccines for SARS-CoV-2 are increasing. Numerous coronavirus disease 2019 (COVID-19) vaccines have passed late-stage clinical investigations with promising outcomes. This review focuses on the present state and future prospects of COVID-19 vaccines research and development, with a particular emphasis on immunological mechanisms of various COVID-19vaccines such as adenoviral vector-based vaccines, mRNA vaccines, and DNA vaccines that elicits immunological responses against SARS-CoV-2 infections in humans.
Collapse
|
41
|
Ma S, Ba Y, Ji H, Wang F, Du J, Hu S. Recognition of Tumor-Associated Antigens and Immune Subtypes in Glioma for mRNA Vaccine Development. Front Immunol 2021; 12:738435. [PMID: 34603319 PMCID: PMC8484904 DOI: 10.3389/fimmu.2021.738435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Although mRNA vaccines have been efficient for combating a variety of tumors, their effectiveness against glioma remains unclear. There is growing evidence that immunophenotyping can reflect the comprehensive immune status and microenvironment of the tumor, which correlates closely with treatment response and vaccination potency. The purpose of this research was to screen for effective antigens in glioma that could be used for developing mRNA vaccines and to further differentiate the immune subtypes of glioma to create an selection criteria for suitable patients for vaccination. Methods Gene expression profiles and clinical data of 698 glioma samples were extracted from The Cancer Genome Atlas, and RNA_seq data of 1018 glioma samples was gathered from Chinese Glioma Genome Atlas. Gene Expression Profiling Interactive Analysis was used to determine differential expression genes and prognostic markers, cBioPortal software was used to verify gene alterations, and Tumor Immune Estimation Resource was used to investigate the relationships among genes and immune infiltrating cells. Consistency clustering was applied for consistent matrix construction and data aggregation, Gene oncology enrichment was performed for functional annotation, and a graph learning-based dimensionality reduction method was applied to describe the subtypes of immunity. Results Four overexpressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in glioma, including TP53, IDH1, C3, and TCF12. Besides, four immune subtypes of glioma (IS1-IS4) and 10 immune gene modules were identified consistently in the TCGA data. The immune subtypes had diverse molecular, cellular, and clinical features. IS1 and IS4 displayed an immune-activating phenotype and were associated with worse survival than the other two subtypes, while IS2 and IS3 had lower levels of tumor immune infiltration. Immunogenic cell death regulators and immune checkpoints were also diversely expressed in the four immune subtypes. Conclusion TP53, IDH1, C3, and TCF12 are effective antigens for the development of anti-glioma mRNA vaccines. We found four stable and repeatable immune subtypes of human glioma, the classification of the immune subtypes of glioma may play a crucial role in the predicting mRNA vaccine outcome.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
42
|
Cai X, Li JJ, Liu T, Brian O, Li J. Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design. Brief Funct Genomics 2021; 20:289-303. [PMID: 34089044 PMCID: PMC8194884 DOI: 10.1093/bfgp/elab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have recently emerged as a new type of vaccine technology, showing strong potential to combat the COVID-19 pandemic. In addition to SARS-CoV-2 which caused the pandemic, mRNA vaccines have been developed and tested to prevent infectious diseases caused by other viruses such as Zika virus, the dengue virus, the respiratory syncytial virus, influenza H7N9 and Flavivirus. Interestingly, mRNA vaccines may also be useful for preventing non-infectious diseases such as diabetes and cancer. This review summarises the current progresses of mRNA vaccines designed for a range of diseases including COVID-19. As epitope study is a primary component in the in silico design of mRNA vaccines, we also survey on advanced bioinformatics and machine learning algorithms which have been used for epitope prediction, and review on user-friendly software tools available for this purpose. Finally, we discuss some of the unanswered concerns about mRNA vaccines, such as unknown long-term side effects, and present with our perspectives on future developments in this exciting area.
Collapse
Affiliation(s)
- Xinhui Cai
- Data Science Institute, Faculty of Engineering & IT, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| | - Tao Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| | - Oliver Brian
- Children’s Cancer Institute Australia, University of New South Wales Sydney, Children’s Cancer Institute Australia, Randwick, Sydney, 2031, New South Wales, Australia
| | - Jinyan Li
- Data Science Institute, Faculty of Engineering & IT, University of Technology Sydney, 15 Broadway, Ultimo, 2007, New South Wales, Australia
| |
Collapse
|
43
|
Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, Sanders NN, Remaut K. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev 2021; 176:113900. [PMID: 34324884 PMCID: PMC8325057 DOI: 10.1016/j.addr.2021.113900] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The recent approval of messenger RNA (mRNA)-based vaccines to combat the SARS-CoV-2 pandemic highlights the potential of both conventional mRNA and self-amplifying mRNA (saRNA) as a flexible immunotherapy platform to treat infectious diseases. Besides the antigen it encodes, mRNA itself has an immune-stimulating activity that can contribute to vaccine efficacy. This self-adjuvant effect, however, will interfere with mRNA translation and may influence the desired therapeutic outcome. To further exploit its potential as a versatile therapeutic platform, it will be crucial to control mRNA's innate immune-stimulating properties. In this regard, we describe the mechanisms behind the innate immune recognition of mRNA and provide an extensive overview of strategies to control its innate immune-stimulating activity. These strategies range from modifications to the mRNA backbone itself, optimization of production and purification processes to the combination with innate immune inhibitors. Furthermore, we discuss the delicate balance of the self-adjuvant effect in mRNA vaccination strategies, which can be both beneficial and detrimental to the therapeutic outcome.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
44
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol 2021; 12:679344. [PMID: 34305909 PMCID: PMC8293291 DOI: 10.3389/fimmu.2021.679344] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, mRNA vaccines have become a significant type of therapeutic and have created new fields in the biopharmaceutical industry. mRNA vaccines are promising next-generation vaccines that have introduced a new age in vaccinology. The recent approval of two COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) has accelerated mRNA vaccine technology and boosted the pharmaceutical and biotechnology industry. These mRNA vaccines will help to tackle COVID-19 pandemic through immunization, offering considerable hope for future mRNA vaccines. Human trials with data both from mRNA cancer vaccines and mRNA infectious disease vaccines have provided encouraging results, inspiring the pharmaceutical and biotechnology industries to focus on this area of research. In this article, we discuss current mRNA vaccines broadly in two parts. In the first part, mRNA vaccines in general and COVID-19 mRNA vaccines are discussed. We presented the mRNA vaccine structure in general, the different delivery systems, the immune response, and the recent clinical trials for mRNA vaccines (both for cancer mRNA vaccines and different infectious diseases mRNA vaccines). In the second part, different COVID-19 mRNA vaccines are explained. Finally, we illustrated a snapshot of the different leading mRNA vaccine developers, challenges, and future prospects of mRNA vaccines.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
45
|
Löffler P. Review: Vaccine Myth-Buster - Cleaning Up With Prejudices and Dangerous Misinformation. Front Immunol 2021; 12:663280. [PMID: 34177902 PMCID: PMC8222972 DOI: 10.3389/fimmu.2021.663280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although vaccines have already saved and will continue to save millions of lives, they are under attack. Vaccine safety is the main target of criticism. The rapid distribution of false information, or even conspiracy theories on the internet has tremendously favored vaccine hesitancy. The World Health Organization (WHO) named vaccine hesitancy one of the top ten threats to global health in 2019. Parents and patients have several concerns about vaccine safety, of which the ubiquitous anxieties include inactivating agents, adjuvants, preservatives, or new technologies such as genetic vaccines. In general, increasing doubts concerning side effects have been observed, which may lead to an increasing mistrust of scientific results and thus, the scientific method. Hence, this review targets five topics concerning vaccines and reviews current scientific publications in order to summarize the available information refuting conspiracy theories and myths about vaccination. The topics have been selected based on the author's personal perception of the most frequently occurring safety controversies: the inactivation agent formaldehyde, the adjuvant aluminum, the preservative mercury, the mistakenly-drawn correlation between vaccines and autism and genetic vaccines. The scientific literature shows that vaccine safety is constantly studied. Furthermore, the literature does not support the allegations that vaccines may cause a serious threat to general human life. The author suggests that more researchers explaining their research ideas, methods and results publicly could strengthen the general confidence in science. In general, vaccines present one of the safest and most cost-effective medications and none of the targeted topics raised serious health concerns.
Collapse
Affiliation(s)
- Paul Löffler
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
46
|
Chauhan DS, Dhasmana A, Laskar P, Prasad R, Jain NK, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Nanotechnology synergized immunoengineering for cancer. Eur J Pharm Biopharm 2021; 163:72-101. [PMID: 33774162 PMCID: PMC8170847 DOI: 10.1016/j.ejpb.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nishant K Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
47
|
Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021; 39:2190-2200. [PMID: 33771389 PMCID: PMC7987532 DOI: 10.1016/j.vaccine.2021.03.038] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Vaccines are one of the most important tools in public health and play an important role in infectious diseases control. Owing to its precision, safe profile and flexible manufacturing, mRNA vaccines are reaching the stoplight as a new alternative to conventional vaccines. In fact, mRNA vaccines were the technology of choice for many companies to combat the Covid-19 pandemic, and it was the first technology to be approved in both United States and in Europe Union as a prophylactic treatment. Additionally, mRNA vaccines are being studied in the clinic to treat a number of diseases including cancer, HIV, influenza and even genetic disorders. The increased demand for mRNA vaccines requires a technology platform and cost-effective manufacturing process with a well-defined product characterisation. Large scale production of mRNA vaccines consists in a 1 or 2-step in vitro reaction followed by a purification platform with multiple steps that can include Dnase digestion, precipitation, chromatography or tangential flow filtration. In this review we describe the current state-of-art of mRNA vaccines, focusing on the challenges and bottlenecks of manufacturing that need to be addressed to turn this new vaccination technology into an effective, fast and cost-effective response to emerging health crises.
Collapse
Affiliation(s)
- Sara Sousa Rosa
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Duarte M F Prazeres
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana M Azevedo
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom.
| |
Collapse
|
48
|
Ho W, Gao M, Li F, Li Z, Zhang X, Xu X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv Healthc Mater 2021; 10:e2001812. [PMID: 33458958 PMCID: PMC7995055 DOI: 10.1002/adhm.202001812] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/06/2020] [Indexed: 01/07/2023]
Abstract
Nucleic acid vaccines are a method of immunization aiming to elicit immune responses akin to live attenuated vaccines. In this method, DNA or messenger RNA (mRNA) sequences are delivered to the body to generate proteins, which mimic disease antigens to stimulate the immune response. Advantages of nucleic acid vaccines include stimulation of both cell-mediated and humoral immunity, ease of design, rapid adaptability to changing pathogen strains, and customizable multiantigen vaccines. To combat the SARS-CoV-2 pandemic, and many other diseases, nucleic acid vaccines appear to be a promising method. However, aid is needed in delivering the fragile DNA/mRNA payload. Many delivery strategies have been developed to elicit effective immune stimulation, yet no nucleic acid vaccine has been FDA-approved for human use. Nanoparticles (NPs) are one of the top candidates to mediate successful DNA/mRNA vaccine delivery due to their unique properties, including unlimited possibilities for formulations, protective capacity, simultaneous loading, and delivery potential of multiple DNA/mRNA vaccines. This review will summarize the many varieties of novel NP formulations for DNA and mRNA vaccine delivery as well as give the reader a brief synopsis of NP vaccine clinical trials. Finally, the future perspectives and challenges for NP-mediated nucleic acid vaccines will be explored.
Collapse
Affiliation(s)
- William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Fengqiao Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Zhongyu Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringNew Jersey Institute of Technology323 Dr Martin Luther King Jr BlvdNewarkNJ07102USA
| |
Collapse
|
49
|
Ayad C, Libeau P, Lacroix-Gimon C, Ladavière C, Verrier B. LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced In Vitro mRNA Transfection Compared to Liposomes. Pharmaceutics 2021; 13:377. [PMID: 33809164 PMCID: PMC7999670 DOI: 10.3390/pharmaceutics13030377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The approval of two mRNA vaccines as urgent prophylactic treatments against Covid-19 made them a realistic alternative to conventional vaccination methods. However, naked mRNA is rapidly degraded by the body and cannot effectively penetrate cells. Vectors capable of addressing these issues while allowing endosomal escape are therefore needed. To date, the most widely used vectors for this purpose have been lipid-based vectors. Thus, we have designed an innovative vector called LipoParticles (LP) consisting of poly(lactic) acid (PLA) nanoparticles coated with a 15/85 mol/mol DSPC/DOTAP lipid membrane. An in vitro investigation was carried out to examine whether the incorporation of a solid core offered added value compared to liposomes alone. To that end, a formulation strategy that we have named particulate layer-by-layer (pLbL) was used. This method permitted the adsorption of nucleic acids on the surface of LP (mainly by means of electrostatic interactions through the addition of LAH4-L1 peptide), allowing both cellular penetration and endosomal escape. After a thorough characterization of size, size distribution, and surface charge- and a complexation assessment of each vector-their transfection capacity and cytotoxicity (on antigenic presenting cells, namely DC2.4, and epithelial HeLa cells) were compared. LP have been shown to be significantly better transfecting agents than liposomes through pLbL formulation on both HeLa and DC 2.4 cells. These data illustrate the added value of a solid particulate core inside a lipid membrane, which is expected to rigidify the final assemblies and makes them less prone to early loss of mRNA. In addition, this assembly promoted not only efficient delivery of mRNA, but also of plasmid DNA, making it a versatile nucleic acid carrier that could be used for various vaccine applications. Finally, if the addition of the LAH4-L1 peptide systematically leads to toxicity of the pLbL formulation on DC 2.4 cells, the optimization of the nucleic acid/LAH4-L1 peptide mass ratio becomes an interesting strategy-essentially reducing the peptide intake to limit its cytotoxicity while maintaining a relevant transfection efficiency.
Collapse
Affiliation(s)
- Camille Ayad
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Pierre Libeau
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Céline Lacroix-Gimon
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Catherine Ladavière
- UMR 5223: Ingénierie des Matériaux Polymères, CNRS/Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment POLYTECH, 15 bd André Latarjet, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| |
Collapse
|
50
|
Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the Cold Reality of mRNA Vaccine Stability. J Pharm Sci 2021; 110:997-1001. [PMID: 33321139 PMCID: PMC7834447 DOI: 10.1016/j.xphs.2020.12.006] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
As mRNA vaccines became the frontrunners in late-stage clinical trials to fight the COVID-19 pandemic, challenges surrounding their formulation and stability became readily apparent. In this commentary, we first describe company proposals, based on available public information, for the (frozen) storage of mRNA vaccine drug products across the vaccine supply chain. We then review the literature on the pharmaceutical stability of mRNA vaccine candidates, including attempts to improve their stability, analytical techniques to monitor their stability, and regulatory guidelines covering product characterization and storage stability. We conclude that systematic approaches to identify the key physicochemical degradation mechanism(s) of formulated mRNA vaccine candidates are currently lacking. Rational design of optimally stabilized mRNA vaccine formulations during storage, transport, and administration at refrigerated or ambient temperatures should thus have top priority in the pharmaceutical development community. In addition to evidence of human immunogenicity against multiple viral pathogens, including compelling efficacy results against COVID-19, another key strength of the mRNA vaccine approach is that it is readily adaptable to rapidly address future outbreaks of new emerging infectious diseases. Consequently, we should not wait for the next pandemic to address and solve the challenges associated with the stability and storage of formulated mRNA vaccines.
Collapse
Affiliation(s)
- Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|