1
|
Rouskas K, Bocher O, Simistiras A, Emmanouil C, Mantas P, Skoulakis A, Park YC, Dimopoulos A, Glentis S, Kastenmüller G, Zeggini E, Dimas AS. Periodic dietary restriction of animal products induces metabolic reprogramming in humans with effects on cardiometabolic health. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:14. [PMID: 40225784 PMCID: PMC11981922 DOI: 10.1038/s44324-025-00057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Dietary interventions constitute powerful approaches for disease prevention and treatment. However, the molecular mechanisms through which diet affects health remain underexplored in humans. Here, we compare plasma metabolomic and proteomic profiles between dietary states for a unique group of individuals who alternate between omnivory and restriction of animal products for religious reasons. We find that short-term restriction drives reductions in levels of lipid classes and of branched-chain amino acids, not detected in a control group of individuals, and results in metabolic profiles associated with decreased risk for all-cause mortality. We show that 23% of proteins whose levels are affected by dietary restriction are druggable targets and reveal that pro-longevity hormone FGF21 and seven additional proteins (FOLR2, SUMF2, HAVCR1, PLA2G1B, OXT, SPP1, HPGDS) display the greatest magnitude of change. Through Mendelian randomization we demonstrate potentially causal effects of FGF21 and HAVCR1 on risk for type 2 diabetes, of HPGDS on BMI, and of OXT on risk for lacunar stroke. Collectively, we find that restriction-associated reprogramming improves metabolic health and emphasise high-value targets for pharmacological intervention.
Collapse
Affiliation(s)
- Konstantinos Rouskas
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Ozvan Bocher
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexandros Simistiras
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | - Christina Emmanouil
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | - Panagiotis Mantas
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | - Anargyros Skoulakis
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexandros Dimopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | - Stavros Glentis
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Antigone S. Dimas
- Institute for Bioinnovation, Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
- Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
2
|
Chen C, Li C, Lan X, Ren Z, Zheng Y, Chen D, Xu W, Cui Y, Wang X, Cheng F, Wang Q. Huang-Lian-Jie-Du decoction inhibits CD4+ T cell infiltration into CNS in MCAO rats by regulating BBB. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156607. [PMID: 40117945 DOI: 10.1016/j.phymed.2025.156607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Stroke, especially ischemic stroke (IS), represents a major global health challenge due to its high incidence, disability, mortality, recurrence, and economic impact. The limited therapeutic window for thrombolysis underscores the need for new treatments. The blood-brain barrier (BBB), which protects the brain, becomes compromised following ischemia-reperfusion injury, allowing peripheral immune cell infiltration and subsequent neuroinflammation. Huang-Lian-Jie-Du Decoction (HLJDT), a traditional formula with significant neuroprotective effects demonstrated in preliminary studies and literature reviews, has not yet been fully explored for its potential to inhibit peripheral immune cell infiltration through BBB protection. PURPOSE This study aims to: (1) Evaluate the efficacy of HLJDT in treating MCAO. (2) Observe the regulatory effect of HLJDT on the infiltration of CD4+ T cells into the central nervous system. (3) Investigate the effect of HLJDT on the Wnt/β-Catenin Signaling Pathway. METHODS A focal MCAO reperfusion model will be used to evaluate HLJDT's effects on neurological function (Zea Longa and Garcia scores), infarction volume (TTC staining), and pathological changes (HE and NISSL staining). Immune-inflammatory responses will be assessed using ELISA for cytokines, flow cytometry for T lymphocyte distribution, and immunofluorescence staining for CD4+ T cell infiltration. The interaction of T cell antigens (LFA-1) and endothelial adhesion molecules (ICAM-1) will be studied with ELISA and immunofluorescence. BBB protection will be evaluated with Evans blue staining and transmission electron microscopy. Mechanisms of T cell infiltration will be examined using transmission electron microscopy and Western blotting (WB) for key proteins. Additionally, the impact of HLJDT on the Wnt/β-catenin pathway will be assessed with WB. RESULTS HLJDT significantly improves neurological scores, reduces infarction volume, and mitigates pathological damage. It balances CD4+ T cell responses by inhibiting pro-inflammatory cytokines and enhancing anti-inflammatory ones, reducing CD4+ T cell CNS infiltration. HLJDT inhibits LFA-1/ICAM-1 interactions. It can also inhibit CD4+ T cell infiltration by repairing paracellular and transcellular structures of the BBB, with the Wnt/β-catenin signaling pathway playing a key role in this process. CONCLUSION We have innovatively demonstrated for the first time that HLJDT can regulate the balance between peripheral and central immune inflammation. It inhibits LFA-1/ICAM-1-mediated cell adhesion and, by modulating the Wnt/β-catenin pathway, improves the paracellular and transcellular structures of the blood-brain barrier, thereby suppressing CD4+ T cell infiltration and providing multifaceted protective effects for MCAO rats.
Collapse
Affiliation(s)
- Congai Chen
- Beijing Hospital of Traditional Chinese Medicine, Beijing, 100010, PR China
| | - Changxiang Li
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xin Lan
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zilin Ren
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Dan Chen
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wenxiu Xu
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Youxiang Cui
- Key Laboratory of Neurological Rehabilitation, Cangzhou Hospital of Integrated Traditional Chinese Medicineand Western Medicine, Cangzhou 061000, PR China
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
3
|
Tao J, Shen X, Qian H, Ding Q, Wang L. TIM proteins and microRNAs: distinct impact and promising interactions on transplantation immunity. Front Immunol 2024; 15:1500228. [PMID: 39650660 PMCID: PMC11621082 DOI: 10.3389/fimmu.2024.1500228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Achieving sustained activity and tolerance in of allogeneic grafts after post-transplantation remains a substantial challenge. The response of the immune system to "non-self" MHC-antigenic peptides initiates a crucial phase, wherein blocking positive co-stimulatory signals becomes imperative to ensure graft survival and tolerance. MicroRNAs (miRNAs) inhibit mRNA translation or promote mRNA degradation by complementary binding of mRNA seed sequences, which ultimately affects protein synthesis. These miRNAs exhibit substantial promise as diagnostic, prognostic, and therapeutic candidates for within the realm of solid organ transplantations. Current research has highlighted three members of the T cell immunoglobulin and mucin domain (TIM) family as a novel therapeutic avenue in transplantation medicine and alloimmunization. The interplay between miRNAs and TIM proteins has been extensively explored in viral infections, inflammatory responses, and post-transplantation ischemia-reperfusion injuries. This review aims to elucidate the distinct roles of miRNAs and TIM in transplantation immunity and delineate their interdependent relationships in terms of targeted regulation. Specifically, this investigation sought seeks to uncover the potential of miRNA interaction with TIM, aiming to induce immune tolerance and bolster allograft survival after transplantation. This innovative strategy holds substantial promise in for the future of transplantation science and practice.
Collapse
Affiliation(s)
- Jialing Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiaoxuan Shen
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| |
Collapse
|
4
|
Gao J, Liu J, Li Y, Liu J, Wang H, Chai M, Dong Y, Zhang Z, Su G, Wang M. Targeting p53 for neuroinflammation: New therapeutic strategies in ischemic stroke. J Neurosci Res 2023. [PMID: 37156641 DOI: 10.1002/jnr.25200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Ischemic stroke (IS) is characterized by high incidence, high recurrence, and high mortality and places a heavy burden on society and families. The pathological mechanisms of IS are complex, among which secondary neurological impairment mediated by neuroinflammation is considered to be the main factor in cerebral ischemic injury. At present, there is still a lack of specific therapies to treat neuroinflammation. The tumor suppressor protein p53 has long been regarded as a key substance in the regulation of the cell cycle and apoptosis in the past. Recently, studies have found that p53 also plays an important role in neuroinflammatory diseases, such as IS. Therefore, p53 may be a crucial target for the regulation of the neuroinflammatory response. Here, we provide a comprehensive review of the potential of targeting p53 in the treatment of neuroinflammation after IS. We describe the function of p53, the major immune cells involved in neuroinflammation, and the role of p53 in inflammatory responses mediated by these cells. Finally, we summarize the therapeutic strategies of targeting p53 in regulating the neuroinflammatory response after IS to provide new directions and ideas for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - He Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ying Dong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Chen J, Tang TT, Cao JY, Li ZL, Zhong X, Wen Y, Shen AR, Liu BC, Lv LL. KIM-1 augments hypoxia-induced tubulointerstitial inflammation through uptake of small extracellular vesicles by tubular epithelial cells. Mol Ther 2023; 31:1437-1450. [PMID: 35982620 PMCID: PMC10188645 DOI: 10.1016/j.ymthe.2022.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 12/19/2022] Open
Abstract
Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.
Collapse
Affiliation(s)
- Jun Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Xin Zhong
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - An-Ran Shen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| |
Collapse
|
6
|
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci 2023; 17:1101379. [PMID: 36874213 PMCID: PMC9975172 DOI: 10.3389/fncel.2023.1101379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) represent two complex structures protecting the central nervous system (CNS) against potentially harmful agents and circulating immune cells. The immunosurveillance of the CNS is governed by immune cells that constantly patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and BCSFB undergo morphological and functional alterations, promoting leukocyte intravascular adhesion and transmigration from the blood circulation into the CNS. Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are considered key players in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis. They can actively interact with CNS borders by complex adhesion mechanisms and secretion of a variety of molecules contributing to barrier dysfunction. In this review, we describe the molecular basis involved in the interactions between Th cells and CNS barriers and discuss the emerging roles of dura mater and arachnoid layer as neuroimmune interfaces contributing to the development of CNS inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessandro Bani
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
8
|
Kerr D, Gong Z, Suwatthee T, Luoma A, Roy S, Scarpaci R, Hwang HL, Henderson JM, Cao KD, Bu W, Lin B, Tietjen GT, Steck TL, Adams EJ, Lee KYC. How Tim proteins differentially exploit membrane features to attain robust target sensitivity. Biophys J 2021; 120:4891-4902. [PMID: 34529946 PMCID: PMC8595564 DOI: 10.1016/j.bpj.2021.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/24/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Zhiliang Gong
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | | | | | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Renee Scarpaci
- City University of New York City College, New York, New York
| | - Hyeondo Luke Hwang
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - J Michael Henderson
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Kathleen D Cao
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois
| | - Binhua Lin
- James Franck Institute, Chicago, Illinois; NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois
| | - Gregory T Tietjen
- Department of Surgery, Section of Transplant and Immunology and Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Erin J Adams
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Committee on Immunology, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois.
| |
Collapse
|
9
|
Karmakova ТА, Sergeeva NS, Kanukoev КY, Alekseev BY, Kaprin АD. Kidney Injury Molecule 1 (KIM-1): a Multifunctional Glycoprotein and Biological Marker (Review). Sovrem Tekhnologii Med 2021; 13:64-78. [PMID: 34603757 PMCID: PMC8482821 DOI: 10.17691/stm2021.13.3.08] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
KIM-1 (kidney injury molecule 1) is a transmembrane glycoprotein also known as HAVcr-1 and TIM-1 belongs to the T-cell immunoglobulin and mucin domain family (TIM) of proteins. TIM glycoproteins are presented on the immune cells and participate in the regulation of immune reactions. KIM-1 differs from other members of its family in that it is expressed not only by immunocompetent cells but epithelial cells as well. Cellular and humoral effects mediated by KIM-1 are involved in a variety of physiological and pathophysiological processes. Current understanding of the mechanisms determining the participation of KIM-1 in viral invasion, the immune response regulation, adaptive reactions of the kidney epithelium to acute ischemic or toxic injury, in progression of chronic renal diseases, and kidney cancer development have been presented in this review. Data of clinical researches demonstrating the association of KIM-1 with viral diseases and immune disorders have also been analyzed. Potential application of KIM-1 as urinary or serological marker in renal and cardiovascular diseases has been considered.
Collapse
Affiliation(s)
- Т А Karmakova
- Leading Researcher, Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - N S Sergeeva
- Professor, Head of the Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia; Professor, Department of Biology; Pirogov Russian National Research Medical University, 1 Ostrovitianova St., Moscow, 117997, Russia
| | - К Yu Kanukoev
- Urologist, Department of Urology with Chemotherapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - B Ya Alekseev
- Professor, Deputy General Director for Science; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - А D Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| |
Collapse
|
10
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
11
|
Jarahian M, Marstaller K, Banna N, Ahani R, Etemadzadeh MH, Boller LK, Azadmanesh K, Cid-Arregui A, Khezri A, Berger MR, Momburg F, Watzl C. Activating Natural Killer Cell Receptors, Selectins, and Inhibitory Siglecs Recognize Ebolavirus Glycoprotein. J Innate Immun 2021; 14:135-147. [PMID: 34425576 DOI: 10.1159/000517628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022] Open
Abstract
Expression of the extensively glycosylated Ebolavirus glycoprotein (EBOV-GP) induces physical alterations of surface molecules and plays a crucial role in viral pathogenicity. Here we investigate the interactions of EBOV-GP with host surface molecules using purified EBOV-GP, EBOV-GP-transfected cell lines, and EBOV-GP-pseudotyped lentiviral particles. Subsequently, we wanted to examine which receptors are involved in this recognition by binding studies to cells transfected with the EBOV-GP as well as to recombinant soluble EBOV-GP. As the viral components can also bind to inhibitory receptors of immune cells (e.g., Siglecs, TIM-1), they can even suppress the activity of immune effector cells. Our data show that natural killer (NK) cell receptors NKp44 and NKp46, selectins (CD62E/P/L), the host factors DC-SIGNR/DC-SIGN, and inhibitory Siglecs function as receptors for EBOV-GP. Our results show also moderate to strong avidity of homing receptors (P-, L-, and E-selectin) and DC-SIGNR/DC-SIGN to purified EBOV-GP, to cells transfected with EBOV-GP, as well as to the envelope of a pseudotyped lentiviral vector carrying the EBOV-GP. The concomitant activation and inhibition of the immune system exemplifies the evolutionary antagonism between the immune system and pathogens. Altogether these interactions with activating and inhibitory receptors result in a reduced NK cell-mediated lysis of EBOV-GP-expressing cells. Modulation of these interactions may provide new strategies for treating infections caused by this virus.
Collapse
Affiliation(s)
- Mostafa Jarahian
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Marstaller
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Banna
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roshanak Ahani
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lea K Boller
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | | | - Angel Cid-Arregui
- Targeted Tumor Vaccines Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
12
|
Zhang D, Ren J, Luo Y, He Q, Zhao R, Chang J, Yang Y, Guo ZN. T Cell Response in Ischemic Stroke: From Mechanisms to Translational Insights. Front Immunol 2021; 12:707972. [PMID: 34335623 PMCID: PMC8320432 DOI: 10.3389/fimmu.2021.707972] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke, caused by a sudden disruption of blood flow to the brain, is a leading cause of death and exerts a heavy burden on both patients and public health systems. Currently available treatments for ischemic stroke are very limited and are not feasible in many patients due to strict time windows required for their administration. Thus, novel treatment strategies are keenly required. T cells, which are part of the adaptive immune system, have gained more attention for its effects in ischemic stroke. Both preclinical and clinical studies have revealed the conflicting roles for T cells in post-stroke inflammation and as potential therapeutic targets. This review summarizes the mediators of T cell recruitment, as well as the temporal course of its infiltration through the blood-brain-barrier, choroid plexus, and meningeal pathways. Furthermore, we describe the mechanisms behind the deleterious and beneficial effects of T cells in the brain, in both antigen-dependent and antigen-independent manners, and finally we specifically focus on clinical and preclinical studies that have investigated T cells as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Dianhui Zhang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun Luo
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China.,Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qianyan He
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Neuroscience Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Length of mucin-like domains enhances cell-Ebola virus adhesion by increasing binding probability. Biophys J 2021; 120:781-790. [PMID: 33539790 DOI: 10.1016/j.bpj.2021.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
The Ebola virus (EBOV) hijacks normal physiological processes by apoptotic mimicry to be taken up by the cell it infects. The initial adhesion of the virus to the cell is based on the interaction between T cell immunoglobulin and mucin domain protein, TIM, on the cell surface and phosphatidylserine (PS) on the viral outer surface. Therefore, it is important to understand the interaction between EBOV and PS and TIM, with selective blocking of the interaction as a potential therapy. Recent experimental studies have shown that for TIM-dependent EBOV entry, a mucin-like domain with a length of at least 120 amino acids is required, possibly because of the increase of area of the PS-coated surface sampled. We examine this hypothesis by modeling the process of TIM-PS adhesion using a coarse-grained molecular model. We find that the strength of individual bound PS-TIM pairs is essentially independent of TIM length. TIMs with longer mucin-like domains collectively have higher average binding strengths because of an increase in the probability of binding between EBOV and TIM proteins. Similarly, we find that for larger persistence length (less flexible), the average binding force decreases, again because of a reduction in the probability of binding.
Collapse
|
14
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
15
|
Mutated Human P-Selectin Glycoprotein Ligand-1 and Viral Protein-1 of Enterovirus 71 Interactions on Au Nanoplasmonic Substrate for Specific Recognition by Surface-Enhanced Raman Spectroscopy. COATINGS 2020. [DOI: 10.3390/coatings10040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein tyrosine sulfation is a common post-translational modification that stimulates intercellular or extracellular protein-protein interactions and is responsible for various important biological processes, including coagulation, inflammation, and virus infections. Recently, human P-selectin glycoprotein ligand-1 (PSGL-1) has been shown to serve as a functional receptor for enterovirus 71 (EV71). It has been proposed that the capsid viral protein VP1 of EV71 is directly involved in this specific interaction with sulfated or mutated PSGL-1. Surface-enhanced Raman spectroscopy (SERS) is used to distinguish PSGL-1 and VP1 interactions on an Au nanoporous substrate and identify specific VP1 interaction positions of tyrosine residue sites (46, 48, and 51). The three tyrosine sites in PSGL-1 were replaced by phenylalanine (F), as determined using SERS. A strong phenylalanine SERS signal was obtained in three regions of the mutated protein on the nanoporous substrate. The mutated protein positions at (51F) and (48F, 51F) produced a strong SERS peak at 1599–1666 cm−1, which could be related to a binding with the mutated protein and anti-sulfotyrosine interactions on the nanoporous substrate. A strong SERS effect of the mutated protein and VP1 interactions appeared at (48F), (51F), and (46F, 48F). In these positions, there was less interaction with VP1, as indicated by a strong phenylalanine signal from the mutated protein.
Collapse
|
16
|
Platt JL, Cascalho M. Non-canonical B cell functions in transplantation. Hum Immunol 2019; 80:363-377. [PMID: 30980861 PMCID: PMC6544480 DOI: 10.1016/j.humimm.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
B cells are differentiated to recognize antigen and respond by producing antibodies. These activities, governed by recognition of ancillary signals, defend the individual against microorganisms and the products of microorganisms and constitute the canonical function of B cells. Despite the unique differentiation (e.g. recombination and mutation of immunoglobulin gene segments) toward this canonical function, B cells can provide other, "non-canonical" functions, such as facilitating of lymphoid organogenesis and remodeling and fashioning T cell repertoires and modifying T cell responses. Some non-canonical functions are exerted by antibodies, but most are mediated by other products and/or direct actions of B cells. The diverse set of non-canonical functions makes the B cell as much as any cell a central organizer of innate and adaptive immunity. However, the diverse products and actions also confound efforts to weigh the importance of individual non-canonical B cell functions. Here we shall describe the non-canonical functions of B cells and offer our perspective on how those functions converge in the development and governance of immunity, particularly immunity to transplants, and hurdles to advancing understanding of B cell functions in transplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Zhang P, Wang Y, Liu XR, Hong SR, Yao J. Downregulated Tim-3 expression is responsible for the incidence and development of colorectal cancer. Oncol Lett 2018; 16:1059-1066. [PMID: 29963183 DOI: 10.3892/ol.2018.8697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the role of T cell immunoglobulin domain and mucin-3 (Tim-3) in its gene and protein forms in colorectal cancer (CRC), and to verify the significance of Tim-3 expression in patients with CRC. A prospective analysis of 258 patients with CRC and 246 normal controls was conducted between December 2012 and June 2015. Intestinal samples were collected, including of CRC tissues, paracancerous tissues and normal colon mucosa tissues. Peripheral venous blood samples were also collected. Polymerase chain reaction (PCR) amplification, reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis was performed for the detection and evaluation of Tim-3 gene and protein in various tissues. PCR analysis indicated that the T and G alleles of -882C/T and 4259T/G are associated with a significantly increased risk of CRC. Following the confirmation of Tim-3 expression in CRC tissues, RT-qPCR detection and western blot analysis revealed clear downregulation of Tim-3 mRNA and protein expression in the blood and tissue samples obtained from patients with CRC, as compared with in the corresponding control samples. Similar trends of decreased Tim-3 mRNA levels and protein expression were observed in CRC tissues compared with in the paracancerous and the normal colon mucosa tissues. In addition, the mRNA and protein expression levels in the paracancerous tissues were lower than those in the normal colon mucosa tissues. Furthermore, significantly lower Tim-3 mRNA levels were observed in patients with a tumor size >5 cm, a poor differentiation degree, higher tumor-node-metastasis stage (stage III-IV), and lymph node and distant metastasis. Collectively, genetic changes to Tim-3, expressed as polymorphisms in Tim-3, and decreased mRNA/protein expression may be partially responsible for the incidence and development of CRC.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue-Rong Liu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shi-Ru Hong
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
18
|
Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer's disease. Neurobiol Dis 2017; 107:41-56. [PMID: 27425887 PMCID: PMC5600438 DOI: 10.1016/j.nbd.2016.07.007] [Citation(s) in RCA: 478] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by the pathological accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD pathology is also characterized by chronic brain inflammation, which promotes disease pathogenesis. In this context, the blood-brain barrier (BBB), a highly specialized endothelial cell membrane that lines cerebral microvessels, represents the interface between neural cells and circulating cells of the immune system. The BBB thus plays a key role in the generation and maintenance of chronic inflammation during AD. The BBB operates within the neurovascular unit (NVU), which includes clusters of glial cells, neurons and pericytes. The NVU becomes dysfunctional during AD, and each of its components may undergo functional changes that contribute to neuronal injury and cognitive deficit. In transgenic animals with AD-like pathology, recent studies have shown that circulating leukocytes migrate through the activated brain endothelium when certain adhesion molecules are expressed, penetrating into the brain parenchyma, interacting with the NVU components and potentially affecting their structural integrity and functionality. Therefore, migrating immune system cells in cerebral vessels act in concert with the modified BBB and may be integrated into the dysfunctional NVU. Notably, blocking the adhesion mechanisms controlling leukocyte-endothelial interactions inhibits both Aβ deposition and tau hyperphosphorylation, and reduces memory loss in AD models. The characterization of molecular mechanisms controlling vascular inflammation and leukocyte trafficking could therefore help to determine the basis of BBB dysfunction during AD and may lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gennj Piacentino
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
19
|
Downregulation of P-selectin glycoprotein ligand-1 as a potential anti-inflammatory mechanism. Future Med Chem 2017; 9:1323-1326. [PMID: 28771035 DOI: 10.4155/fmc-2017-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
20
|
Kishimoto W, Nishikori M, Arima H, Miyoshi H, Sasaki Y, Kitawaki T, Shirakawa K, Kato T, Imaizumi Y, Ishikawa T, Ohno H, Haga H, Ohshima K, Takaori-Kondo A. Expression of Tim-1 in primary CNS lymphoma. Cancer Med 2016; 5:3235-3245. [PMID: 27709813 PMCID: PMC5119979 DOI: 10.1002/cam4.930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a distinct subtype of extranodal lymphoma with aggressive clinical course and poor outcome. As increased IL‐10/IL‐6 ratio is recognized in the cerebrospinal fluid (CSF) of PCNSL patients, we hypothesized that PCNSL might originate from a population of B cells with high IL‐10‐producing capacity, an equivalent of “regulatory B cells” in mice. We intended in this study to clarify whether Tim‐1, a molecule known as a marker for regulatory B cells in mice, is expressed in PCNSL. By immunohistochemical analysis, Tim‐1 was shown to be positive in as high as 54.2% of PCNSL (26 of 58 samples), while it was positive in 19.1% of systemic diffuse large B‐cell lymphoma (DLBCL) samples (17 of 89 samples; P < 0.001). Tim‐1 expression positively correlated with IL‐10 expression in PCNSL (Cramer's V = 0.55, P < 0.001), and forced expression of Tim‐1 in a PCNSL cell line resulted in increased IL‐10 secretion, suggesting that Tim‐1 is functionally linked with IL‐10 production in PCNSL. Moreover, soluble Tim‐1 was detectable in the CSF of PCNSL patients, and was suggested to parallel disease activity. In summary, PCNSL is characterized by frequent Tim‐1 expression, and its soluble form in CSF may become a useful biomarker for PCNSL.
Collapse
Affiliation(s)
- Wataru Kishimoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Arima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Asahimachi, Kurume, Fukuoka, Japan
| | - Yuya Sasaki
- Department of Pathology, Kurume University School of Medicine, Asahimachi, Kurume, Fukuoka, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hitoshi Ohno
- Department of Hematology, Tenri Hospital, Mishima-cho, Tenri, Nara, Japan
| | - Hironori Haga
- Department of Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Asahimachi, Kurume, Fukuoka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Abstract
An important underlying mechanism that contributes to autoimmunity is the loss of inhibitory signaling in the immune system. Sialic acid-recognizing Ig superfamily lectins or Siglecs are a family of cell surface proteins largely expressed in hematopoietic cells. The majority of Siglecs are inhibitory receptors expressed in immune cells that bind to sialic acid-containing ligands and recruit SH2-domain-containing tyrosine phosphatases to their cytoplasmic tails. They deliver inhibitory signals that can contribute to the constraining of immune cells, and thus protect the host from autoimmunity. The inhibitory functions of CD22/Siglec-2 and Siglec-G and their contributions to tolerance and autoimmunity, primarily in the B lymphocyte context, are considered in some detail in this review. The relevance to autoimmunity and unregulated inflammation of modified sialic acids, enzymes that modify sialic acid, and other sialic acid-binding proteins are also reviewed.
Collapse
Affiliation(s)
- Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Departments of Medicine and Pathology, Harvard Medical School, Boston, MA, USA.,Deaprtment of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Departments of Medicine and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Immune Regulation and Antitumor Effect of TIM-1. J Immunol Res 2016; 2016:8605134. [PMID: 27413764 PMCID: PMC4931049 DOI: 10.1155/2016/8605134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 01/25/2023] Open
Abstract
T cells play an important role in antitumor immunity, and the T cell immunoglobulin domain and the mucin domain protein-1 (TIM-1) on its surface, as a costimulatory molecule, has a strong regulatory effect on T cells. TIM-1 can regulate and enhance type 1 immune response of tumor association. Therefore, TIM-1 costimulatory pathways may be a promising therapeutic target in future tumor immunotherapy. This review describes the immune regulation and antitumor effect of TIM-1.
Collapse
|
23
|
Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med 2016; 22:183-93. [PMID: 26726878 DOI: 10.1038/nm.4012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.
Collapse
|
24
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|