1
|
Öztürk AB, Eroglu F. Comparison of miRNA profiles in the immune response of pediatric acute appendicitis and pediatric enterobiasis patients caused by Enterobius vermicularis. Trans R Soc Trop Med Hyg 2024; 118:458-464. [PMID: 38506276 DOI: 10.1093/trstmh/trae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The aim of this study was to determine and compare the miRNA profile in the immune response with the parasite in pediatric patients with acute appendicitis caused by Enterobius vermicularis and in pediatric patients with enterobiasis. METHODS A total of 30 tissue samples, which were operated with the diagnosis of pediatric acute appendicitis in the last 10 y and Enterobius vermicularis was detected by histopathological findings, were analyzed. In addition, blood samples were taken from 30 pediatric patients diagnosed with enterobiasis for this study. The miRNAs that activate T and B cells were evaluated by a quantitative real-time PCR, statistically calculated within ΔΔCt values, and fold changes were evaluated by Welch's T test, in which p<0.5 was considered to be significant. RESULTS It was found that 48 out of 136 (35.3%) miRNAs differed between the pediatric patient and healthy control groups. It was determined that 22 (57.9%) of the different miRNAs were T cell activating miRNAs and 26 (68.4%) were B cell activating miRNAs. While there was a significant difference in miRNA values activating T cells in two patient groups (p<0.01), there was no significant difference in miRNA values activating B cells (p>0.01). CONCLUSIONS In the study, although Enterobius vermicularis was the causative agent in both patient groups, it was revealed that the immune response of patients with acute appendicitis was more affected than enterobiasis patients.
Collapse
Affiliation(s)
- Ayşe Betül Öztürk
- Faculty of Medicine, Department of Pediatric Surgey, Aksaray University, Aksaray, Turkey
| | - Fadime Eroglu
- Faculty of Medicine, Department of Parasitology, Aksaray University, Aksaray, Turkey
| |
Collapse
|
2
|
Wang S, Mouliere F, Pegtel DM, Chamuleau MED. Turning the tide in aggressive lymphoma: liquid biopsy for risk-adapted treatment strategies. Trends Mol Med 2024; 30:660-672. [PMID: 38692937 DOI: 10.1016/j.molmed.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) exhibits significant biological and clinical heterogeneity that presents challenges for risk stratification and disease surveillance. Existing tools for risk stratification, including the international prognostic index (IPI), tissue molecular analyses, and imaging, have limited accuracy in predicting outcomes. The therapeutic landscape for aggressive lymphoma is rapidly evolving, and there is a pressing need to identify patients at risk of refractory or relapsed (R/R) disease in the context of personalized therapy. Liquid biopsy, a minimally invasive method for cancer signal detection, has been explored to address these challenges. We review advances in liquid biopsy strategies focusing on circulating nucleic acids in DLBCL patients and highlight their clinical potential. We also provide recommendations for biomarker-guided trials to support risk-adapted treatment modalities.
Collapse
Affiliation(s)
- Steven Wang
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Florent Mouliere
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Cancer Research UK National Biomarker Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - D Michiel Pegtel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Martine E D Chamuleau
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Kumari R, Roy U, Desai S, Mondal AS, Nair RR, Nilavar N, Choudhary B, Raghavan SC. MicroRNA, miR-501 regulate the V(D)J recombination in B cells. Biochem J 2023; 480:2061-2077. [PMID: 38084601 DOI: 10.1042/bcj20230250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Arannya S Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rajshree R Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Namrata Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
5
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
6
|
Hagen M, Chakraborty T, Olson WJ, Heitz M, Hermann-Kleiter N, Kimpel J, Jenewein B, Pertoll J, Labi V, Rajewsky K, Derudder E. miR-142 favors naïve B cell residence in peripheral lymph nodes. Front Immunol 2022; 13:847415. [PMID: 36439112 PMCID: PMC9686386 DOI: 10.3389/fimmu.2022.847415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 09/21/2022] [Indexed: 08/01/2023] Open
Abstract
B lymphocyte development proceeds through a well-ordered sequence of steps, leading to the formation of a sizeable mature B population recognizing a diversity of antigens. These latter cells are ultimately responsible for the production of antibodies upon immune challenges. The detection of threats to the organism is facilitated by the ability of naïve follicular B cells, the main subset of mature B cells in mice, to circulate between lymphoid tissues in search of their cognate antigens. miRNA-mediated fine-tuning of mRNA stability and translation participates in the optimal expression of genetic programs. This regulatory mechanism has been shown to contribute to B cell biology, although the role of individual miRNAs remains understudied. Here, we selectively inactivated the miR-142 locus in B cells. As a consequence, the mature B compartment was visibly perturbed, in agreement with work in miR-142 knockout mice. However, our strategy allowed us to identify roles for the miR-142 locus in B cell physiology obscured by the complexity of the immune phenotype in the null mutant mice. Thus, these miRNAs are necessary for the proper formation of the pre-B cell compartment during development. More remarkably, naïve follicular B cells demonstrated altered migratory properties upon conditional inactivation of the miR-142 locus. The latter mutant cells expressed reduced levels of the homing molecule CD62L. They also migrated more efficiently towards sphingosine-1-phosphate in vitro and displayed an increased abundance of the sphingosine-1-phosphate receptor 1, compatible with improved lymphocyte egress in vivo. In line with these observations, the ablation of the miR-142 locus in B cells caused a paucity of B cells in the lymph nodes. Mutant B cell accumulation in the latter tissues was also compromised upon transfer into a wild-type environment. These changes coincided with suboptimal levels of FOXO1, a positive regulator of CD62L transcription, in mutant B cells. Overall, our findings indicate contributions for the miR-142 locus in various aspects of the B cell life cycle. Notably, this locus appears to favor the establishment of the migratory behavior required for naïve follicular B cell patrolling activity.
Collapse
Affiliation(s)
- Magdalena Hagen
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Tirtha Chakraborty
- Program in Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA, United States
- Vor Biopharma, Cambridge, MA, United States
| | - William J. Olson
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Martin Heitz
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Jenewein
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Johanna Pertoll
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children’s Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA, United States
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
7
|
Ma F, Zhan Y, Bartolomé-Cabrero R, Ying W, Asano M, Huang Z, Xiao C, González-Martín A. Analysis of a miR-148a Targetome in B Cell Central Tolerance. Front Immunol 2022; 13:861655. [PMID: 35634349 PMCID: PMC9134011 DOI: 10.3389/fimmu.2022.861655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
A microRNA (miRNA) often regulates the expression of hundreds of target genes. A fundamental question in the field of miRNA research is whether a miRNA exerts its biological function through regulating a small number of key targets or through small changes in the expression of hundreds of target genes. We addressed this issue by performing functional analysis of target genes regulated by miR-148a. We previously identified miR-148a as a critical regulator of B cell central tolerance and found 119 target genes that may mediate its function. We selected 4 of them for validation and demonstrated a regulatory role for Bim, Pten, and Gadd45a in this process. In this study, we performed functional analysis of the other miR-148a target genes in in vitro and in vivo models of B cell central tolerance. Our results show that those additional target genes play a minimal role, if any, in miR-148a-mediated control of B cell central tolerance, suggesting that the function of miRNAs is mediated by a few key target genes. These findings have advanced our understanding of molecular mechanisms underlying miRNA regulation of gene expression and B cell central tolerance.
Collapse
Affiliation(s)
- Fengge Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yating Zhan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rocío Bartolomé-Cabrero
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Wei Ying
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Alicia González-Martín, ; Changchun Xiao,
| | - Alicia González-Martín
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- *Correspondence: Alicia González-Martín, ; Changchun Xiao,
| |
Collapse
|
8
|
Borbet TC, Hines MJ, Koralov SB. MicroRNA regulation of B cell receptor signaling. Immunol Rev 2021; 304:111-125. [PMID: 34523719 PMCID: PMC8616848 DOI: 10.1111/imr.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.
Collapse
Affiliation(s)
- Timothy C. Borbet
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Marcus J. Hines
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Sergei B. Koralov
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| |
Collapse
|
9
|
Wigton EJ, Mikami Y, McMonigle RJ, Castellanos CA, Wade-Vallance AK, Zhou SK, Kageyama R, Litterman A, Roy S, Kitamura D, Dykhuizen EC, Allen CD, Hu H, O’Shea JJ, Ansel KM. MicroRNA-directed pathway discovery elucidates an miR-221/222-mediated regulatory circuit in class switch recombination. J Exp Med 2021; 218:e20201422. [PMID: 34586363 PMCID: PMC8485858 DOI: 10.1084/jem.20201422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/12/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) regulate cell fate decisions by post-transcriptionally tuning networks of mRNA targets. We used miRNA-directed pathway discovery to reveal a regulatory circuit that influences Ig class switch recombination (CSR). We developed a system to deplete mature, activated B cells of miRNAs, and performed a rescue screen that identified the miR-221/222 family as a positive regulator of CSR. Endogenous miR-221/222 regulated B cell CSR to IgE and IgG1 in vitro, and miR-221/222-deficient mice exhibited defective IgE production in allergic airway challenge and polyclonal B cell activation models in vivo. We combined comparative Ago2-HITS-CLIP and gene expression analyses to identify mRNAs bound and regulated by miR-221/222 in primary B cells. Interrogation of these putative direct targets uncovered functionally relevant downstream genes. Genetic depletion or pharmacological inhibition of Foxp1 and Arid1a confirmed their roles as key modulators of CSR to IgE and IgG1.
Collapse
Affiliation(s)
- Eric J. Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryan J. McMonigle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carlos A. Castellanos
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Adam K. Wade-Vallance
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Robin Kageyama
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Adam Litterman
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Suparna Roy
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Dermatology, University of California, San Francisco, San Francisco, CA
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Christopher D.C. Allen
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Kang J, Tang Q, He J, Li L, Yang N, Yu S, Wang M, Zhang Y, Lin J, Cui T, Hu Y, Tan P, Cheng J, Zheng H, Wang D, Su X, Chen W, Huang Y. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res 2021; 50:D326-D332. [PMID: 34718726 PMCID: PMC8728132 DOI: 10.1093/nar/gkab997] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Establishing an RNA-associated interaction repository facilitates the system-level understanding of RNA functions. However, as these interactions are distributed throughout various resources, an essential prerequisite for effectively applying these data requires that they are deposited together and annotated with confidence scores. Hence, we have updated the RNA-associated interaction database RNAInter (RNA Interactome Database) to version 4.0, which is freely accessible at http://www.rnainter.org or http://www.rna-society.org/rnainter/. Compared with previous versions, the current RNAInter not only contains an enlarged data set, but also an updated confidence scoring system. The merits of this 4.0 version can be summarized in the following points: (i) a redefined confidence scoring system as achieved by integrating the trust of experimental evidence, the trust of the scientific community and the types of tissues/cells, (ii) a redesigned fully functional database that enables for a more rapid retrieval and browsing of interactions via an upgraded user-friendly interface and (iii) an update of entries to >47 million by manually mining the literature and integrating six database resources with evidence from experimental and computational sources. Overall, RNAInter will provide a more comprehensive and readily accessible RNA interactome platform to investigate the regulatory landscape of cellular RNAs.
Collapse
Affiliation(s)
- Juanjuan Kang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiang Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Jun He
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Le Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Nianling Yang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Shuiyan Yu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Mengyao Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Yuchen Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
| | - Jiahao Lin
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Cheng
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailong Zheng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xi Su
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China
| | - Wei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Yan Huang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, China
| |
Collapse
|
11
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
12
|
Deregulated miRNAs Contribute to Silencing of B-Cell Specific Transcription Factors and Activation of NF-κB in Classical Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13133131. [PMID: 34201504 PMCID: PMC8269295 DOI: 10.3390/cancers13133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma. Abstract A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.
Collapse
|
13
|
Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol 2021; 18:619-632. [PMID: 33094664 PMCID: PMC8078528 DOI: 10.1080/15476286.2020.1838783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The adaptive immune system is responsible for generating immunological response and immunological memory. Regulation of adaptive immunity including B cell and T cell biology was mainly understood from the protein and microRNA perspective. However, long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs (ncRNAs) that influence key factors in lymphocyte biology such as NOTCH, PAX5, MYC and EZH2. LncRNAs were described to modulate lymphocyte activation by regulating pathways such as NFAT, NFκB, MYC, interferon and TCR/BCR signalling (NRON, NKILA, BCALM, GAS5, PVT1), and cell effector functions (IFNG-AS1, TH2-LCR). Here we review lncRNA involvement in adaptive immunity and the implications for autoimmune diseases (multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis) and T/B cell leukaemias and lymphomas (CLL, MCL, DLBCL, T-ALL). It is becoming clear that lncRNAs are important in adaptive immune response and provide new insights into its orchestration.
Collapse
Affiliation(s)
- Pedro Faria Zeni
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Rodriguez PD, Paculova H, Kogut S, Heath J, Schjerven H, Frietze S. Non-Coding RNA Signatures of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052683. [PMID: 33799946 PMCID: PMC7961854 DOI: 10.3390/ijms22052683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.
Collapse
Affiliation(s)
- Princess D. Rodriguez
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Jessica Heath
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
15
|
Abstract
B cells constitute a main branch adaptive immune system. They mediate host defence through the production of high-affinity antibodies against an enormous diversity of foreign antigens. Remarkably, B cells undergo multiple types of somatic DNA mutation to achieve this effector function, including class switch recombination (CSR) and somatic hypermutation (SHM). These processes occur in response to antigen recognition and inflammatory signals, and require strict biological control at multiple levels. Transcription within the locus that encodes antibodies plays direct roles in CSR. Additional non-coding RNAs (ncRNAs), including both microRNAs (miRNAs) and long ncRNAs (lncRNAs), also play pivotal roles in B cell activation and terminal effector function through post-transcriptional gene regulation and chromatin remodelling, respectively.
Collapse
Affiliation(s)
- Eric J Wigton
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Gajda E, Grzanka M, Godlewska M, Gawel D. The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance. Pharmaceuticals (Basel) 2021; 14:149. [PMID: 33673265 PMCID: PMC7918072 DOI: 10.3390/ph14020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Damian Gawel
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
17
|
Sun R, Zheng Z, Wang L, Cheng S, Shi Q, Qu B, Fu D, Leboeuf C, Zhao Y, Ye J, Janin A, Zhao WL. A novel prognostic model based on four circulating miRNA in diffuse large B-cell lymphoma: implications for the roles of MDSC and Th17 cells in lymphoma progression. Mol Oncol 2020; 15:246-261. [PMID: 33107145 PMCID: PMC7782091 DOI: 10.1002/1878-0261.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) have been emerged as prognostic biomarkers in diffuse large B-cell lymphoma (DLBCL). To understand the potential underlying mechanisms and translate these findings into clinical prediction on lymphoma progression, large patient cohorts should be evaluated. Here, using miRNA PCR array, we analyzed the miRNA expression profiles in serum samples of 20 DLBCL patients at diagnosis, remission and relapse. Four candidate miRNA were identified and subsequently evaluated for their ability to predict relapse and survival. A prognostic model based on four circulating miRNA (miR21, miR130b, miR155 and miR28) was established and tested in a training cohort of 279 patients and in a validation cohort of 225 patients (NCT01852435). The prognostic value of the 4-circulating miRNA model was assessed by univariate and multivariate analyses. The novel 4-circulating miRNA prognostic model significantly predicted clinical outcome of DLBCL, independent of International Prognostic Index in the training cohort [hazard ratio (HR) = 2.83, 95% CI 2.14-3.51, P < 0.001] and in the validation cohort (HR = 2.71, 95% CI 1.91-3.50, P < 0.001). Moreover, DNA- and RNA-sequencing was performed on tumor samples to detect genetic mutations and signaling pathway dysregulation. DNA-sequencing data showed no significant difference of tumor mutation burden between the low-risk and the high-risk groups of the 4-circulating miRNA model. RNA-sequencing revealed a correlation between the 4-circulating miRNA model and aberrant Ras protein signaling transduction. The impact of the miRNA signature on oncogenic signaling and tumor microenvironment was analyzed in vitro and in vivo. In B-lymphoma cells, modulation of the miRNA regulated IGF1 and JUN expression, thereby altering MDSC and Th17 cells. In DLBCL patients, the high-risk group presented Ras signaling activation, increased MDSC and Th17 cells, and immunosuppressive status compared with the low-risk group. In conclusion, the easy-to-use 4-circulating miRNA prognostic model effectively predicted relapse and survival in DLBCL. Moreover, the tumor microenvironment contributes to the role of the 4-circulating miRNA model in DLBCL progression.
Collapse
Affiliation(s)
- Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | | | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jing Ye
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Anne Janin
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| |
Collapse
|
18
|
Salunkhe S, Vaidya T. CD40-miRNA axis controls prospective cell fate determinants during B cell differentiation. Mol Immunol 2020; 126:46-55. [DOI: 10.1016/j.molimm.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
19
|
Drees EEE, Pegtel DM. Circulating miRNAs as Biomarkers in Aggressive B Cell Lymphomas. Trends Cancer 2020; 6:910-923. [PMID: 32660885 DOI: 10.1016/j.trecan.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
B cell lymphomas are heterogeneous malignancies of hematological origin with vastly different biology and clinical outcomes. Histopathology of tissue biopsies and image-based assessment guide clinical decisions. Given that tissue biopsies cannot be frequently repeated and will not inform on systemic responses to the treatment, more accessible biomarkers, such as circulating miRNAs, are considered. Aberrant miRNA expression in lymphoma tissues and ongoing immune reactions may lead to miRNA alterations in circulation. miRNAs bound to extracellular vesicles (EVs) are of interest because of their role in intercellular communication and organ crosstalk. Herein, we highlight the role of miRNAs and EVs in B cell lymphomagenesis and explain how circulating miRNAs may be turned into robust liquid biopsy tests for aggressive B cell lymphoma.
Collapse
Affiliation(s)
- Esther E E Drees
- Amsterdam UMC, Vrije Universiteit Amsterdam, Exosomes Research Group, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Exosomes Research Group, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. TRANSLATIONAL MEDICINE OF AGING 2020; 4:81-85. [PMID: 32835152 PMCID: PMC7341035 DOI: 10.1016/j.tma.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maria Borja-Gonzalez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Jose C Casas-Martinez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Brian McDonagh
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Institute of Aging and Chronic Disease & The Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Aging, CIMA, University of Liverpool, Liverpool, L7 8TJ, UK
| |
Collapse
|
21
|
Fernández-Messina L, Rodríguez-Galán A, de Yébenes VG, Gutiérrez-Vázquez C, Tenreiro S, Seabra MC, Ramiro AR, Sánchez-Madrid F. Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep 2020; 21:e48925. [PMID: 32073750 PMCID: PMC7132182 DOI: 10.15252/embr.201948925] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intercellular communication orchestrates effective immune responses against disease‐causing agents. Extracellular vesicles (EVs) are potent mediators of cell–cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T‐B lymphocyte immune contacts promotes transfer of a very restricted set of T‐cell EV‐microRNAs (mmu‐miR20‐a‐5p, mmu‐miR‐25‐3p, and mmu‐miR‐155‐3p) to the B cell. Transferred EV‐microRNAs target key genes that control B‐cell function, including pro‐apoptotic BIM and the cell cycle regulator PTEN. EV‐microRNAs transferred during T‐B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV‐deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B‐cell responses via the transfer of EV‐microRNAs of T‐cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune‐related and inflammatory disorders.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Rodríguez-Galán
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginia G de Yébenes
- B lymphocyte Biology Lab, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sandra Tenreiro
- CEDOC, Faculdade de Ciências Médicas, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Almudena R Ramiro
- B lymphocyte Biology Lab, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
22
|
Robaina MC, Mazzoccoli L, Klumb CE. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells 2019; 8:E1365. [PMID: 31683676 PMCID: PMC6912346 DOI: 10.3390/cells8111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor MYC regulates several biological cellular processes, and its target gene network comprises approximately 15% of all human genes, including microRNAs (miRNAs), that also contribute to MYC regulatory activity. Although miRNAs are emerging as key regulators of immune functions, the specific roles of miRNAs in the regulation/dysregulation of germinal centre B-cells and B-cell lymphomas are still being uncovered. The regulatory network that integrates MYC, target genes and miRNAs is a field of intense study, highlighting potential pathways to be explored in the context of future clinical approaches. METHODS The scientific literature that is indexed in PUBMED was consulted for publications involving MYC and miRNAs with validated bioinformatics analyses or experimental protocols. Additionally, seminal studies on germinal centre B-cell functions and lymphomagenesis were reported. CONCLUSIONS This review summarizes the interactions between MYC and miRNAs through regulatory loops and circuits involving target genes in germinal centre B-cell lymphomas with MYC alterations. Moreover, we provide an overview of the understanding of the regulatory networks between MYC and miRNAs, highlighting the potential implication of this approach for the comprehension of germinal centre B-cell lymphoma pathogenesis. Therefore, circuits involving MYC, target genes and miRNAs provide novel insight into lymphomagenesis that could be useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Marcela Cristina Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| |
Collapse
|
23
|
Dolcino M, Tinazzi E, Vitali C, Del Papa N, Puccetti A, Lunardi C. Long Non-Coding RNAs Modulate Sjögren's Syndrome Associated Gene Expression and Are Involved in the Pathogenesis of the Disease. J Clin Med 2019; 8:jcm8091349. [PMID: 31480511 PMCID: PMC6780488 DOI: 10.3390/jcm8091349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren's syndrome (pSjS) is a chronic systemic autoimmune disorder, primarily affecting exocrine glands; its pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) are thought to play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in pSjS is still lacking. To this aim, the expression of more than 540,000 human transcripts, including those ascribed to more than 50,000 lncRNAs is profiled at the same time, in a cohort of 16 peripheral blood mononuclear cells PBMCs samples (eight pSjS and eight healthy subjects). A complex network analysis is carried out on the global set of molecular interactions among modulated genes and lncRNAs, leading to the identification of reliable lncRNA-miRNA-gene functional interactions. Taking this approach, a few lncRNAs are identified as targeting highly connected genes in the pSjS transcriptome, since they have a major impact on gene modulation in the disease. Such genes are involved in biological processes and molecular pathways crucial in the pathogenesis of pSjS, including immune response, B cell development and function, inflammation, apoptosis, type I and gamma interferon, epithelial cell adhesion and polarization. The identification of deregulated lncRNAs that modulate genes involved in the typical features of the disease provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Claudio Vitali
- Sections of Rheumatology, Villa S. Giuseppe, Como and Casa di Cura di Lecco, 23900 Lecco, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine, Section of Histology, University of Genova, Via G.B. Marsano 10, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy.
| |
Collapse
|
24
|
Zhang L, Xue Z, Yan J, Wang J, Liu Q, Jiang H. LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif 2019; 52:e12573. [PMID: 30667104 PMCID: PMC6536386 DOI: 10.1111/cpr.12573] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives Long non‐coding RNAs (LncRNAs) play important roles in epigenetic regulatory function during the development processes. In this study, we found that through alternative splicing, LncRNA C130071C03Riken variants Riken‐201 (Riken‐201) and Riken‐203 (Riken‐203) are both expressed highly in brain, and increase gradually during neural differentiation. However, the function of Rik‐201 and Rik‐203 is unknown. Materials and methods Embryonic stem cells (ESCs); RNA sequencing; gene expression of mRNAs, LncRNAs and miRNAs; over‐expression and RNA interference of genes; flow cytometry; real‐time quantity PCR; and Western blot were used in the studies. RNA pull‐down assay and PCR were employed to detect any miRNA that attached to Rik‐201 and Rik‐203. The binding of miRNA with mRNA of Sox6 was presented by the luciferase assay. Results Repression of Rik‐201 and Rik‐203 inhibited neural differentiation from mouse embryonic stem cells. Moreover, Rik‐201 and Rik‐203 functioned as the competing endogenous RNA (ceRNA) to repress the function of miR‐96 and miR‐467a‐3p, respectively, and modulate the expression of Sox6 to further regulate neural differentiation. Knockout of the Rik‐203 and Rik‐201 induced high ratio of brain developmental retardation. Further we found that C/EBPβ might potentially activated the transcription of Rik‐201 and Rik‐203. Conclusions These findings identify the functional role of Rik‐201 and Rik‐203 in facilitating neural differentiation and further brain development, and elucidate the underlying miRNAs‐Sox6‐associated molecular mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Jie Wang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Qidong Liu
- Anesthesia and Brain Function Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| |
Collapse
|
25
|
Benhamou D, Labi V, Getahun A, Benchetrit E, Dowery R, Rajewsky K, Cambier JC, Melamed D. The c-Myc/miR17-92/PTEN Axis Tunes PI3K Activity to Control Expression of Recombination Activating Genes in Early B Cell Development. Front Immunol 2018; 9:2715. [PMID: 30524445 PMCID: PMC6262168 DOI: 10.3389/fimmu.2018.02715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Appropriate PI3K signals generated by the antigen receptor are essential to promote B cell development. Regulation of recombination activating gene (RAG)-1 and RAG-2 expression is one key process that is mediated by PI3K to ensure developmental progression and selection. When PI3K signals are too high or too low, expression of RAGs does not turn off and B cell development is impaired or blocked. Yet, the mechanism which tunes PI3K activity to control RAG expression during B cell development in the bone marrow is unknown. Recently we showed that a c-Myc/miR17-92/PTEN axis regulates PI3K activity for positive and negative selection of immature B cells. Here, we show that the c-Myc/miR17-92/PTEN axis tunes PI3K activity to control the expression of RAGs in proB cells. Using different genetically engineered mouse models we show that impaired function of the c-Myc/miR17-92/PTEN axis alters the PI3K/Akt/Foxo1 pathway to result in dis-regulated expression of RAG and a block in B cell development. Studies using 38c-13 B lymphoma cells, where RAGs are constitutively expressed, suggest that this regulatory effect is mediated post-translationally through Foxo1.
Collapse
Affiliation(s)
- David Benhamou
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Verena Labi
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Eli Benchetrit
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Reem Dowery
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Doron Melamed
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Meng Y, Tian H, Hu Q, Liang H, Zeng L, Xiao H. MicroRNA repertoire and comparative analysis of Andrias davidianus infected with ranavirus using deep sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:108-114. [PMID: 29626489 DOI: 10.1016/j.dci.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Andrias davidianus is a large and economically important amphibian in China. Ranavirus infection causes serious losses in A. davidianus farming industry. MicroRNA mediated host-pathogen interactions are important in antiviral defense. In this study, five small-RNA libraries from ranavirus infected and non-infected A. davidianus spleens were sequenced using high throughput sequencing. The miRNA expression pattern, potential functions, and target genes were investigated. In total, 1356 known and 431 novel miRNAs were discovered. GO and KEGG analysis revealed that certain miRNA target genes are associated with apoptotic, signal pathway, and immune response categories. Analysis identified 82 downregulated and 9 upregulated differentially expressed miRNAs, whose putative target genes are involved in pattern-recognition receptor signaling pathways and immune response. These findings suggested miRNAs play key roles in A. davidianus's response to ranavirus and could provide a reference for further miRNA functional identification, leading to novel approaches to improve A. davidianus ranavirus resistance.
Collapse
Affiliation(s)
- Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, 430223, China.
| |
Collapse
|
27
|
Robinson JE, Cutucache CE. Deciphering splenic marginal zone lymphoma pathogenesis: the proposed role of microRNA. Oncotarget 2018; 9:30005-30022. [PMID: 30042829 PMCID: PMC6057449 DOI: 10.18632/oncotarget.25487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a malignancy of mature B-cells that primarily involves the spleen, but can affect peripheral organs as well. Even though SMZL is overall considered an indolent malignancy, the majority of cases will eventually progress to be more aggressive. In recent years, the gene expression profile of SMZL has been characterized in an effort to identify: 1) the etiology of SMZL, 2) biological consequences of SMZL, and 3) putative therapeutic targets. However, due to the vast heterogeneity of the malignancy, no conclusive target(s) have been deciphered. However, the role of miRNA in SMZL, much as it has in chronic lymphocytic leukemia, may serve as a guiding light. As a result, we review the comprehensive expression profiling in SMZL to-date, as well as describe the miRNA (and potential mechanistic roles) that may play a role in SMZL transformation, particularly within the 7q region.
Collapse
Affiliation(s)
- Jacob E Robinson
- Deptartment of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | | |
Collapse
|
28
|
Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD +/SIRT1/SUV39H1/H3K9me3 signaling pathway. Cell Death Dis 2018; 9:258. [PMID: 29449535 PMCID: PMC5833367 DOI: 10.1038/s41419-018-0297-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Norisoboldine (NOR), a natural aryl hydrocarbon receptor (AhR) agonist, has been demonstrated to attenuate ulcerative colitis (UC) and induce the generation of Treg cells. Under UC condition, hypoxia widely exists in colonic mucosa, and secondary changes of microRNAs (miRs) expressions and glycolysis contribute to Treg differentiation. At present, we worked for exploring the deep mechanisms for NOR-promoted Treg differentiation in hypoxia and its subsequent anti-UC action from the angle of AhR/miR or AhR/glycolysis axis. Results showed that NOR promoted Treg differentiation in hypoxia and the effect was stronger relative to normoxia. It activated AhR in CD4+ T cells under hypoxic microenvironment; CH223191 (a specific AhR antagonist) and siAhR-3 abolished NOR-promoted Treg differentiation. Furthermore, the progress of glycolysis, levels of Glut1 and HK2, and expression of miR-31 rather than miR-219 and miR-490 in CD4+ T cells were downregulated by NOR treatment under hypoxic microenvironment. However, HK2 plasmid but not miR-31 mimic significantly interfered NOR-enhanced Treg polarization. In addition, NOR reduced NAD+ and SIRT1 levels, facilitated the ubiquitin-proteasomal degradation of SUV39H1 protein, and inhibited the enrichment of H3K9me3 at -1, 201 to -1,500 region of Foxp3 promoter in CD4+ T cells under hypoxic microenvironment, which was weakened by HK2 plasmid, CH223191, and siAhR-3. Finally, the correlation between NOR-mediated activation of AhR, repression of glycolysis, regulation of NAD+/SIRT1/SUV39H1/H3K9me3 signals, induction of Treg cells, and remission of colitis was confirmed in mice with DSS-induced colitis by using CH223191 and HK2 plasmid. In conclusion, NOR promoted Treg differentiation and then alleviated the development of colitis by regulating AhR/glycolysis axis and subsequent NAD+/SIRT1/SUV39H1/H3K9me3 signaling pathway.
Collapse
|
29
|
Cui T, Zhang L, Huang Y, Yi Y, Tan P, Zhao Y, Hu Y, Xu L, Li E, Wang D. MNDR v2.0: an updated resource of ncRNA-disease associations in mammals. Nucleic Acids Res 2018; 46:D371-D374. [PMID: 29106639 PMCID: PMC5753235 DOI: 10.1093/nar/gkx1025] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence suggests that diverse non-coding RNAs (ncRNAs) are involved in the progression of a wide variety of diseases. In recent years, abundant ncRNA-disease associations have been found and predicted according to experiments and prediction algorithms. Diverse ncRNA-disease associations are scattered over many resources and mammals, whereas a global view of diverse ncRNA-disease associations is not available for any mammals. Hence, we have updated the MNDR v2.0 database (www.rna-society.org/mndr/) by integrating experimental and prediction associations from manual literature curation and other resources under one common framework. The new developments in MNDR v2.0 include (i) an over 220-fold increase in ncRNA-disease associations enhancement compared with the previous version (including lncRNA, miRNA, piRNA, snoRNA and more than 1400 diseases); (ii) integrating experimental and prediction evidence from 14 resources and prediction algorithms for each ncRNA-disease association; (iii) mapping disease names to the Disease Ontology and Medical Subject Headings (MeSH); (iv) providing a confidence score for each ncRNA-disease association and (v) an increase of species coverage to six mammals. Finally, MNDR v2.0 intends to provide the scientific community with a resource for efficient browsing and extraction of the associations between diverse ncRNAs and diseases, including >260 000 ncRNA-disease associations.
Collapse
Affiliation(s)
- Tianyu Cui
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Lin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yan Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Puwen Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yue Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongfei Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- To whom correspondence should be addressed. Tel: +86 451 86699584; Fax: +86 451 86699584; . Correspondence may also be addressed to Enmin Li. Tel: +86 754 88900413; Fax: +86 754 88900847; . Correspondence may also be addressed to Liyan Xu. Tel: +86 754 88900460; Fax: +86 754 88900847;
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- To whom correspondence should be addressed. Tel: +86 451 86699584; Fax: +86 451 86699584; . Correspondence may also be addressed to Enmin Li. Tel: +86 754 88900413; Fax: +86 754 88900847; . Correspondence may also be addressed to Liyan Xu. Tel: +86 754 88900460; Fax: +86 754 88900847;
| | - Dong Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- To whom correspondence should be addressed. Tel: +86 451 86699584; Fax: +86 451 86699584; . Correspondence may also be addressed to Enmin Li. Tel: +86 754 88900413; Fax: +86 754 88900847; . Correspondence may also be addressed to Liyan Xu. Tel: +86 754 88900460; Fax: +86 754 88900847;
| |
Collapse
|