1
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
2
|
Saei AA, Lundin A, Lyu H, Gharibi H, Luo H, Teppo J, Zhang X, Gaetani M, Végvári Á, Holmdahl R, Gygi SP, Zubarev RA. Multifaceted Proteome Analysis at Solubility, Redox, and Expression Dimensions for Target Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401502. [PMID: 39120068 PMCID: PMC11481203 DOI: 10.1002/advs.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.
Collapse
Affiliation(s)
- Amir A. Saei
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- BiozentrumUniversity of BaselBasel4056Switzerland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholm17165Sweden
| | - Albin Lundin
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Huqiao Luo
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Jaakko Teppo
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Rikard Holmdahl
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| |
Collapse
|
3
|
Nie R, Zhang J, Jia Q, Li Y, Tao W, Qin G, Liu X, Tao Y, Zhang Y, Li P. Structurally Oriented Carbon Dots as ROS Nanomodulators for Dynamic Chronic Inflammation and Infection Elimination. ACS NANO 2024; 18:22055-22070. [PMID: 39116283 DOI: 10.1021/acsnano.4c05266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination. The phenolic OH containing CDs derived from honeysuckle (HOCD) and dandelion (DACD) demonstrated appropriate redox potentials, ensuring their ability to scavenge cytotoxic ROS such as ·OH and ONOO-, while invalidity toward essential ones such as O2·-, H2O2, and NO. This enables efficient treatment of chronic inflammation without affecting essential ROS signal pathways. The surface C-N/C═N of CDs derived from taxus leaves (TACD) and DACD renders them with suitable band structures, facilitating absorption in the red region and efficient generation of O2·- upon light irradiation for sterilization. Specifically, the facilely prepared DACD demonstrates fascinating dynamic ROS modulating ability, making it highly suitable for addressing concurrent chronic inflammation and infection, such as diabetic wound infection. This dynamic ROS regulation strategy facilitates the realization of the precise and efficient treatment of chronic inflammation and infection with minimal side effects, holding immense potential for clinical practice.
Collapse
Affiliation(s)
- Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| | - Yuanying Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guofeng Qin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiyin Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaolan Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yunxiu Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 mingli Road, Zhengzhou 450046, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
4
|
Liu H, Yang P, Chen S, Wang S, Jiang L, Xiao X, Le S, Chen S, Chen X, Ye P, Xia J. Ncf1 knockout in smooth muscle cells exacerbates angiotensin II-induced aortic aneurysm and dissection by activating the STING pathway. Cardiovasc Res 2024; 120:1081-1096. [PMID: 38639325 PMCID: PMC11288755 DOI: 10.1093/cvr/cvae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 04/20/2024] Open
Abstract
AIMS Aortic aneurysm and dissection (AAD) is caused by the progressive loss of aortic smooth muscle cells (SMCs) and is associated with a high mortality rate. Identifying the mechanisms underlying SMC apoptosis is crucial for preventing AAD. Neutrophil cytoplasmic factor 1 (Ncf1) is essential in reactive oxygen species production and SMC apoptosis; Ncf1 absence leads to autoimmune diseases and chronic inflammation. Here, the role of Ncf1 in angiotensin II (Ang II)-induced AAD was investigated. METHODS AND RESULTS Ncf1 expression increased in injured SMCs. Bioinformatic analysis identified Ncf1 as a mediator of AAD-associated SMC damage. Ncf1 expression is positively correlated with DNA replication and repair in SMCs of AAD aortas. AAD incidence increased in Ang II-challenged Sm22CreNcf1fl mice. Transcriptomics showed that Ncf1 knockout activated the stimulator of interferon genes (STING) and cell death pathways. The effects of Ncf1 on SMC death and the STING pathway in vitro were examined. Ncf1 regulated the hydrogen peroxide-mediated activation of the STING pathway and inhibited SMC apoptosis. Mechanistically, Ncf1 knockout promoted the ubiquitination of nuclear factor erythroid 2-related factor 2 (NRF2), thereby inhibiting the negative regulatory effect of NRF2 on the stability of STING mRNA and ultimately promoting STING expression. Additionally, the pharmacological inhibition of STING activation prevented AAD progression. CONCLUSION Ncf1 deficiency in SMCs exacerbated Ang II-induced AAD by promoting NRF2 ubiquitination and degradation and activating the STING pathway. These data suggest that Ncf1 may be a potential therapeutic target for AAD treatment.
Collapse
MESH Headings
- Animals
- Angiotensin II
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/chemically induced
- Aortic Dissection/prevention & control
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Disease Models, Animal
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Knockout
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/prevention & control
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/deficiency
- Cells, Cultured
- Mice, Inbred C57BL
- Male
- Ubiquitination
- NADPH Oxidases/metabolism
- NADPH Oxidases/genetics
- Humans
- Mice
Collapse
Affiliation(s)
- Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaoyue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhong Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
5
|
Saleh M, Sjöwall J, Bendtsen M, Sjöwall C. The prevalence of neutropenia and association with infections in patients with systemic lupus erythematosus: a Swedish single-center study conducted over 14 years. Rheumatol Int 2024; 44:839-849. [PMID: 38502234 PMCID: PMC10980633 DOI: 10.1007/s00296-024-05566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Hematologic abnormalities are common manifestations of SLE, although neutropenia is observed less frequently and is not included in the classification criteria. Nonetheless, neutropenia is a risk factor for infections, especially those caused by bacteria or fungi. We aimed to evaluate the impact of neutropenia in SLE through a systematic investigation of all infections in a large cohort of well-characterized patients, focusing on neutropenia, lymphopenia, and hypocomplementemia. Longitudinal clinical and laboratory parameters obtained at visits to the Rheumatology Unit, Linköping University Hospital, and linked data on all forms of healthcare utilization for all the subjects included in our regional SLE register during 2008-2022 were assessed. Data regarding confirmed infections were retrieved from the medical records. Overall, 333 patients were included and monitored during 3,088 visits to a rheumatologist during the study period. In total, 918 infections were identified, and 94 occasions of neutropenia (ANC < 1.5 × 109/L) were detected in 40 subjects (12%). Thirty neutropenic episodes in 15 patients occurred in association with infections, of which 13 (43%) required in-hospital care, 4 (13%) needed intensive care, and 1 (3%) resulted in death. Bayesian analysis showed that patients with ≥ 1 occasion of neutropenia were more likely to experience one or more infections (OR = 2.05; probability of association [POA] = 96%). Both invasiveness (OR = 7.08; POA = 98%) and severity (OR = 2.85; POA = 96%) of the infections were significantly associated with the present neutropenia. Infections are common among Swedish SLE patients, 12% of whom show neutropenia over time. Importantly, neutropenia is linked to both the invasiveness and severity of infections. Awareness of the risks of severe infections in neutropenic patients is crucial to tailor therapies to prevent severe illness and death.
Collapse
Affiliation(s)
- Muna Saleh
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden.
- Rheumatology Unit, Linköping University Hospital, 581 85, Linköping, Sweden.
| | - Johanna Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Infectious Diseases, Linköping University, Linköping, Sweden
| | - Marcus Bendtsen
- Department of Health, Medicine and Caring Sciences, Division of Society and Health, Linköping University, 581 83, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Meulmeester FL, Luo J, Martens LG, Mills K, van Heemst D, Noordam R. Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants (Basel) 2022; 11:antiox11122322. [PMID: 36552530 PMCID: PMC9774512 DOI: 10.3390/antiox11122322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress has been proposed as a key contributor to lifestyle- and age-related diseases. Because free radicals play an important role in various processes such as immune responses and cellular signaling, the body possesses an arsenal of different enzymatic and non-enzymatic antioxidant defense mechanisms. Oxidative stress is, among others, the result of an imbalance between the production of various reactive oxygen species (ROS) and antioxidant defense mechanisms including vitamin E (α-tocopherol) as a non-enzymatic antioxidant. Dietary vitamins, such as vitamin C and E, can also be taken in as supplements. It has been postulated that increasing antioxidant levels through supplementation may delay and/or ameliorate outcomes of lifestyle- and age-related diseases that have been linked to oxidative stress. Although supported by many animal experiments and observational studies, randomized clinical trials in humans have failed to demonstrate any clinical benefit from antioxidant supplementation. Nevertheless, possible explanations for this discrepancy remain underreported. This review aims to provide an overview of recent developments and novel research techniques used to clarify the existing controversy on the benefits of antioxidant supplementation in health and disease, focusing on α-tocopherol as antioxidant. Based on the currently available literature, we propose that examining the difference between antioxidant activity and capacity, by considering the catabolism of antioxidants, will provide crucial knowledge on the preventative and therapeutical use of antioxidant supplementation in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fleur L. Meulmeester
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Correspondence: (F.L.M.); (R.N.); Tel.: +31-71-526-6640 (R.N.)
| | - Jiao Luo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Leon G. Martens
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Kevin Mills
- NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Correspondence: (F.L.M.); (R.N.); Tel.: +31-71-526-6640 (R.N.)
| |
Collapse
|
7
|
Genome-wide association and Mendelian randomization study of blood copper levels and 213 deep phenotypes in humans. Commun Biol 2022; 5:405. [PMID: 35501403 PMCID: PMC9061855 DOI: 10.1038/s42003-022-03351-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Metal elements are present in the human body, and their levels in the blood have important impacts on health. In this study, 2488 Chinese individuals were included in a genome-wide association study of 21 serum metal levels, with approximately 179,000 East Asian individuals in a bidirectional two-sample Mendelian randomization (MR) analysis, and 628,000 Europeans in a two-sample MR analysis. We identified two single nucleotide polymorphisms (SNPs) rs35691438 and rs671 that were significantly associated with serum copper levels (SCLs). The bidirectional two-sample MR analysis in the East Asian population showed that gamma-glutamyl transpeptidase levels have a causal effect on SCLs. SCLs have causal effects on six outcomes, namely risks of esophageal varix, glaucoma, sleep apnea syndrome, and systemic lupus erythematosus, white blood cell count, and usage of drugs affecting bone structure and mineralization. The two-sample MR analyses in the European population showed causal effects of erythrocyte copper levels on risks of carpal tunnel syndrome and compression fracture. Our results provide original insights into the causal relationship between blood metal levels and multiple human phenotypes. A genome-wide association study in a Chinese population identifies SNPs associated with serum copper levels. Mendelian randomization analysis reveals causal effects on multiple human phenotypes in East Asian and European populations.
Collapse
|
8
|
Teng X, Brown J, Morel L. Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxid Redox Signal 2022; 36:462-479. [PMID: 34619975 PMCID: PMC8982129 DOI: 10.1089/ars.2021.0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
Significance: Metformin has been proposed as a treatment for systemic lupus erythematosus (SLE). The primary target of metformin, the electron transport chain complex I in the mitochondria, is associated with redox homeostasis in immune cells, which plays a critical role in the pathogenesis of autoimmune diseases. This review addresses the evidence and knowledge gaps on whether a beneficial effect of metformin in lupus may be due to a restoration of a balanced redox state. Recent Advances: Clinical trials in SLE patients with mild-to-moderate disease activity and preclinical studies in mice have provided encouraging results for metformin. The mechanism by which this therapeutic effect was achieved is largely unknown. Metformin regulates redox homeostasis in a context-specific manner. Multiple cell types contribute to SLE, with evidence of increased mitochondrial oxidative stress in T cells and neutrophils. Critical Issues: The major knowledge gaps are whether the efficacy of metformin is linked to a restored redox homeostasis in the immune system, and if it does, in which cell types it occurs? We also need to know which patients may have a better response to metformin, and whether it corresponds to a specific mechanism? Finally, the identification of biomarkers to predict treatment outcomes would be of great value. Future Directions: Mechanistic studies must address the context-dependent pharmacological effects of metformin. Multiple cell types as well as a complex disease etiology should be considered. These studies must integrate the rapid advances made in understanding how metabolic programs direct the effector functions of immune cells. Antioxid. Redox Signal. 36, 462-479.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Elkoshi Z. Cancer and Autoimmune Diseases: A Tale of Two Immunological Opposites? Front Immunol 2022; 13:821598. [PMID: 35145524 PMCID: PMC8822211 DOI: 10.3389/fimmu.2022.821598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
The present article compares, side-by-side, cancer and autoimmune diseases in terms of innate and adaptive immune cells involvement, MHC Class I and Class II expression, TGFβ effect, immune modulating drugs effect and the effect of reactive oxygen species. The change in the inflammatory immune reaction during the progress of cancer and the effect of this change on the comorbidity of autoimmune diseases and cancer are discussed. The similar inflammatory properties of autoimmune diseases and early cancer, and the contrasting inflammatory properties of autoimmune diseases and advanced cancer elucidate the increased incidence of many types of cancer in patients with pre-existing autoimmune diseases and the decreased cancer-specific mortality of these patients. Stage-dependent effects of reactive oxygen-species on tumor proliferation are an additional probable cause for these epidemiological observations. The relationship: {standardized incidence ratio (SIR)} > {cancer-specific hazard ratio (HR)} for cancer patients with a history of autoimmune diseases is substantiated and rationalized.
Collapse
|
10
|
Wu YH, Kuo CF, Hsieh AH, Hsieh HL, Chan YF, Hwang TL. Upregulation of miR-210-5p impairs dead cell clearance by macrophages through the inhibition of Sp1-and HSCARG-dependent NADPH oxidase pathway. Free Radic Biol Med 2021; 172:441-450. [PMID: 34197940 DOI: 10.1016/j.freeradbiomed.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022]
Abstract
The deficiency of dead cell clearance is a prominent pathogenic factor in systemic lupus erythematosus (SLE). In this study, the overexpression of miR-210-5p resulted in the accumulation of secondary necrotic cells (SNECs) in macrophages through the reduction of protein degradation. The upreguation of miR-210-5p inhibited NADPH oxidase (NOX) activation, reactive oxygen species (ROS) generation, and SNEC clearance. miR-210-5p overexpression suppressed Sp1 and HSCARG expression, and the knockdown of SP1 and HSCARG inhibited NOX expression and superoxide production in macrophages. Furthermore, patients with active SLE expressed a higher level of miR-210-5p and lower expression of SP1 and HSCARG in peripheral blood mononuclear cells. In summary, our findings indicate that the upregulation of miR-210-5p increases the accumulation of SNECs through a decrease in the Sp1-and HSCARG-mediated NOX activity and ROS generation in macrophages. Our results also suggest that targeting miR-210-5p may have therapeutic potential for SLE.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
| | - Chang-Fu Kuo
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ao-Ho Hsieh
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Yen-Fan Chan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
11
|
Arve-Butler S, Schmidt T, Mossberg A, Berthold E, Gullstrand B, Bengtsson AA, Kahn F, Kahn R. Synovial fluid neutrophils in oligoarticular juvenile idiopathic arthritis have an altered phenotype and impaired effector functions. Arthritis Res Ther 2021; 23:109. [PMID: 33836809 PMCID: PMC8034063 DOI: 10.1186/s13075-021-02483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neutrophils are the most prevalent immune cells in the synovial fluid in inflamed joints of children with oligoarticular juvenile idiopathic arthritis (JIA). Despite this, little is known about neutrophil function at the site of inflammation in JIA and how local neutrophils contribute to disease pathogenesis. This study aimed to characterize the phenotype and function of synovial fluid neutrophils in oligoarticular JIA. Methods Neutrophils obtained from paired blood and synovial fluid from patients with active oligoarticular JIA were investigated phenotypically (n = 17) and functionally (phagocytosis and oxidative burst, n = 13) by flow cytometry. In a subset of patients (n = 6), blood samples were also obtained during inactive disease at a follow-up visit. The presence of CD206-expressing neutrophils was investigated in synovial biopsies from four patients by immunofluorescence. Results Neutrophils in synovial fluid had an activated phenotype, characterized by increased CD66b and CD11b levels, and most neutrophils had a CD16hi CD62Llowaged phenotype. A large proportion of the synovial fluid neutrophils expressed CD206, a mannose receptor not commonly expressed by neutrophils but by monocytes, macrophages, and dendritic cells. CD206-expressing neutrophils were also found in synovial tissue biopsies. The synovial fluid neutrophil phenotype was not dependent on transmigration alone. Functionally, synovial fluid neutrophils had reduced phagocytic capacity and a trend towards impaired oxidative burst compared to blood neutrophils. In addition, the effector functions of the synovial fluid neutrophils correlated negatively with the proportion of CD206+ neutrophils. Conclusions Neutrophils in the inflamed joint in oligoarticular JIA were altered, both regarding phenotype and function. Neutrophils in the synovial fluid were activated, had an aged phenotype, had gained monocyte-like features, and had impaired phagocytic capacity. The impairment in phagocytosis and oxidative burst was associated with the phenotype shift. We speculate that these neutrophil alterations might play a role in the sustained joint inflammation seen in JIA.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anki Mossberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Elisabet Berthold
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Birgitta Gullstrand
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders A Bengtsson
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Department of Infection Medicine, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Robin Kahn
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Rojas Márquez JD, Li T, McCluggage ARR, Tan JMJ, Muise A, Higgins DE, Brumell JH. Cutting Edge: NOX2 NADPH Oxidase Controls Infection by an Intracellular Bacterial Pathogen through Limiting the Type 1 IFN Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:323-328. [PMID: 33288542 DOI: 10.4049/jimmunol.2000694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023]
Abstract
The NOX2 NADPH oxidase (NOX2) produces reactive oxygen species to kill phagosome-confined bacteria. However, we previously showed that Listeria monocytogenes is able to avoid the NOX2 activity in phagosomes and escape to the cytosol. Thus, despite the established role of NOX2 limiting L. monocytogenes infection in mice, the underlying mechanisms of this antibacterial activity remain unclear. In this article, we report that NOX2 controls systemic L. monocytogenes spread through modulation of the type I IFN response, which is known to be exploited by L. monocytogenes during infection. NOX2 deficiency results in increased expression of IFN-stimulated genes in response to type I IFN and leads to 1) promotion of cell-to-cell spread by L. monocytogenes, 2) defective leukocyte recruitment to infection foci, and 3) production of anti-inflammatory effectors IL-10 and thioredoxin 1. Our findings report a novel antimicrobial role for NOX2 through modulation of type I IFN responses to control bacterial dissemination.
Collapse
Affiliation(s)
| | - Taoyingnan Li
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Adam R R McCluggage
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Joel M J Tan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Aleixo Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; and
| | - Darren E Higgins
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; and
| |
Collapse
|
14
|
Lind S, Dahlgren C, Holmdahl R, Olofsson P, Forsman H. Functional selective FPR1 signaling in favor of an activation of the neutrophil superoxide generating NOX2 complex. J Leukoc Biol 2020; 109:1105-1120. [PMID: 33040403 PMCID: PMC8246850 DOI: 10.1002/jlb.2hi0520-317r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The formyl peptide receptors FPR1 and FPR2 are abundantly expressed by neutrophils, in which they regulate proinflammatory tissue recruitment of inflammatory cells, the production of reactive oxygen species (ROS), and resolution of inflammatory reactions. The unique dual functionality of the FPRs makes them attractive targets to develop FPR‐based therapeutics as novel anti‐inflammatory treatments. The small compound RE‐04‐001 has earlier been identified as an inducer of ROS in differentiated HL60 cells but the precise target and the mechanism of action of the compound was has until now not been elucidated. In this study, we reveal that RE‐04‐001 specifically targets and activates FPR1, and the concentrations needed to activate the neutrophil NADPH‐oxidase was very low (EC50 ∼1 nM). RE‐04‐001 was also found to be a neutrophil chemoattractant, but when compared to the prototype FPR1 agonist N‐formyl‐Met‐Leu‐Phe (fMLF), the concentrations required were comparably high, suggesting that signaling downstream of the RE‐04‐001‐activated‐FPR1 is functionally selective. In addition, the RE‐04‐001‐induced response was strongly biased toward the PLC‐PIP2‐Ca2+ pathway and ERK1/2 activation but away from β‐arrestin recruitment. Compared to the peptide agonist fMLF, RE‐04‐001 is more resistant to inactivation by the MPO‐H2O2‐halide system. In summary, this study describes RE‐04‐001 as a novel small molecule agonist specific for FPR1, which displays a biased signaling profile that leads to a functional selective activating of human neutrophils. RE‐04‐001 is, therefore, a useful tool, not only for further mechanistic studies of the regulatory role of FPR1 in inflammation in vitro and in vivo, but also for developing FPR1‐specific drug therapeutics.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Olofsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther 2020; 5:34. [PMID: 32296043 PMCID: PMC7145808 DOI: 10.1038/s41392-020-0139-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/05/2023] Open
Abstract
The increased incidence of systemic lupus erythematosus (SLE) in recent decades might be related to changes in modern dietary habits. Since sodium chloride (NaCl) promotes pathogenic T cell responses, we hypothesize that excessive salt intake contributes to the increased incidence of autoimmune diseases, including SLE. Given the importance of dendritic cells (DCs) in the pathogenesis of SLE, we explored the influence of an excessive sodium chloride diet on DCs in a murine SLE model. We used an induced lupus model in which bone marrow-derived dendritic cells (BMDCs) were incubated with activated lymphocyte-derived DNA (ALD-DNA) and transferred into C57BL/6 recipient mice. We observed that a high-salt diet (HSD) markedly exacerbated lupus progression, which was accompanied by increased DC activation. NaCl treatment also stimulated the maturation, activation and antigen-presenting ability of DCs in vitro. Pretreatment of BMDCs with NaCl also exacerbated BMDC-ALD-DNA-induced lupus. These mice had increased production of autoantibodies and proinflammatory cytokines, more pronounced splenomegaly and lymphadenopathy, and enhanced pathological renal lesions. The p38 MAPK–STAT1 pathway played an important role in NaCl-induced DC immune activities. Taken together, our results demonstrate that HSD intake promotes immune activation of DCs through the p38 MAPK–STAT1 signaling pathway and exacerbates the features of SLE. Thus, changes in diet may provide a novel strategy for the prevention or amelioration of lupus or other autoimmune diseases.
Collapse
|
16
|
Lever E, Alves MR, Isenberg DA. Towards Precision Medicine in Systemic Lupus Erythematosus. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:39-49. [PMID: 32099443 PMCID: PMC7007776 DOI: 10.2147/pgpm.s205079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkable condition characterised by diversity amongst its clinical features and immunological abnormalities. In this review, we attempt to capture the major immunological changes linked to the pathophysiology of lupus and discuss the challenge it presents in moving towards the concept of precision medicine. Currently broadly similar types of drugs, e.g., steroids, immunosuppressives, hydroxychloroquine are used to treat many of the diverse clinical features of SLE. We suspect that, as the precise immunopathological abnormalities differ between the various organs/systems in lupus patients, it will be some time before precision medicine can be fully applied to SLE.
Collapse
Affiliation(s)
- Elliott Lever
- Centre for Rheumatology, Division of Medicine, University College Hospital London, London, UK
| | - Marta R Alves
- Internal Medicine, Department of Medicine, Centro Hospitalar do Porto, Porto, Portugal
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College Hospital London, London, UK
| |
Collapse
|
17
|
Khaw YM, Cunningham C, Tierney A, Sivaguru M, Inoue M. Neutrophil-selective deletion of Cxcr2 protects against CNS neurodegeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2020; 17:49. [PMID: 32019585 PMCID: PMC7001284 DOI: 10.1186/s12974-020-1730-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system (CNS) driven by demyelination and gray matter neurodegeneration. We previously reported an experimental autoimmune encephalomyelitis (EAE) MS mouse model with elevated serum CXCL1 that developed severe and prolonged neuron damage. Our findings suggested that CXCR2 signaling may be important in neuronal damage, thus implicating neutrophils, which express CXCR2 in abundance, as a potential cell type involved. The goals of this study were to determine if CXCR2 signaling in neutrophils mediate neuronal damage and to identify potential mechanisms of damage. Methods EAE was induced in wild-type control and neutrophil-specific Cxcr2 knockout (Cxcr2 cKO) mice by repeated high-dose injections of heat-killed Mycobacterium tuberculosis and MOG35–55 peptide. Mice were examined daily for motor deficit. Serum CXCL1 level was determined at different time points throughout disease development. Neuronal morphology in Golgi-Cox stained lumbar spinal cord ventral horn was assessed using recently developed confocal reflection super-resolution technique. Immune cells from CNS and lymphoid organs were quantified by flow cytometry. CNS-derived neutrophils were co-cultured with neuronal crest cells and neuronal cell death was measured. Neutrophils isolated from lymphoid organs were examined for expression of reactive oxygen species (ROS) and ROS-related genes. Thioglycolate-activated neutrophils were isolated, treated with recombinant CXCL1, and measured for ROS production. Results Cxcr2 cKO mice had less severe disease symptoms at peak and late phase when compared to control mice with similar levels of CNS-infiltrating neutrophils and other immune cells despite high levels of circulating CXCL1. Additionally, Cxcr2 cKO mice had significantly reduced CNS neuronal damage in the ventral horn of the spinal cord. Neutrophils isolated from control EAE mice induced vast neuronal cell death in vitro when compared with neutrophils isolated from Cxcr2 cKO EAE mice. Neutrophils isolated from control EAE mice, but not Cxcr2 cKO mice, exhibited elevated ROS generation, in addition to heightened Ncf1 and Il1b transcription. Furthermore, recombinant CXCL1 was sufficient to significantly increase neutrophils ROS production. Conclusions CXCR2 signal in neutrophils is critical in triggering CNS neuronal damage via ROS generation, which leads to prolonged EAE disease. These findings emphasize that CXCR2 signaling in neutrophils may be a viable target for therapeutic intervention against CNS neuronal damage.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Claire Cunningham
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Abigail Tierney
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
18
|
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev 2020; 57:100982. [PMID: 31733333 DOI: 10.1016/j.arr.2019.100982] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Among other mechanisms, oxidative stress has been postulated to play an important role in the rate of ageing. Oxidative damage contributes to the hallmarks of ageing and essential components in pathological pathways which are thought to drive multiple age-related diseases. Nonetheless, results from studies testing the hypothesis of oxidative stress in ageing and diseases showed controversial results. While observational studies mainly found detrimental effects of high oxidative stress levels on disease status, randomized clinical trials examining the effect of antioxidant supplementation on disease status generally showed null effects. However, re-evaluations of these counterinitiative observations are required considering the lack of reliability and specificity of traditionally used biomarkers for measuring oxidative stress. To facilitate these re-evaluations, this review summarizes the basic knowledge of oxidative stress and the present findings regarding the role of oxidative damage in ageing and age-related diseases. Meanwhile, two approaches are highlighted, namely proper participants selection, together with the development of reliable biomarkers. We propose that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.
Collapse
|
19
|
Xinqiang S, Yu Z, Ningning Y, Erqin D, Lei W, Hongtao D. Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology. Life Sci 2019; 240:117063. [PMID: 31734262 DOI: 10.1016/j.lfs.2019.117063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Network pharmacology uses bioinformatics to broaden our understanding of drug actions and thereby advance drug discovery. Here we apply network pharmacology to generate testable hypotheses about the multi-target mechanism of celastrol against systemic lupus erythematosus (SLE). METHODS We reconstructed drug-target pathways and networks to predict the likely protein targets of celastrol and the main interactions between those targets and the drug. Then we validated our predictions of candidate targets by performing docking studies with celastrol. RESULTS The results suggest that celastrol acts against SLE by regulating the function of several signaling proteins, such as interleukin 10, tumor necrosis factor, and matrix metalloprotein 9, which regulate signaling pathways involving mitogen-activated protein kinase and tumor necrosis factor as well as apoptosis pathways. Celastrol is predicted to affect networks involved mainly in cytokine activity, cytokine receptor binding, receptor ligand activity, receptor regulator activity, and cofactor binding. Molecular docking analysis showed that hydrogen bonding and π-π stacking were the main forms of interaction. CONCLUSIONS This network pharmacology strategy may be useful for discovery of multi-target drugs against complex diseases, specifically, it provides protein targets associated with SLE that may be further tested for therapeutic potential by celastrol.
Collapse
Affiliation(s)
- Song Xinqiang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China; Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, China, 464000.
| | - Zhang Yu
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yang Ningning
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Dai Erqin
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Wang Lei
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Du Hongtao
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|