1
|
Bessot A, Medeiros Savi F, Gunter J, Mendhi J, Amini S, Waugh D, McGovern J, Hutmacher DW, Bock N. Humanized In Vivo Bone Tissue Engineering: In Vitro Preculture Conditions Control the Structural, Cellular, and Matrix Composition of Humanized Bone Organs. Adv Healthc Mater 2024:e2401939. [PMID: 39444080 DOI: 10.1002/adhm.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Bone tissue engineering (BTE) has long sought to elucidate the key factors controlling human/humanized bone formation for regenerative medicine and disease modeling applications, yet with no definitive answers due to the high number and co-dependency of parameters. This study aims to clarify the relative impacts of in vitro biomimetic 'preculture composition' and 'preculture duration' before in vivo implantation as key criteria for the optimization of BTE design. These parameters are directly related to in vitro osteogenic differentiation (OD) and mineralization and are being investigated across different osteoprogenitor-loaded biomaterials, specifically fibrous calcium phosphate-polycaprolactone (CaP-mPCL) scaffolds and gelatin methacryloyl (GelMA) hydrogels. The results show that OD and mineralization levels prior to implantation, enhanced by a mineralization medium supplement to the osteogenic medium (OM), significantly improve ectopic BTE outcomes, regardless of the biomaterial type. Specifically, preculture conditions are pivotal in achieving more faithful mimicry of human bone structure, cellular and extracellular matrix composition and organization, and provide control over bone marrow composition. This work emphasizes the potential of using biomimetic culture compositions, specifically the addition of a mineralization medium as a cost-effective and straightforward approach to enhance BTE outcomes, facilitating rapid development of bone models with superior quality and resemblance to native bone.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jennifer Gunter
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia
| | - Jayanti Mendhi
- Central Analytical Research Facility, QUT, Brisbane, QLD, 4102, Australia
| | - Shahrouz Amini
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - David Waugh
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Jacqui McGovern
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET), QUT, Brisbane, QLD, 4000, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Grigoryan A, Zacharaki D, Balhuizen A, Côme CR, Garcia AG, Hidalgo Gil D, Frank AK, Aaltonen K, Mañas A, Esfandyari J, Kjellman P, Englund E, Rodriguez C, Sime W, Massoumi R, Kalantari N, Prithiviraj S, Li Y, Dupard SJ, Isaksson H, Madsen CD, Porse BT, Bexell D, Bourgine PE. Engineering human mini-bones for the standardized modeling of healthy hematopoiesis, leukemia, and solid tumor metastasis. Sci Transl Med 2022; 14:eabm6391. [PMID: 36223446 DOI: 10.1126/scitranslmed.abm6391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.
Collapse
Affiliation(s)
- Ani Grigoryan
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Alexander Balhuizen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christophe Rm Côme
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Carmen Rodriguez
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Nasim Kalantari
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Sujeethkumar Prithiviraj
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Yuan Li
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Steven J Dupard
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 221 85 Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Paul E Bourgine
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
3
|
Identification of the Factor That Leads Human Mesenchymal Stem Cell Lines into Decellularized Bone. Bioengineering (Basel) 2022; 9:bioengineering9100490. [PMID: 36290460 PMCID: PMC9598111 DOI: 10.3390/bioengineering9100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is maintained by the interaction of hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (MSCs) in bone marrow microenvironments, called niches. Certain genetic mutations in MSCs, not HSCs, provoke some hematopoietic neoplasms, such as myelodysplastic syndrome. An in vivo bone marrow niche model using human MSC cell lines with specific genetic mutations and bone scaffolds is necessary to elucidate these interactions and the disease onset. We focused on decellularized bone (DCB) as a useful bone scaffold and attempted to induce human MSCs (UE7T-9 cells) into the DCB. Using the CRISPR activation library, we identified SHC4 upregulation as a candidate factor, with the SHC4 overexpression in UE7T-9 cells activating their migratory ability and upregulating genes to promote hematopoietic cell migration. This is the first study to apply the CRISPR library to engraft cells into decellularized biomaterials. SHC4 overexpression is essential for engrafting UE7T-9 cells into DCB, and it might be the first step toward creating an in vivo human–mouse hybrid bone marrow niche model.
Collapse
|
4
|
Tavakol DN, Bonini F, Tratwal J, Genta M, Brefie-Guth J, Braschler T, Naveiras O. Cryogel-based Injectable 3D Microcarrier Co-culture for Support of Hematopoietic Progenitor Niches. Curr Protoc 2021; 1:e275. [PMID: 34813179 DOI: 10.1002/cpz1.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although hematopoietic stem cell (HSC) transplantation can restore functional hematopoiesis upon immune or chemotherapy-induced bone marrow failure, complications often arise during recovery, leading to up to 25% transplant-related mortality in treated patients. In hematopoietic homeostasis and regeneration, HSCs in the bone marrow give rise to the entirety of cellular blood components. One of the challenges in studying hematopoiesis is the ability to successfully mimic the relationship between the stroma and hematopoietic stem and progenitor cells (HSPCs). This study and the described protocols propose an advantageous method for culturing and assessing stromal hematopoietic support in three dimensions, representing a simplified in vitro model of the bone marrow niche that can be transplanted in vivo by injection. By co-culturing OP9 bone marrow-derived stromal cells (BMSCs) and cKit+ Sca-1+ Lin- (KLS+ ) HSPCs on collagen-coated carboxymethylcellulose scaffolds for 2 weeks in the absence of cytokines, we established a methodology for in vivo subcutaneous transplantation. With this model we were able to detect early signs of extramedullary hematopoiesis. This work can be useful for studying various stromal cell populations in co-culture, as well as simple transfer by injection of these scaffolds in vivo for heterotopic regeneration of the marrow microenvironment. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of HSPCs from mice Basic Protocol 2: Co-seeding of HSPCs and BMSCs on collagen-coated CCMs Basic Protocol 3: Maintenance, real-time imaging, and analysis of co-seeded scaffolds Basic Protocol 4: End-point analysis of co-seeded scaffolds using flow cytometry and CFU assays Basic Protocol 5: Transplantation of scaffolds by subcutaneous injection Support Protocol: Preparation of custom scaffold drying device.
Collapse
Affiliation(s)
- Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Current address: Department of Biomedical Engineering, Columbia University, New York City, New York
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Genève, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martina Genta
- Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland.,Current address: Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Joé Brefie-Guth
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Genève, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Genève, Switzerland.,Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland.,Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
5
|
Pievani A, Savoldelli R, Poelchen J, Mattioli E, Anselmi G, Girardot A, Utikal J, Bourdely P, Serafini M, Guermonprez P. Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Front Immunol 2021; 12:631279. [PMID: 33790904 PMCID: PMC8006008 DOI: 10.3389/fimmu.2021.631279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Tissue engineering opens multiple opportunities in regenerative medicine, drug testing, and modeling of the hematopoiesis in health and disease. Recapitulating the organization of physiological microenvironments supporting leukocyte development is essential to model faithfully the development of immune cells. Hematopoietic organs are shaped by spatially organized niches defined by multiple cellular contributions. A shared feature of immune niches is the presence of mesenchymal stromal cells endowed with unique roles in organizing niche development, maintenance, and function. Here, we review challenges and opportunities in harnessing stromal cells for the engineering of artificial immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Pievani
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Roberto Savoldelli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Elisa Mattioli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, Radcliffe Department of Medicine, Medical Research Council, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Girardot
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Pierre Bourdely
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Marta Serafini
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Pierre Guermonprez
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| |
Collapse
|
6
|
Sommerkamp P, Mercier FE, Wilkinson AC, Bonnet D, Bourgine PE. Engineering human hematopoietic environments through ossicle and bioreactor technologies exploitation. Exp Hematol 2021; 94:20-25. [PMID: 33278488 PMCID: PMC7879567 DOI: 10.1016/j.exphem.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 01/16/2023]
Abstract
The bone marrow microenvironment contains cellular niches that maintain the pool of hematopoietic stem and progenitor cells and support hematopoietic maturation. Malignant hematopoietic cells also co-opt normal cellular interactions to promote their own growth and evade therapy. In vivo systems used to study human hematopoiesis have been developed through transplantation into immunodeficient mouse models. However, incomplete cross-compatibility between the murine stroma and transplanted human hematopoietic cells limits the rate of engraftment and the study of relevant interactions. To supplement in vivo xenotransplantation models, complementary strategies have recently been developed, including the use of three-dimensional human bone marrow organoids in vivo, generated from bone marrow stromal cells seeded onto osteo-inductive scaffolds, as well as the use of ex vivo bioreactor models. These topics were the focus of the Spring 2020 International Society for Experimental Hematology New Investigator webinar. We review here the latest advances in generating humanized hematopoietic organoids and how they allow for the study of novel microenvironmental interactions.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - François E Mercier
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Dominique Bonnet
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, London, UK
| | - Paul E Bourgine
- Laboratory for Cell, Tissue, and Organ Engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Fraint E, Ulloa BA, Feliz Norberto M, Potts KS, Bowman TV. Advances in preclinical hematopoietic stem cell models and possible implications for improving therapeutic transplantation. Stem Cells Transl Med 2020; 10:337-345. [PMID: 33058566 PMCID: PMC7900582 DOI: 10.1002/sctm.20-0294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a treatment for many malignant, congenital, and acquired hematologic diseases. Some outstanding challenges in the HSCT field include the paucity of immunologically‐matched donors, our inability to effectively expand hematopoeitic stem cells (HSCs) ex vivo, and the high infection risk during engraftment. Scientists are striving to develop protocols to generate, expand, and maintain HSCs ex vivo, however these are not yet ready for clinical application. Given these problems, advancing our understanding of HSC specification, regulation, and differentiation in preclinical models is essential to improve the therapeutic utility of HSCT. In this review, we link biomedical researchers and transplantation clinicians by discussing the potential therapeutic implications of recent fundamental HSC research in model organisms. We consider deficiencies in current HSCT practice, such as problems achieving adequate cell dose for successful and rapid engraftment, immense inflammatory cascade activation after myeloablation, and graft‐vs‐host disease. Furthermore, we discuss recent advances in the field of HSC biology and transplantation made in preclinical models of zebrafish, mouse, and nonhuman primates that could inform emerging practice for clinical application.
Collapse
Affiliation(s)
- Ellen Fraint
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Bianca A Ulloa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - María Feliz Norberto
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
8
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|