1
|
Fedorka CE, El-Sheikh-Ali H, Scoggin KE, Coleman S, Humphrey EA, Troutt L, Troedsson MHT. The Effect of Seminal Plasma on the Equine Endometrial Transcriptome. Reprod Domest Anim 2024; 59:e14711. [PMID: 39246124 DOI: 10.1111/rda.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The establishment of pregnancy involves a fine-tuned balance between protection and tolerance within the maternal immune system, as the female needs to accept a foreign antigen (the semi-allogenic fetus) while still being able to combat pathogens from the uterus. In the horse, the first uterine exposure to paternal antigens is during mating when sperm is introduced to the tissue and draining lymphatics of the uterus. Additionally, it has been suggested that seminal plasma and its proteins within it play an essential role in preparing the female tract for a suitable immunologic environment but this has not been confirmed in the horse. Therefore, the objective of this study was to evaluate the endometrial transcriptome following insemination either with seminal plasma or with reduced seminal plasma. We hypothesised that reduced seminal plasma would alter the endometrial transcriptome and affect transcripts relating to immunotolerance, antigen presentation and embryo growth and development. To do so, six (n = 6) mares were inseminated in a randomised switch-back design over the course of four oestrous cycles. Mares were rectally palpated and scanned via ultrasonography for the detection of a pre-ovulatory follicle (>35 mm) alongside increasing uterine oedema and relaxed cervix, and then treated with one of four treatment groups including (1) 30 mL lactated Ringers solution (LRS; NegCon), (2) 500 × 106 spermatozoa in conjunction with 30 mL seminal plasma (SP+), (3) 30 mL lactated Ringers solution (LRS; wash out) and (4) 500 × 106 spermatozoa with seminal plasma reduced via gradient centrifugation and resuspended in 30 mL LRS (SP-). Human chorionic gonadotropin (hCG) was administered to standardise the time to ovulation and endometrial biopsies were collected 7 days after insemination. RNA was isolated utilising Trizol, and RNA-Seq was performed by Novogene, with 97.79% total mapping and 40 million read depth. p value was set to <0.05. When comparing SP+ to SP-, 158 differentially expressed genes (DEGs) were identified. Biological processes impacted included antigen processing and regulation, cholesterol synthesis, and immune/inflammatory response. Gene ontology (GO) enrichment analysis using DAVID v6.8 revealed that many of these DEGs were involved in biological process such as antigen presentation (HLA-DM beta chain, HLA-DRB, HLA-DQA and RASGRP1), immune cell signalling (CXCL9, CXCL1, DEFB1 and MIP-2B), embryo growth and development (INHA, KLF2, RDH10, LAMA3 and SLC34A2) and embryo metabolism (ABCA1, ABCA2, APOA1, LDL, INSR, IGFBP2 and IGFBP3). Overall, reduction of seminal plasma from the insemination dose impacted the endometrial transcriptome at the time of early embryonic exposure to the uterine environment. Further work is justified to evaluate these alterations impact on embryo maturation, placental development, pregnancy outcome and development of offspring.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - H El-Sheikh-Ali
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - K E Scoggin
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - S Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - E A Humphrey
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | - L Troutt
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | - M H T Troedsson
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Wang Z, Tang N. Unpacking the complexity of nuclear IL-33 (nIL-33): a crucial regulator of transcription and signal transduction. J Cell Commun Signal 2023:10.1007/s12079-023-00788-1. [PMID: 37878185 DOI: 10.1007/s12079-023-00788-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Interleukin-33 (IL-33) (NF-HEV), a chromatin-associated nuclear cytokine, is a member of the IL-1 family. IL-33 possesses a nuclear localization signal and a homeodomain (a structure resembling a helix-turn-helix) that can bind to nuclear chromatin. Research has revealed that IL-33 can function as a nuclear factor to regulate various biological processes. This review discusses the cellular localization, functional effects, and immune regulation of full length IL-33 (FLIL-33), cytokine IL-33 (sIL-33) and nuclear IL-33 (nIL-33). In addition, the post-translational modifications of nIL-33 and the hypothesis of using nIL-33 as a treatment method were also summarized. A multidisciplinary approach is required which integrates methods and techniques from genomics, proteomics, cell biology and immunology to provide comprehensive insights into the function and therapeutic potential of nIL-33.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
4
|
Chen Z, Li J, Xu W, Wu X, Xiang F, Li X, Zhang M, Zheng J, Kang X, Wu R. Elevated expression of Toll-like receptor 4 and cytokines in both serum and myometrium at term may serve as promising biomarkers for uterine activation preceding labor. Front Endocrinol (Lausanne) 2023; 14:1255925. [PMID: 37867523 PMCID: PMC10585141 DOI: 10.3389/fendo.2023.1255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Increased inflammation and cytokine levels are considered risk factors and promoters of preterm birth (PTB). However, the regulatory mechanism of pregnancy-related inflammation remains unclear. Toll-like receptor 4 (TLR4) plays a critical role in inflammatory responses in various diseases. Therefore, our study aimed to investigate whether TLR4 is involved in the inflammatory responses during uterine activation for labor, with the goal of identifying potential biomarkers for uterine activation at term. Materials and methods We used flow cytometry to detect TLR4 expression on CD14+ maternal blood monocytes in the first, second, and third trimesters. ELISA was employed to measure TLR4 and cytokines levels in the maternal serum of term non-labor (TNL), term labor (TL) women and LPS induced preterm labor and PBS injected controls. TLR4siRNA was transfected into the human myometrial smooth muscle cells (HMSMCs), which were subsequently treated with IL-1β. The mRNA and protein levels of TLR4, uterine contraction-related protein connexin 43 (CX43), oxytocin receptor (OTR), MAPK/NF-κB signaling pathway, and cytokines were analyzed using qRT-PCR, western blotting, and immunohistochemistry. Results The study revealed TLR4 expression on CD14+ maternal blood monocytes was higher in the third trimester group compared to the first and second trimester groups (p<0.001). Maternal serum concentrations of TLR4 and cytokines were significantly higher in the TL group than the TNL group (p<0.001). TLR4, OTR, CX43, activated MAPK/NF-κB expression, and cytokines levels were upregulated in TL group, and similarly significantly higher in the LPS-induced preterm group than in the control group. Using the HMSMCs we demonstrated that TLR4siRNA transfection suppressed contractility. Interfering with TLR4 expression reduced the expression of OTR, CX43, cytokines, and MAPK/NF-κB activation. There was a significant positive relationship between TLR4 expression and the inflammatory status in the myometrium. ROC analysis indicated that TLR4 and cytokines may serve as potential biomarkers for predicting uterine activation for labor. Conclusion Our data suggest that TLR4 and cytokines can act as stimulators of uterine activation for labor at term. Furthermore, the MAPK/NF-κB pathway appears to be one of the potential signaling pathways mediating TLR4's regulation of parturition initiation.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Wu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Lei WJ, Zhang F, Lin YK, Li MD, Pan F, Sun K, Wang WS. IL-33/ST2 axis of human amnion fibroblasts participates in inflammatory reactions at parturition. Mol Med 2023; 29:88. [PMID: 37403020 DOI: 10.1186/s10020-023-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Inflammation of the fetal membranes is an indispensable event of labor onset at both term and preterm birth. Interleukin-33 (IL-33) is known to participate in inflammation via ST2 (suppression of tumorigenicity 2) receptor as an inflammatory cytokine. However, it remains unknown whether IL-33/ST2 axis exists in human fetal membranes to promote inflammatory reactions in parturition. METHODS The presence of IL-33 and ST2 and their changes at parturition were examined with transcriptomic sequencing, quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry in human amnion obtained from term and preterm birth with or without labor. Cultured primary human amnion fibroblasts were utilized to investigate the regulation and the role of IL-33/ST2 axis in the inflammation reactions. A mouse model was used to further study the role of IL-33 in parturition. RESULTS Although IL-33 and ST2 expression were detected in both epithelial and fibroblast cells of human amnion, they are more abundant in amnion fibroblasts. Their abundance increased significantly in the amnion at both term and preterm birth with labor. Lipopolysaccharide, serum amyloid A1 and IL-1β, the inflammatory mediators pertinent to labor onset, could all induce IL-33 expression through NF-κB activation in human amnion fibroblasts. In turn, via ST2 receptor, IL-33 induced the production of IL-1β, IL-6 and PGE2 in human amnion fibroblasts via the MAPKs-NF-κB pathway. Moreover, IL-33 administration induced preterm birth in mice. CONCLUSION IL-33/ST2 axis is present in human amnion fibroblasts, which is activated in both term and preterm labor. Activation of this axis leads to increased production of inflammatory factors pertinent to parturition, and results in preterm birth. Targeting the IL-33/ST2 axis may have potential value in the treatment of preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| |
Collapse
|
6
|
Reivan Ortiz GG, Ciongradi CI, Chaitanya MVNL, Narayanan J, Mohany M, Al-Rejaie SS, Arias-Gonzáles JL, Sârbu I, Assefi M, Akram SV, Döğüş Y, Bahrami A, Akhavan-Sigari R. Identification of novel candidate targets for suppressing ovarian cancer progression through IL-33/ST2 axis components using the system biology approach. Front Mol Biosci 2023; 10:1189527. [PMID: 37333018 PMCID: PMC10272621 DOI: 10.3389/fmolb.2023.1189527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) of ovarian cancer (OvC) are the most prevalent element of the tumor microenvironment (TM). By promoting angiogenesis, immunological suppression, and invasion, CAFs speed up the growth of tumors by changing the extracellular matrix's structure and composition and/or initiating the epithelial cells (EPT). IL-33/ST2 signaling has drawn a lot of attention since it acts as a pro-tumor alarmin and encourages spread by altering TM. Methods: Differentially expressed genes (DEGs) of the OvC tumor microenvironment were found in the GEO database, qRT-PCR, western blotting, and immunohistochemistry, and their presence and changes in healthy and tumor tissue content were examined. Primary cultures of healthy fibroblasts and CAFs obtained from healthy and tumor tissues retrieved from OvC samples were used for in vitro and in vivo investigations. Cultured primary human CAFs were utilized to investigate the regulation and the IL-33/ST2 axis role in the inflammation reactions. Results: Although ST2 and IL-33 expression was detected in both epithelial (EPT) and fibroblast cells of ovarian cancer, they are more abundant in CAFs. Lipopolysaccharides, serum amyloid A1, and IL-1β, the inflammatory mediators, could all induce IL-33 expression through NF-κB activation in human CAFs. In turn, via the ST2 receptor, IL-33 affected the production of IL-6, IL-1β, and PTGS2 in human CAFs via the MAPKs-NF-κB pathway. Conclusion: Our findings suggest that IL-33/ST2 is affected by the interaction of CAFs and epithelial cells inside the tumor microenvironment. Activation of this axis leads to increased expression of inflammatory factors in tumor CAFs and EPT cells. Therefore, targeting the IL-33/ST2 axis could have potential value in the prevention of OvC progression.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Carmen Iulia Ciongradi
- Department of Surgery-Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - M. V. N. L. Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jayasankar Narayanan
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathu, Tamil Nadu, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, BC, Canada
| | - Ioan Sârbu
- Department of Surgery-Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Marjan Assefi
- University of North Carolina, Greensboro, NC, United States
| | | | - Yusuf Döğüş
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Healthcare Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
7
|
Xiao F, Liu X, Guo SW. Interleukin-33 Derived from Endometriotic Lesions Promotes Fibrogenesis through Inducing the Production of Profibrotic Cytokines by Regulatory T Cells. Biomedicines 2022; 10:biomedicines10112893. [PMID: 36428461 PMCID: PMC9687776 DOI: 10.3390/biomedicines10112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
In endometriosis, it has been widely believed that the local immunological milieu is Th2-skewed. Regulatory T cells (Tregs) promote fibrogenesis of endometriosis through the transforming growth factor β1 (TGF-β1) and platelet-derived growth factor (PDGF) signaling pathways. We aimed to explore whether Tregs in endometriotic lesions acquire increased production of effector cytokines under the influence of lesion-derived interleukin (IL)-33. We extracted lymphocytes from normal endometrium and ovarian endometrioma to evaluate the expression of IL-4, IL-13, interferon-γ (IFN-γ), TGF-β1, and the IL-33 receptor (ST2) by Tregs from these tissues. Colocalization of IL-33 and FOXP3 in normal endometrium and ovarian endometrioma was evaluated by immunofluorescence. Tregs and endometriotic stromal cells were co-cultured and treated with anti-IL-33 antibody, and the cytokines produced by Tregs were analyzed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Tregs in ovarian endometrioma produced significant amounts of IL-4, IL-13, TGF-β1, and ST2. Colocalization of IL-33 and FOXP3 was detected in ovarian endometrioma. IL-33 from endometriotic stromal cells caused the differentiation of lesional Tregs into type 2 T helper (Th2)-like cells, along with increased production of TGF-β1 by Tregs. Thus, Tregs and endometriotic lesions engage active crosstalk through IL-33 to promote fibrogenesis in endometriosis, and, as such, this finding opens up new avenues to identify novel therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Fengyi Xiao
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Sun-Wei Guo
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
- Correspondence:
| |
Collapse
|