1
|
Speakman JR, Gao L, Hu S. The carbohydrate insulin model is always correct: a point worth reiterating even when commenting on studies that do not concern it. Obesity (Silver Spring) 2024; 32:1229-1230. [PMID: 38708662 DOI: 10.1002/oby.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Affiliation(s)
- John R Speakman
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Lin Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sumei Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Ludwig DS, Ebbeling CB, Friedman MI. Caution needed on causal inferences in obesity. Obesity (Silver Spring) 2024; 32:1227-1228. [PMID: 38706387 DOI: 10.1002/oby.24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024]
Affiliation(s)
- David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark I Friedman
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Cayabyab KB, Shin MJ, Heimuli MS, Kim IJ, D’Agostino DP, Johnson RJ, Koutnik AP, Bellissimo N, Diamond DM, Norwitz NG, Arroyo JA, Reynolds PR, Bikman BT. The Metabolic and Endocrine Effects of a 12-Week Allulose-Rich Diet. Nutrients 2024; 16:1821. [PMID: 38931176 PMCID: PMC11207032 DOI: 10.3390/nu16121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The global rise in type 2 diabetes (T2D) and obesity necessitates innovative dietary interventions. This study investigates the effects of allulose, a rare sugar shown to reduce blood glucose, in a rat model of diet-induced obesity and T2D. Over 12 weeks, we hypothesized that allulose supplementation would improve body weight, insulin sensitivity, and glycemic control. Our results showed that allulose mitigated the adverse effects of high-fat, high-sugar diets, including reduced body weight gain and improved insulin resistance. The allulose group exhibited lower food consumption and increased levels of glucagon-like peptide-1 (GLP-1), enhancing glucose regulation and appetite control. Additionally, allulose prevented liver triglyceride accumulation and promoted mitochondrial uncoupling in adipose tissue. These findings suggest that allulose supplementation can improve metabolic health markers, making it a promising dietary component for managing obesity and T2D. Further research is needed to explore the long-term benefits and mechanisms of allulose in metabolic disease prevention and management. This study supports the potential of allulose as a safe and effective intervention for improving metabolic health in the context of dietary excess.
Collapse
Affiliation(s)
- Kevin B. Cayabyab
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Marley J. Shin
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Micah S. Heimuli
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Iris J. Kim
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
| | | | | | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5S 1A8, Canada
| | - David M. Diamond
- Department of Psychology, University of South Florida, Tampa, FL 33602, USA
| | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Ludwig DS. Carbohydrate-insulin model: does the conventional view of obesity reverse cause and effect? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220211. [PMID: 37661740 PMCID: PMC10475871 DOI: 10.1098/rstb.2022.0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Conventional obesity treatment, based on the First Law of Thermodynamics, assumes that excess body fat gain is driven by overeating, and that all calories are metabolically alike in this regard. Hence, to lose weight one must ultimately eat less and move more. However, this prescription rarely succeeds over the long term, in part because calorie restriction elicits predictable biological responses that oppose ongoing weight loss. The carbohydrate-insulin model posits the opposite causal direction: overeating doesn't drive body fat increase; instead, the process of storing excess fat drives overeating. A diet high in rapidly digestible carbohydrates raises the insulin-to-glucagon ratio, shifting energy partitioning towards storage in adipose, leaving fewer calories for metabolically active and fuel sensing tissues. Consequently, hunger increases, and metabolic rate slows in the body's attempt to conserve energy. A small shift in substrate partitioning though this mechanism could account for the slow but progressive weight gain characteristic of common forms of obesity. From this perspective, the conventional calorie-restricted, low-fat diet amounts to symptomatic treatment, failing to target the underlying predisposition towards excess fat deposition. A dietary strategy to lower insulin secretion may increase the effectiveness of long-term weight management and chronic disease prevention. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- David S. Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Senior AM, Raubenheimer D, Simpson SJ. Testing the protein-leverage hypothesis using population surveillance data. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220756. [PMID: 36177194 PMCID: PMC9515627 DOI: 10.1098/rsos.220756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
It is hypothesized that humans exhibit 'protein leverage' (PL), whereby regulation of absolute protein intake results in the over-consumption of non-protein food on low percentage protein diets. Testing for PL using dietary surveillance data involves seeking evidence for a negative association between total energy intake and percentage energy from protein. However, it is unclear whether such an association might emerge without PL due to the structure of intake data (protein and non-protein intakes have different means and variances and covary). We derive a set of models that describe the association between the expected estimate of PL and the distributions of protein and non-protein intake. Models were validated via simulation. Patterns consistent with PL will not emerge simply because protein intake has a lower mean and/or variance than non-protein. Rather, evidence of PL is observed where protein has a lower index of dispersion (variance/mean) than non-protein intake. Reciprocally, the stronger PL is the lower the index of dispersion for protein intake becomes. Disentangling causality is ultimately beyond the power of observational data alone. However, we show that one can correct for confounders (e.g. age) in generating signals of PL, and describe independent measures that can anchor inferences around the role of PL.
Collapse
Affiliation(s)
- Alistair M. Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
6
|
Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models. Eur J Clin Nutr 2022; 76:1209-1221. [PMID: 35896818 PMCID: PMC9436778 DOI: 10.1038/s41430-022-01179-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
The obesity pandemic continues unabated despite a persistent public health campaign to decrease energy intake (“eat less”) and increase energy expenditure (“move more”). One explanation for this failure is that the current approach, based on the notion of energy balance, has not been adequately embraced by the public. Another possibility is that this approach rests on an erroneous paradigm. A new formulation of the energy balance model (EBM), like prior versions, considers overeating (energy intake > expenditure) the primary cause of obesity, incorporating an emphasis on “complex endocrine, metabolic, and nervous system signals” that control food intake below conscious level. This model attributes rising obesity prevalence to inexpensive, convenient, energy-dense, “ultra-processed” foods high in fat and sugar. An alternative view, the carbohydrate-insulin model (CIM), proposes that hormonal responses to highly processed carbohydrates shift energy partitioning toward deposition in adipose tissue, leaving fewer calories available for the body’s metabolic needs. Thus, increasing adiposity causes overeating to compensate for the sequestered calories. Here, we highlight robust contrasts in how the EBM and CIM view obesity pathophysiology and consider deficiencies in the EBM that impede paradigm testing and refinement. Rectifying these deficiencies should assume priority, as a constructive paradigm clash is needed to resolve long-standing scientific controversies and inform the design of new models to guide prevention and treatment. Nevertheless, public health action need not await resolution of this debate, as both models target processed carbohydrates as major drivers of obesity.
Collapse
|
7
|
Hall KD, Farooqi IS, Friedman JM, Klein S, Loos RJF, Mangelsdorf DJ, O'Rahilly S, Ravussin E, Redman LM, Ryan DH, Speakman JR, Tobias DK. The energy balance model of obesity: beyond calories in, calories out. Am J Clin Nutr 2022; 115:1243-1254. [PMID: 35134825 DOI: 10.1093/ajcn/nqac031%jtheamericanjournalofclinicalnutrition] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 05/25/2023] Open
Abstract
A recent Perspective article described the "carbohydrate-insulin model (CIM)" of obesity, asserting that it "better reflects knowledge on the biology of weight control" as compared with what was described as the "dominant energy balance model (EBM)," which fails to consider "biological mechanisms that promote weight gain." Unfortunately, the Perspective conflated and confused the principle of energy balance, a law of physics that is agnostic as to obesity mechanisms, with the EBM as a theoretical model of obesity that is firmly based on biology. In doing so, the authors presented a false choice between the CIM and a caricature of the EBM that does not reflect modern obesity science. Here, we present a more accurate description of the EBM where the brain is the primary organ responsible for body weight regulation operating mainly below our conscious awareness via complex endocrine, metabolic, and nervous system signals to control food intake in response to the body's dynamic energy needs as well as environmental influences. We also describe the recent history of the CIM and show how the latest "most comprehensive formulation" abandons a formerly central feature that required fat accumulation in adipose tissue to be the primary driver of positive energy balance. As such, the new CIM can be considered a special case of the more comprehensive EBM but with a narrower focus on diets high in glycemic load as the primary factor responsible for common obesity. We review data from a wide variety of studies that address the validity of each model and demonstrate that the EBM is a more robust theory of obesity than the CIM.
Collapse
Affiliation(s)
- Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge
| | | | - Samuel Klein
- Washington University School of Medicine in St Louis
| | - Ruth J F Loos
- Washington University School of Medicine in St Louis
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen
| | | | - Stephen O'Rahilly
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge
| | | | | | | | - John R Speakman
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzen, China, and the University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
8
|
Hall KD, Farooqi IS, Friedman JM, Klein S, Loos RJF, Mangelsdorf DJ, O'Rahilly S, Ravussin E, Redman LM, Ryan DH, Speakman JR, Tobias DK. The energy balance model of obesity: beyond calories in, calories out. Am J Clin Nutr 2022; 115:1243-1254. [PMID: 35134825 PMCID: PMC9071483 DOI: 10.1093/ajcn/nqac031] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
A recent Perspective article described the "carbohydrate-insulin model (CIM)" of obesity, asserting that it "better reflects knowledge on the biology of weight control" as compared with what was described as the "dominant energy balance model (EBM)," which fails to consider "biological mechanisms that promote weight gain." Unfortunately, the Perspective conflated and confused the principle of energy balance, a law of physics that is agnostic as to obesity mechanisms, with the EBM as a theoretical model of obesity that is firmly based on biology. In doing so, the authors presented a false choice between the CIM and a caricature of the EBM that does not reflect modern obesity science. Here, we present a more accurate description of the EBM where the brain is the primary organ responsible for body weight regulation operating mainly below our conscious awareness via complex endocrine, metabolic, and nervous system signals to control food intake in response to the body's dynamic energy needs as well as environmental influences. We also describe the recent history of the CIM and show how the latest "most comprehensive formulation" abandons a formerly central feature that required fat accumulation in adipose tissue to be the primary driver of positive energy balance. As such, the new CIM can be considered a special case of the more comprehensive EBM but with a narrower focus on diets high in glycemic load as the primary factor responsible for common obesity. We review data from a wide variety of studies that address the validity of each model and demonstrate that the EBM is a more robust theory of obesity than the CIM.
Collapse
Affiliation(s)
- Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge
| | | | - Samuel Klein
- Washington University School of Medicine in St Louis
| | - Ruth J F Loos
- Washington University School of Medicine in St Louis.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen
| | | | - Stephen O'Rahilly
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge
| | | | | | | | - John R Speakman
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzen, China, and the University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
9
|
Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, Heymsfield SB, Johnson JD, King JC, Krauss RM, Lieberman DE, Taubes G, Volek JS, Westman EC, Willett WC, Yancy WS, Ebbeling CB. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr 2021; 114:1873-1885. [PMID: 34515299 PMCID: PMC8634575 DOI: 10.1093/ajcn/nqab270] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
According to a commonly held view, the obesity pandemic is caused by overconsumption of modern, highly palatable, energy-dense processed foods, exacerbated by a sedentary lifestyle. However, obesity rates remain at historic highs, despite a persistent focus on eating less and moving more, as guided by the energy balance model (EBM). This public health failure may arise from a fundamental limitation of the EBM itself. Conceptualizing obesity as a disorder of energy balance restates a principle of physics without considering the biological mechanisms that promote weight gain. An alternative paradigm, the carbohydrate-insulin model (CIM), proposes a reversal of causal direction. According to the CIM, increasing fat deposition in the body-resulting from the hormonal responses to a high-glycemic-load diet-drives positive energy balance. The CIM provides a conceptual framework with testable hypotheses for how various modifiable factors influence energy balance and fat storage. Rigorous research is needed to compare the validity of these 2 models, which have substantially different implications for obesity management, and to generate new models that best encompass the evidence.
Collapse
Affiliation(s)
- David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Louis J Aronne
- Comprehensive Weight Control Center, Weill Cornell Medicine, New York, NY, USA
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mark I Friedman
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Nutrition Science Initiative, San Diego, CA, USA
| | - Steven B Heymsfield
- Metabolism & Body Composition Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Personalized Therapeutic Nutrition, Vancouver, British Columbia, Canada
| | - Janet C King
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Ronald M Krauss
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gary Taubes
- Nutrition Science Initiative, San Diego, CA, USA
| | - Jeff S Volek
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Eric C Westman
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - William S Yancy
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Halpern B, Mendes TB. Intermittent fasting for obesity and related disorders: unveiling myths, facts, and presumptions. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:14-23. [PMID: 33444495 PMCID: PMC10528701 DOI: 10.20945/2359-3997000000322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/10/2020] [Indexed: 11/23/2022]
Abstract
Intermittent fasting (IF) is an increasingly popular method of weight loss, as an alternative to daily caloric restriction (DCR). Several forms of IF exist, such as alternate-day fasting or time-restricted feeding regimens. Some of its proponents claim several health benefits unrelated to caloric restriction or weight loss, which rely mainly on animal models. Although several studies published in the last few years confirm that IF can be a useful and safe therapeutical option for obesity and related disorders, no superiority to conventional caloric restriction diets have emerged. There are still several questions left answered. In this Review, we discuss some of the claims, unveiling myths, facts, and presumptions about several models of IF. The focus of this article is obesity, but there is a brief discussion of the potential benefits of IF on overall human health.
Collapse
Affiliation(s)
- Bruno Halpern
- Grupo de Controle do Peso, Hospital 9 de Julho, São Paulo, SP, Brasil,
| | - Thiago Bosco Mendes
- Departamento de Medicina Interna, Universidade do Estado de São Paulo (Unesp), Botucatu, SP, Brasil
| |
Collapse
|
11
|
Johnson JD. On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 2021; 64:2138-2146. [PMID: 34296322 DOI: 10.1007/s00125-021-05505-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Hundreds of millions of people are affected by hyperinsulinaemia, insulin resistance, obesity and the dysglycaemia that mark a common progression from metabolic health to type 2 diabetes. Although the relative contribution of these features and the order in which they appear may differ between individuals, the common clustering and seemingly progressive nature of type 2 diabetes aetiology has guided research and clinical practice in this area for decades. At the same time, lively debate around the causal relationships between these features has continued, as new data from human trials and highly controlled animal studies are presented. This 'For debate' article was prompted by the review in Diabetologia by Esser, Utzschneider and Kahn ( https://doi.org/10.1007/s00125-020-05245-x ), with the purpose of reviewing established and emerging data that provide insight into the relative contributions of hyperinsulinaemia and impaired glucose-stimulated insulin secretion in progressive stages between health, obesity and diabetes. It is concluded that these beta cell defects are not mutually exclusive and that they are both important, but at different stages.
Collapse
Affiliation(s)
- James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
- Institute for Personalized Therapeutic Nutrition, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J 2021; 45:285-311. [PMID: 33775061 PMCID: PMC8164941 DOI: 10.4093/dmj.2020.0250] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.
Collapse
Affiliation(s)
- Anni M.Y. Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Janel L. Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Testing the carbohydrate insulin model in mice: Erroneous critique does not alter previous conclusion. Mol Metab 2020; 35:100961. [PMID: 32205065 PMCID: PMC7191245 DOI: 10.1016/j.molmet.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
|