1
|
Huang W, Jiang M, Wang X, Pan D, Chen W, Fan L. Non-Sugar Sweetener Rubusoside Alleviates Lipid Metabolism Disorder In Vivo and In Vitro by Targeting PPARγ/α, Lgals3, and Mknk2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39508235 DOI: 10.1021/acs.jafc.4c06018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Rubusoside─a high-sweetened, nonsugar sweetener─is mainly extracted from Rubus chingii var. suavissimus (S. Lee) L. T. Lu or Rubus suavissimus S. Lee (Chinese sweet leaf tea). We previously reported that rubusoside regulates lipid metabolism disorder in Syrian golden hamsters on a high-fat diet (HFD). This study aimed to reveal the underlying mechanisms through which rubusoside alleviates lipid metabolism disorder in vivo and in vitro. First, we analyzed the therapeutic properties of rubusoside in alleviating HFD-induced lipid metabolism disorder in C57BL/6J mice. Then, we analyzed the adipogenic effect of rubusoside in normal and Lgals3/Mknk2-overexpressing 3T3-L1 cells by exploring the mechanisms on peroxisome proliferator-activated receptor-γ/α (PPARγ/α), galectin-3 (Lgals3), mitogen-activated protein kinase interacting serine/threonine kinase-2 (Mknk2), p38 mitogen-activated protein kinase (p38MAPK), and extracellular regulated protein kinases 1/2 (ERK1/2) with RT-qPCR and Western blot. Our results showed a rubusoside-mediated reduction of HFD-induced weight gain, dyslipidemia, and decelerated hepatic steatosis and adipose tissue expansion in mice as well as improved adipogenesis in 3T3-L1 cells. Mechanistically, rubusoside up-regulated the PPARγ/α expression while down-regulating Lgals3 and Mknk2 expression in vivo and in vitro. Furthermore, rubusoside attenuated the adipogenic activity of PPARγ through increasing its site-specific phosphorylation mediated by p38MAPK and ERK1/2. Taken together, our findings suggest that rubusoside alleviates lipid metabolism disorder through multiple pathways and thus holds potential for future development.
Collapse
Affiliation(s)
- Wanfang Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Manjing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Xue Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Wenya Chen
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| |
Collapse
|
2
|
Preston SEJ, Dahabieh MS, Flores González RE, Gonçalves C, Richard VR, Leibovitch M, Dakin E, Papadopoulos T, Lopez Naranjo C, McCallum PA, Huang F, Gagnon N, Perrino S, Zahedi RP, Borchers CH, Jones RG, Brodt P, Miller WH, del Rincón SV. Blocking tumor-intrinsic MNK1 kinase restricts metabolic adaptation and diminishes liver metastasis. SCIENCE ADVANCES 2024; 10:eadi7673. [PMID: 39270021 PMCID: PMC11397505 DOI: 10.1126/sciadv.adi7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.
Collapse
Affiliation(s)
- Samuel E. J. Preston
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Raúl Ernesto Flores González
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christophe Gonçalves
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Matthew Leibovitch
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Eleanor Dakin
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Theodore Papadopoulos
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Carolina Lopez Naranjo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Paige A. McCallum
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Natascha Gagnon
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Stephanie Perrino
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christoph H. Borchers
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Pnina Brodt
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Departments of Surgery, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
3
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
4
|
Jiang E, Dinesh A, Jadhav S, Miller RA, Garcia GG. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci 2023; 328:121904. [PMID: 37406767 PMCID: PMC11351721 DOI: 10.1016/j.lfs.2023.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Long-lived mouse models and treatments that extend lifespan, such as Rapamycin, acarbose and 17α- -estradiol, lead to reduction in mTORC1 activity, declines in cap-dependent translation and increases in cap-independent translation. In addition, these treatments reduce the MEK-ERK-MNK (ERK1-2) signaling cascade, leading to reduction in eIF4E phosphorylation, which also regulates mRNA translation. Here, we report that Canagliflozin, a drug that extends lifespan only in male mice reduces mTORC1 and ERK1-2 signaling in male mice only. The data suggest reduction in mTORC1 and ERK pathways are common mechanisms shared by both genetic and pharmacological models of slowed aging in mice. Our data also reveal a significant sexual dimorphism in the ERK1-2 signaling pathway which might help to explain why some drugs can extend lifespan in males but have no effects in female mice.
Collapse
Affiliation(s)
- Eric Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Arjun Dinesh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Sohan Jadhav
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, USA; University of Michigan Geriatrics Center, Ann Arbor, MI 48109, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, USA.
| |
Collapse
|
5
|
McCracken NA, Liu H, Runnebohm AM, Wijeratne HRS, Wijeratne AB, Staschke KA, Mosley AL. Obtaining Functional Proteomics Insights From Thermal Proteome Profiling Through Optimized Melt Shift Calculation and Statistical Analysis With InflectSSP. Mol Cell Proteomics 2023; 22:100630. [PMID: 37562535 PMCID: PMC10494267 DOI: 10.1016/j.mcpro.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.
Collapse
Affiliation(s)
- Neil A McCracken
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Hao Liu
- Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, United States; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, United States
| | - Avery M Runnebohm
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
6
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
7
|
Jin X, Qiu T, Xie J, Wei X, Wang X, Yu R, Proud C, Jiang T. Using Imidazo[2,1- b][1,3,4]thiadiazol Skeleton to Design and Synthesize Novel MNK Inhibitors. ACS Med Chem Lett 2023; 14:83-91. [PMID: 36655132 PMCID: PMC9841594 DOI: 10.1021/acsmedchemlett.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) phosphorylate eukaryotic initiation factor 4E (eIF4E) and regulate the processes of cell proliferation, cell cycle, and migration and invasion of cancer cells. Selectively inhibiting the activity of MNKs could be effective in treating cancers. In this study, we report a series of novel MNK inhibitors with an imidazo[2,1-b][1,3,4]thiadiazol scaffold, from which, compound 18 inhibited the phosphorylation of eIF4E in various cancer cell lines potently. Compound 18 was more potent against MNK2 than MNK1, and decreased the levels of cyclin-B1, cyclin-D3, and MMP-3 in A549 and MDA-MB-231 cells, impaired cell growth and colony formation, arrested the cell cycle in the G0/G1 phase, and inhibited cell migration and the secretion of TNF-α, MCP-1, and IL-8 from A549 cells. It represents a starting compound to design further inhibitors that selectively target MNKs and apply in other diseases.
Collapse
Affiliation(s)
- Xin Jin
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- Shandong
Laboratory of Yantai Drug Discovery, Bohai
Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Tingting Qiu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Jianling Xie
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | - Xianfeng Wei
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xuemin Wang
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rilei Yu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Christopher Proud
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Jiang
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Yu M, Sun Y, Shan X, Yang F, Chu G, Chen Q, Han L, Guo Z, Wang G. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett 2022; 27:85. [PMID: 36209049 PMCID: PMC9548149 DOI: 10.1186/s11658-022-00379-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) results from pathological changes in cardiac structure and function caused by diabetes. Excessive oxidative stress is an important feature of DCM pathogenesis. MicroRNAs (miRNAs) are key regulators of oxidative stress in the cardiovascular system. In the present study, we screened for the expression of oxidative stress-responsive miRNAs in the development of DCM. Furthermore, we aimed to explore the mechanism and therapeutic potential of miR-92a-2-5p in preventing diabetes-induced myocardial damage. Methods An experimental type 2 diabetic (T2DM) rat model was induced using a high-fat diet and low-dose streptozotocin (30 mg/kg). Oxidative stress injury in cardiomyocytes was induced by high glucose (33 mmol/L). Oxidative stress-responsive miRNAs were screened by quantitative real-time PCR. Intervention with miR-92a-2-5p was accomplished by tail vein injection of agomiR in vivo or adenovirus transfection in vitro. Results The expression of miR-92a-2-5p in the heart tissues was significantly decreased in the T2DM group. Decreased miR-92a-2-5p expression was also detected in high glucose-stimulated cardiomyocytes. Overexpression of miR-92a-2-5p attenuated cardiomyocyte oxidative stress injury, as demonstrated by increased glutathione level, and reduced reactive oxygen species accumulation, malondialdehyde and apoptosis levels. MAPK interacting serine/threonine kinase 2 (MKNK2) was verified as a novel target of miR-92a-2-5p. Overexpression of miR-92a-2-5p in cardiomyocytes significantly inhibited MKNK2 expression, leading to decreased phosphorylation of p38-MAPK signaling, which, in turn, ameliorated cardiomyocyte oxidative stress injury. Additionally, diabetes-induced myocardial damage was significantly alleviated by the injection of miR-92a-2-5p agomiR, which manifested as a significant improvement in myocardial remodeling and function. Conclusions miR-92a-2-5p plays an important role in cardiac oxidative stress, and may serve as a therapeutic target in DCM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00379-9.
Collapse
Affiliation(s)
- Manli Yu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangyong Sun
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lin Han
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
10
|
Xiao CW, Hendry A. Hypolipidemic Effects of Soy Protein and Isoflavones in the Prevention of Non-Alcoholic Fatty Liver Disease- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:319-328. [PMID: 35678936 PMCID: PMC9463339 DOI: 10.1007/s11130-022-00984-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. Obesity and diabetes are the main causes of the disease characterized by excessive accumulation of lipids in the liver. There is currently no direct pharmacological treatments for NAFLD. Dietary intervention and lifestyle modification are the key strategies in the prevention and treatment of the disease. Soy consumption is associated with many health benefits such as decreased incidence of coronary heart disease, type-2 diabetes, atherosclerosis and obesity. The hypolipidemic functions of soy components have been shown in both animal studies and human clinical trials. Dietary soy proteins and associated isoflavones suppressed the formation and accumulation of lipid droplets in the liver and improved NAFLD-associated metabolic syndrome. The molecular mechanism(s) underlying the effects of soy components are mainly through modulation of transcription factors, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ2, and expressions of their target genes involved in lipogenesis and lipolysis as well as lipid droplet-promoting protein, fat-specific protein-27. Inclusion of appropriate amounts of soy protein and isoflavones in the diets might be a useful approach to decrease the prevalence of NAFLD and mitigate disease burden.
Collapse
Affiliation(s)
- Chao-Wu Xiao
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Amy Hendry
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada
| |
Collapse
|
11
|
Design, Synthesis and Evaluation of Novel Phorbazole C Derivatives as MNK Inhibitors through Virtual High-Throughput Screening. Mar Drugs 2022; 20:md20070429. [PMID: 35877722 PMCID: PMC9319845 DOI: 10.3390/md20070429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E at Ser209 to control the translation of certain mRNAs and regulate the process of cell proliferation, cell migration and invasion, etc. Development of MNK inhibitors would be an effective treatment for related diseases. We used the MarineChem3D database to identify hit compounds targeting the protein MNK1 and MNK2 through high-throughput screening. Compounds from the phorbazole family showed good interactions with MNK1, and phorbazole C was selected as our hit compound. By analyzing the binding mode, we designed and synthesized 29 derivatives and evaluated their activity against MNKs, of which, six compounds showed good inhibition to MNKs. We also confirmed three interactions between this kind of compound and MNK1, which are vital for the activity. In conclusion, we report series of novel MNK inhibitors inspired from marine natural products and their relative structure–activity relationship. This will provide important information for further developing MNK inhibitors based on this kind of structure.
Collapse
|
12
|
Kozaczek M, Kong B, Bottje W, Hakkak R. Hepatic Proteomics Analysis of Nonalcoholic Fatty Liver Disease Obese Rat Model After Short- and Long-Term Soy Protein Isolate Feeding. J Med Food 2022; 25:293-302. [PMID: 34883038 DOI: 10.1089/jmf.2021.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To identify possible mechanisms involved in the development and progression of nonalcoholic fatty liver disease (NAFLD), we conducted shotgun proteomics analysis on liver of obese Zucker rats fed either casein (CAS) or soy protein isolate (SPI) for 8 and 16 weeks. Rats (7 weeks old, n = 8-9/group) were randomly assigned to either a CAS-based or an SPI-based diet. Rats were killed after 8 or 16 weeks of feeding and livers were stored at -80°C. Ingenuity Pathway Analysis (IPA) software was used to facilitate interpretation of proteomics data. Predictions of activation or inhibition of molecules in the data were made based on activation z-score and P value of overlap (P < .05). Activation z-scores ≥2.0 indicate that a molecule is predicted to be activated, whereas activation z-scores of less than or equal to -2.0 indicate that a target molecule is predicted to be inhibited. Upstream regulator analysis with IPA revealed Neuregulin 1 (NRG1) to be the top activated protein in (z-score = 2.48, P < .05), and MKNK1 as the top inhibited protein (z-score = -2.83, P < .05) in SPI diet compared with CAS diet after both 8 and 16 weeks of SPI feeding. Regulator effects analysis also predicted that some proteins would be participating, directly or indirectly, in the inhibition of immune response functions (such as leukocyte migration) and lipid metabolism (such as synthesis of lipids) in SPI-fed rats relative to CAS-fed rats. Our results suggest that SPI diet modifies the expression of proteins that could be involved in the reduction of NAFLD.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Byungwhi Kong
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
14
|
Wink L, Miller RA, Garcia GG. Rapamycin, Acarbose and 17α-estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immun Ageing 2022; 19:8. [PMID: 35105357 PMCID: PMC8805398 DOI: 10.1186/s12979-022-00264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Rapamycin (Rapa), acarbose (ACA), and 17α-estradiol (17aE2, males only) have health benefits that increase lifespan of mice. Little is known about how these three agents alter the network of pathways downstream of insulin/IGF1 signals as well as inflammatory/stress responses. RESULTS ACA, Rapa, and 17aE2 (in males, but not in females) oppose age-related increases in the MEK1- ERK1/2-MNK1/2 cascade, and thus reduce phosphorylation of eIF4E, a key component of cap-dependent translation. In parallel, these treatments (in both sexes) reduce age-related increases in the MEK3-p38MAPK-MK2 pathway, to decrease levels of the acute phase response proteins involved in inflammation. CONCLUSION Each of three drugs converges on the regulation of both the ERK1/2 signaling pathway and the p38-MAPK pathway. The changes induced by treatments in ERK1/2 signaling are seen in both sexes, but the 17aE2 effects are male-specific, consistent with the effects on lifespan. However, the inhibition of age-dependent p38MAPK pathways and acute phase responses is triggered in both sexes by all three drugs, suggesting new approaches to prevention or reversal of age-related inflammatory changes in a clinical setting independent of lifespan effects.
Collapse
Affiliation(s)
- Lily Wink
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan College of Literature Science and The Arts, Ann Arbor, USA
| | - Richard A. Miller
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA ,grid.214458.e0000000086837370University of Michigan Geriatrics Center, Room 3005 BSRB, Box 2200, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Gonzalo G. Garcia
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA
| |
Collapse
|
15
|
MNK2 deficiency potentiates β-cell regeneration via translational regulation. Nat Chem Biol 2022; 18:942-953. [PMID: 35697798 PMCID: PMC7613404 DOI: 10.1038/s41589-022-01047-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
Regenerating pancreatic β-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of β-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased β-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and β-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in β-cell regeneration, a role that warrants further investigation in diabetes.
Collapse
|
16
|
Zhang P, Li X, Zhang S, Wu S, Xiao Q, Gu Y, Guo X, Lin X, Chen L, Zhao Y, Niu L, Tang G, Jiang Y, Shen L, Zhu L. miR-370-3p Regulates Adipogenesis through Targeting Mknk1. Molecules 2021; 26:molecules26226926. [PMID: 34834018 PMCID: PMC8619113 DOI: 10.3390/molecules26226926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
Excessive fat accumulation can lead to obesity, diabetes, hyperlipidemia, atherosclerosis, and other diseases. MicroRNAs are a class of microRNAs that regulate gene expression and are highly conserved in function among species. microRNAs have been shown to act as regulatory factors to inhibit fat accumulation in the body. We found that miR-370-3p was expressed at lower levels in the fat mass of mice on a high-fat diet than in mice on a normal control diet. Furthermore, our data showed that the overexpression of miR-370-3p significantly suppressed the mRNA expression levels of adipogenic markers. Thus, miR-370-3p overexpression reduced lipid accumulation. Conversely, the inhibition of miR-370-3p suppressed 3T3-L1 preadipocyte proliferation and promoted preadipocyte differentiation. In addition, Mknk1, a target gene of miR-370-3p, plays an opposing role in preadipocyte proliferation and differentiation. Moreover, consistent results from in vitro as well as in vivo experiments suggest that the inhibition of fat accumulation by miR-370-3p may result from the inhibition of saturated fatty acids that promote the accumulation of polyunsaturated fatty acids. In conclusion, these results suggest that miR-370-3p plays an important role in adipogenesis and fatty acid metabolism through the regulation of Mknk1.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Gu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
17
|
Hałubiec P, Łazarczyk A, Szafrański O, Bohn T, Dulińska-Litewka J. Synthetic Retinoids as Potential Therapeutics in Prostate Cancer-An Update of the Last Decade of Research: A Review. Int J Mol Sci 2021; 22:10537. [PMID: 34638876 PMCID: PMC8508817 DOI: 10.3390/ijms221910537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is the second most common tumor in males. The search for appropriate therapeutic options against advanced PC has been in process for several decades. Especially after cessation of the effectiveness of hormonal therapy (i.e., emergence of castration-resistant PC), PC management options have become scarce and the prognosis is poor. To overcome this stage of disease, an array of natural and synthetic substances underwent investigation. An interesting and promising class of compounds constitutes the derivatives of natural retinoids. Synthesized on the basis of the structure of retinoic acid, they present unique and remarkable properties that warrant their investigation as antitumor drugs. However, there is no up-to-date compilation that consecutively summarizes the current state of knowledge about synthetic retinoids with regard to PC. Therefore, in this review, we present the results of the experimental studies on synthetic retinoids conducted within the last decade. Our primary aim is to highlight the molecular targets of these compounds and to identify their potential promise in the treatment of PC.
Collapse
Affiliation(s)
- Przemysław Hałubiec
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Agnieszka Łazarczyk
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Oskar Szafrański
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| | - Torsten Bohn
- Nutrition and Health Research Group 1 A-B, Department of Population Health, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-23 1445 Strassen, Luxembourg;
| | - Joanna Dulińska-Litewka
- Medical Biochemistry Medical College, Jagiellonian University, 31-034 Cracow, Poland; (P.H.); (A.Ł.); (O.S.)
| |
Collapse
|
18
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
19
|
Jin X, Yu R, Wang X, Proud CG, Jiang T. Progress in developing MNK inhibitors. Eur J Med Chem 2021; 219:113420. [PMID: 33892273 DOI: 10.1016/j.ejmech.2021.113420] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
The MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E (eukaryotic initiation factor 4 E) at serine 209; eIF4E plays an important role in the translation of cytoplasmic mRNAs, all of which possess a 5' 'cap' structure to which eIF4E binds. Elevated levels of eIF4E, p-eIF4E and/or the MNK protein kinases have been found in many types of cancer, including solid tumors and leukemia. MNKs also play a role in metabolic disease. Regulation of the activities of MNKs (MNK1 and MNK2), control the phosphorylation of eIF4E, which in turn has a close relationship with the processes of tumor development, cell migration and invasion, and energy metabolism. MNK knock-out mice display no adverse effects on normal cells or phenotypes suggesting that MNK may be a potentially safe targets for the treatment of various cancers. Several MNK inhibitors or 'degraders' have been identified. Initially, some of the inhibitors were developed from natural products or based on other protein kinase inhibitors which inhibit multiple kinases. Subsequently, more potent and selective inhibitors for MNK1/2 have been designed and synthesized. Currently, three inhibitors (BAY1143269, eFT508 and ETC-206) are in various stages of clinical trials for the treatment of solid cancers or leukemia, either alone or combined with inhibitors of other protein kinase. In this review, we summarize the diverse MNK inhibitors that have been reported in patents and other literature, including those with activities in vitro and/or in vivo.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|