1
|
Mutlu HH, Koç Ada S, Uzunlulu M, Mutlu HH, Sargın M, Oğuz A. A comparison of brown fat tissue related hormone levels in metabolically healthy and unhealthy individuals with obesity. Endocrine 2024; 86:1025-1034. [PMID: 39008201 PMCID: PMC11554687 DOI: 10.1007/s12020-024-03960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE One of the key functions of brown adipose tissue is its positive impact on metabolism. This study aimed to examine the potential involvement of brown fat-related hormones in the development of metabolically healthy obesity. Specifically, we sought to compare the levels of NRG4, FGF21, and irisin between metabolically healthy and unhealthy individuals with obesity. METHODS Patients with BMI ≥ 30 kg/m2 and aged between 20 and 50 years were included in the study. Among these patients, those who did not have any metabolic syndrome criteria except for increased waist circumference were defined as metabolically healthy obese. Age, gender, BMI, body fat, and muscle mass, matched metabolically healthy and unhealthy obese groups were compared in terms of FGF21, irisin, and NRG4 levels. RESULTS Metabolically healthy and unhealthy obese groups were similar in terms of age and gender. There was no difference between the two groups in terms of BMI, weight, total body fat, muscle, fat-free mass, distribution of body fat and muscle mass. No statistically significant difference was found between irisin, NRG4, and FGF21 levels between metabolically healthy and unhealthy individuals with obesity. It was found that irisin had a significant inverse correlation with BMI and body fat percentage. CONCLUSION The present study showed no difference between metabolically healthy and unhealthy obese individuals in terms of irisin, FGF21, and NRG4 levels. The weak association between irisin and BMI and body fat percentage may suggest a potential link between irisin with metabolic health.
Collapse
Affiliation(s)
- Hacer Hicran Mutlu
- Department of Family Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Saniye Koç Ada
- Department of Biochemistry, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mehmet Uzunlulu
- Department of Internal Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Hasan Hüseyin Mutlu
- Department of Family Medicine, Faculty of Medicine, Health Sciences University, Istanbul, Turkey
| | - Mehmet Sargın
- Department of Family Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Aytekin Oğuz
- Department of Internal Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
2
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
3
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Brown IG, Yin B, Magaj MM, Holness NK, Smiley J, Redemann S, Ewald SE. iNOS is necessary for GBP-mediated T. gondii clearance in murine macrophages via vacuole nitration and intravacuolar network collapse. Nat Commun 2024; 15:2698. [PMID: 38538595 PMCID: PMC10973475 DOI: 10.1038/s41467-024-46790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samantha L Lempke
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jan C Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Isabel G Brown
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nadia K Holness
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen N, Chu Y, Su S, Zhang Q, Zhang L. Network Pharmacology and Molecular Docking Validation to Explore the Pharmacological Mechanism of Zhuling Decoction against Nephrotic Syndrome. Curr Pharm Des 2024; 30:2244-2256. [PMID: 38910482 DOI: 10.2174/0113816128305808240529115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND In recent years, the incidence and prevalence of Nephrotic Syndrome (NS) have been increasing. Zhuling Decoction (ZLD), a classical Chinese medicine, has been clinically proven to be effective for the treatment of NS. However, its underlying mechanism and pharmacodynamic substances remain unclear. OBJECTIVE This study aimed to explore the mechanism of action and chemical components of ZLD against NS using network pharmacology and molecular docking. METHODS Traditional Chinese Medicine Systems Pharmacology (TCMSP), Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicines (BATMAN-TCM), and SwissTargetPrediction databases were used to screen the principal ingredients and the associated targets of ZLD. NS-related targets were obtained from the Online Mendelian Inheritance in Man (OMIM), GeneCards, Therapeutic Target Database (TTD), and Drugbank databases. Shared targets were derived by the intersection of ZLD- and NS-associated targets. Protein-interaction relationships were analyzed using the STRING database and Cytoscape. A visualized drug-active compound-target network of ZLD was established using Cytoscape. Analyses of gene enrichment were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Molecular docking was performed to assess the binding activity between active components and hub targets. RESULTS Polyporusterone E, cerevisterol, alisol B, and alisol B 23-acetate were the primary potential ingredients of ZLD. HMGCR, HSD11B1, NOS2, NR3C1, and NR3C2 were the hub targets of ZLD against NS. Molecular docking showed that polyporusterone E, cerevisterol, and alisol B had high binding activities with targets HMGCR, HSD11B1, and NOS2. CONCLUSION In summary, this study suggests that the main active compounds (polyporusterone E, cerevisterol, alisol B) may have important roles for ZLD acting against NS by binding to hub targets (HMGCR, HSD11B1, and NOS2) and modulating PI3K-Akt, Ras, MAPK, and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Na Chen
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanqi Chu
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Su Su
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qingxia Zhang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
6
|
Kwon J, Aoki Y, Takahashi H, Nakata R, Kawarasaki S, Ni Z, Yu R, Inoue H, Inoue K, Kawada T, Goto T. Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194987. [PMID: 37739218 DOI: 10.1016/j.bbagrm.2023.194987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yumeko Aoki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Mao Y, Sun J, Wang Z, Liu Y, Sun J, Wei Z, Wang M, Yang Y. Combining transcriptomic analysis and network pharmacology to explore the mechanism by which Shaofu Zhuyu decoction improves diabetes mellitus erectile dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155006. [PMID: 37567007 DOI: 10.1016/j.phymed.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Erectile dysfunction is common among the complications of diabetes mellitus. Shaofu Zhuyu decoction (SFZYD) is commonly used to treat diabetic mellitus erectile dysfunction (DMED). However, its main active components and specific mechanism are still unknown. PURPOSE To confirm the activity of SFZYD in improving DMED, explore the main active components of SFZYD, and clarify the underlying mechanism. METHODS A diabetic rat model was induced with streptozotocin (STZ). After intragastric administration, erectile function was assessed by the maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP). Corpus cavernosum fibrosis was evaluated by Masson staining, and ELISA methods were used to determine the serum levels of IL-6, TNF-α, IL-10, IL-4 and IL-1β to evaluate inflammation. Then, the main active components of SFZYD were identified by UPLC‒MS/MS. Finally, the target and biological mechanism of SFZYD in improving DMED were predicted by combined network pharmacology and transcriptomics, which was also validated by molecular docking and cellular thermal shift assay (CETSA) experiments. RESULTS SFZYD significantly improved erectile dysfunction and inhibited inflammatory responses and local tissue fibrosis in diabetic rats. A total of 1846 active components were identified by UPLC‒MS/MS, and isorhamnetin was the main active component. The transcriptomic results were used to identify differentially expressed genes among the control, DM and SFZYD groups, and 1264 differentially expressed genes were obtained from the intersection. The network pharmacology results showed that SFZYD acts on core targets such as AKT1, ALB, HSP90AA1 and ESR1 through core components such as isorhamnetin, quercetin and chrysophanic acid. Further combined analysis revealed that multiple targets, such as CYP1B1, DPP4, NOS2 and LCN2, as well as the regulation of the PI3K-AKT signaling pathway, may be important mechanisms by which SFZYD improves DMED. Molecular docking verification showed that isorhamnetin, the key component of SFZYD, has good binding ability with several core targets, and its binding ability with CYP1B1 was the strongest. The CETSA results showed that isorhamnetin binds to CYP1B1 in CCECs. CONCLUSION SFZYD improves DMED, inhibits the inflammatory response and alleviates local tissue fibrosis. The combined application of transcriptomic, network pharmacology, molecular docking and CETSA approaches was helpful for revealing the mechanism by which SFZYD improves DMED, which may be related to the regulation of CYP1B1 and the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yinhui Mao
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Liu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jilei Sun
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun 130117, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
9
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
10
|
Wang G, Zou R, Liu L, Wang Z, Zou Z, Tan S, Xu W, Fan X. A circular network of purine metabolism as coregulators of dilated cardiomyopathy. J Transl Med 2022; 20:532. [PMID: 36401332 PMCID: PMC9673417 DOI: 10.1186/s12967-022-03739-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The crosstalk of purine biosynthesis and metabolism exists to balance the cell energy production, proliferation, survival and cytoplasmic environment stability, but disorganized mechanics of with respect to developing heart failure (HF) is currently unknown. METHODS We conducted a multi-omics wide analysis, including microarray-based transcriptomes, and full spectrum metabolomics with respect to chronic HF. Based on expression profiling by array, we applied a bioinformatics platform of quantifiable metabolic pathway changes based on gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), Shapley Additive Explanations (SHAP), and Xtreme Gradient Boosting (XGBoost) algorithms to comprehensively analyze the dynamic changes of metabolic pathways and circular network in the HF development. Additionally, left ventricular tissue from patients undergoing myocardial biopsy and transplantation were collected to perform the protein and full spectrum metabolic mass spectrometry. RESULTS Systematic bioinformatics analysis showed the purine metabolism reprogramming was significantly detected in dilated cardiomyopathy. In addition, this result was also demonstrated in metabolomic mass spectrometry. And the differentially expressed metabolites analysis showing the guanine, urea, and xanthine were significantly detected. Hub markers, includes IMPDH1, ENTPD2, AK7, AK2, and CANT1, also significantly identified based on XGBoost, SHAP model and PPI network. CONCLUSION The crosstalk in the reactions involved in purine metabolism may involving in DCM metabolism reprogramming, and as coregulators of development of HF, which may identify as potential therapeutic targets. And the markers of IMPDH1, ENTPD2, AK7, AK2, and CANT1, and metabolites involved in purine metabolism shown an important role.
Collapse
Affiliation(s)
- Ge Wang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Libao Liu
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zongtao Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510008, Guangdong, China
| | - Zengxiao Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Songtao Tan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wenliu Xu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|