1
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
2
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Nie Y, Zhang Y, Liu S, Xu Z, Xia C, Du L, Yin X, Wang J. Downregulation of Sirt3 contributes to β-cell dedifferentiation via FoxO1 in type 2 diabetic mellitus. Acta Diabetol 2024; 61:485-494. [PMID: 38150004 DOI: 10.1007/s00592-023-02221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
AIMS FoxO1 is an important factor in the β-cell differentiation in type 2 diabetes mellitus (T2DM). Sirt3 is found to be involved in FoxO1 function. This study investigated the role of Sirt3 in the β-cell dedifferentiation and its mechanism. METHODS Twelve-week-old db/db mice and INS1 cells transfected with Sirt3-specific short hairpin RNA (shSirt3) were used to evaluate the dedifferentiation of β-cell. Insulin levels were measured by enzyme linked immunosorbent assay. The proteins of Sirt3, T-FoxO1, Ac-FoxO1 and differentiation indexes such as NGN3, OCT4, MAFA were determined by western blot or immunofluorescence staining. The combination of Sirt3 and FoxO1 was determined by the co-immunoprecipitation assay. The transcriptional activity of FoxO1 was detected by dual luciferase reporter assay. RESULTS Both the in vivo and in vitro results showed that Sirt3 was decreased along with β-cell dedifferentiation and decreased function of insulin secretion under high glucose conditions. When Sirt3 was knocked down in INS1 cells, increased β-cell dedifferentiation and lowered insulin secretion were observed. This effect was closely related to the amount loss and the decreased deacetylation of FoxO1, which resulted in a reduction in transcriptional activity. CONCLUSION Downregulation of Sirt3 contributes to β-cell dedifferentiation in high glucose via FoxO1. Intervention of Sirt3 may be an effective approach to prevent β-cell failure in T2DM.
Collapse
Affiliation(s)
- Yaxing Nie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yunye Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Shuqing Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhi Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Chunya Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
4
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
5
|
Cao H, Cai Q, Guo W, Su Q, Qin H, Wang T, Xian Y, Zeng L, Cai M, Guan H, Chen S, Liang H, Xu F. Malonylation of Acetyl-CoA carboxylase 1 promotes hepatic steatosis and is attenuated by ketogenic diet in NAFLD. Cell Rep 2023; 42:112319. [PMID: 37002924 DOI: 10.1016/j.celrep.2023.112319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Protein post-translational modifications (PTMs) participate in important bioactive regulatory processes and therefore can help elucidate the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the involvement of PTMs in ketogenic diet (KD)-improved fatty liver by multi-omics and reveal a core target of lysine malonylation, acetyl-coenzyme A (CoA) carboxylase 1 (ACC1). ACC1 protein levels and Lys1523 malonylation are significantly decreased by KD. A malonylation-mimic mutant of ACC1 increases its enzyme activity and stability to promote hepatic steatosis, whereas the malonylation-null mutant upregulates the ubiquitination degradation of ACC1. A customized Lys1523ACC1 malonylation antibody confirms the increased malonylation of ACC1 in the NAFLD samples. Overall, the lysine malonylation of ACC1 is attenuated by KD in NAFLD and plays an important role in promoting hepatic steatosis. Malonylation is critical for ACC1 activity and stability, highlighting the anti-malonylation effect of ACC1 as a potential strategy for treating NAFLD.
Collapse
Affiliation(s)
- Huanyi Cao
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China; Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Qingxian Cai
- Department of Hepatopathy, the Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, P.R. China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Qiao Su
- Animal Experiment Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Hancheng Qin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Tian Wang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Yingxin Xian
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Hua Liang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China.
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China.
| |
Collapse
|
6
|
Zhang J, Xiao Y, Hu J, Liu S, Zhou Z, Xie L. Lipid metabolism in type 1 diabetes mellitus: Pathogenetic and therapeutic implications. Front Immunol 2022; 13:999108. [PMID: 36275658 PMCID: PMC9583919 DOI: 10.3389/fimmu.2022.999108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease with insulin deficiency due to pancreatic β cell destruction. Multiple independent cohort studies revealed specific lipid spectrum alterations prior to islet autoimmunity in T1DM. Except for serving as building blocks for membrane biogenesis, accumulative evidence suggests lipids and their derivatives can also modulate different biological processes in the progression of T1DM, such as inflammation responses, immune attacks, and β cell vulnerability. However, the types of lipids are huge and majority of them have been largely unexplored in T1DM. In this review, based on the lipid classification system, we summarize the clinical evidence on dyslipidemia related to T1DM and elucidate the potential mechanisms by which they participate in regulating inflammation responses, modulating lymphocyte function and influencing β cell susceptibility to apoptosis and dysfunction. This review systematically recapitulates the role and mechanisms of various lipids in T1DM, providing new therapeutic approaches for T1DM from a nutritional perspective.
Collapse
|