1
|
HFE variants in colorectal cancer and their clinicopathological correlations. Hum Pathol 2021; 117:9-30. [PMID: 34371060 DOI: 10.1016/j.humpath.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/29/2023]
Abstract
The study aimed to screen mutation of human homeostatic iron regulator (HFE) in colorectal carcinoma (CRC) and detect their associations with clinicopathological parameters. Expression of HFE was determined by quantitative polymerase chain reaction in matched CRC and non neoplastic colorectal mucosal tissue of 76 patients. Genomic DNA extracted were subjected to high high-resolution melt curve analysis and Sanger sequencing to detect mutations in HFE. The associations of the identified mutations with a variety of clinical features were determined. Approximately 60% of CRC showed low HFE expression. Of the ten 10 mutations identified in exons 2 and 4, c.187C>G (H63D), c845G>A (C282Y), c.193A>T (S65C), g.3828T>C, g.5795T>C, and g.5728G>A were known mutations. Four novel mutations were discovered; : c.184G>A, c.220T>G, c.322A>C, and c.324T>C. Heterozygous H63D and C282Y mutations were seen in 71% and 49% of cancer tissue, respectively. Tumour site (p = 0.048) and gender (p = 0.039) were significantly associated with H63D and C282Y mutation status, respectively. Local spread of cancer was significantly associated with C282Y mutations in CRC cancer and adjacent non-neoplastic tissue (p = 0.029 & and p = 0.004, respectively). There was a statistically significant association between H63D and C282Y negativity in matched non-neoplastic colorectal mucosa tissue and pathological staging of cancer (p = 0.047 & and p = 0.001, respectively). Patients with H63D and C282Y mutations in cancer tissue tend to have higher survival rates. Hence HFE mutations are common in CRC and are associated with clinicopathological parameters, implying the potential clinical significance of HFE mutations in colorectal carcinogenesis.
Collapse
|
2
|
Abe I, Islam F, Lo CY, Liew V, Pillai S, Lam AK. VEGF-A/VEGF-B/VEGF-C expressions in non-hereditary, non-metastatic phaeochromocytoma. Histol Histopathol 2021; 36:645-652. [PMID: 33734425 DOI: 10.14670/hh-18-329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor (VEGF) is important in pathogenesis of different cancers. The aim of this study is to investigate the relationships between different VEGFs and clinicopathological factors in patients with phaeochromocytomas. Twenty patients (10 men; 10 women) with non-hereditary, non-metastatic phaeochromocytomas were examined for VEGF mRNA expressions by polymerase chain reaction. The expressions were correlated with the clinical and pathological factors of the patients. In addition, mouse double minute 2 (MDM2) expression in these tumours were studied by immunohistochemistry. High expressions of VEGF-A, VEGF-B, and VEGF-C mRNA were detected in 11 (55%), 9 (45%), and 9 (45%) of the tumours respectively. High expression of VEGF-A in phaeochromocytomas was significantly correlated with the tumour size (p=0.025) but did not correlate with patients' age, gender, and tumour laterality. Besides, there was a trend of VEGF-A expression correlated with MDM2 expression (p=0.064). On the other hand, expressions of VEGF-B and VEGF-C were not significantly correlated with tumour size, patients' age, gender, tumour laterality, and MDM2 expression. In addition, high expressions of VEGF-B and VEGF-A were associated with increase of tumour size (p=0.042). Co-expression of different VEGFs did not correlate with MDM2 expression. To conclude, there is a role for VEGF-A/VEGF-B/VEGF-C in the pathogenesis of non-hereditary, non-metastatic phaeochromocytomas.
Collapse
Affiliation(s)
- Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Chung Yau Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Victor Liew
- Department of Surgery, Gold Coast Private Hospital, Gold Coast, Queensland, Australia
| | - Suja Pillai
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Islam F, Gopalan V, Vider J, Wahab R, Ebrahimi F, Lu CT, Kasem K, Lam AKY. MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Exp Cell Res 2017; 357:260-270. [PMID: 28549913 DOI: 10.1016/j.yexcr.2017.05.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The role and underlying mechanism of miR-186-5p in colorectal cancer remain unknown. The present study aims to examine the various cellular effects of miR-186-5p in the carcinogenesis of colorectal cancer. Also, the interacting targets and association of clinicopathological factors with miR-186-5p expression in patients with colorectal cancer were analysed. METHODS The miR-186-5p expression levels in colorectal cancer tissues (n=126) and colon cancer cell lines (n=3) were analysed by real-time PCR. Matched non-neoplastic colorectal tissues and a non-neoplastic colonic epithelial cell line were used as controls. Various in vitro assays such as cell proliferation, wound healing and colony formation assays were performed to examine the miR-186-5p specific cellular effects. Western blots and immunohistochemistry analysis were performed to examine the modulation of FAM134B, PARP9 and KLF7 proteins expression. RESULTS Significant high expression of miR-186-5p was noted in cancer tissues (p< 0.001) and cell lines (p<0.05) when compared to control tissues and cells. The majority of the patients with colorectal cancer (88/126) had shown overexpression of miR-186-5p. This miR-186-5p overexpression was predominantly noted with in cancer with distant metastasis (p=0.001), lymphovascular permeation (p=0.037), microsatellite instability (MSI) stable (p=0.015), in distal colorectum (p=0.043) and with associated adenomas (p=0.047). Overexpression of miR-186-5p resulted in increased cell proliferation, colony formation, wound healing capacities and induced alteration of cell cycle kinetics in colon cancer cells. On the other hand, inhibition of endogenous miR-186-5p reduced the cancer growth properties. miR-186-5p overexpression reduced FAM134B expression significantly in the cancer cells (p<0.01). Also, FAM134B and miR-186-5p expressions are inversely correlated in colorectal cancer tissues and cells. CONCLUSION The miR-186-5p expression promotes colorectal cancer pathogenesis by regulating tumour suppressor FAM134B. Reduced cancer cells growth followed by inhibition of miR-186-5p highlights the potential of miR-186-5p inhibitor as a novel strategy for targeting colorectal cancer initiation and progression.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Jelena Vider
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Riajul Wahab
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Faeza Ebrahimi
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast Hospital, Gold Coast, Queensland, Australia
| | - Kais Kasem
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Y Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
4
|
Islam F, Gopalan V, Wahab R, Lee KTW, Haque MH, Mamoori A, Lu CT, Smith RA, Lam AKY. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum Genet 2017; 136:321-337. [DOI: 10.1007/s00439-017-1760-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022]
|
5
|
Ebrahimi F, Gopalan V, Wahab R, Lu CT, Anthony Smith R, Lam AKY. Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Exp Cell Res 2015; 339:333-41. [DOI: 10.1016/j.yexcr.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/06/2015] [Accepted: 10/04/2015] [Indexed: 12/18/2022]
|
6
|
Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 2015; 35:2011-9. [PMID: 26257062 DOI: 10.1038/onc.2015.304] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) results from the accumulation of genetic alterations, and somatic copy number alterations (CNAs) are crucial for the development of CRC. Genome-wide survey of CNAs provides opportunities for identifying cancer driver genes in an unbiased manner. The detection of aberrant CNAs may provide novel markers for the early diagnosis and personalized treatment of CRC. A major challenge in array-based profiling of CNAs is to distinguish the alterations that play causative roles from the random alterations that accumulate during colorectal carcinogenesis. In this view, we systematically discuss the frequent CNAs in CRC, focusing on functional genes that have potential diagnostic, prognostic and therapeutic significance.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - L Liang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J-Y Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J Xu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
7
|
Downregulation of microRNA-498 in colorectal cancers and its cellular effects. Exp Cell Res 2015; 330:423-428. [DOI: 10.1016/j.yexcr.2014.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 01/08/2023]
|
8
|
Hosseini A, Gopalan V, Nassiri M, Ghaffarzadehgan K, Aslaminejad A, Ghovvati S, Smith RA, Lam AK. Estrogen Receptor Alpha Gene Expression in Breast Cancer Tissues from the Iranian Population - a Pilot Study. Asian Pac J Cancer Prev 2014; 15:8789-91. [DOI: 10.7314/apjcp.2014.15.20.8789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
JK1 (FAM134B) represses cell migration in colon cancer: a functional study of a novel gene. Exp Mol Pathol 2014; 97:99-104. [DOI: 10.1016/j.yexmp.2014.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022]
|
10
|
Kasem K, Gopalan V, Salajegheh A, Lu CT, Smith RA, Lam AKY. The roles of JK-1 (FAM134B) expressions in colorectal cancer. Exp Cell Res 2014; 326:166-73. [PMID: 24973512 DOI: 10.1016/j.yexcr.2014.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
The aims of the present study are to investigate the clinicopathological correlations of JK-1(FAM134B) expression and its relationship to carcinogenesis in a colorectal adenoma-adenocarcinoma model. JK-1(FAM134B) protein expression was studied in a colon cancer cell line by Western blot and immunocytochemistry. JK-1(FAM134B) expression profiles at mRNA and protein levels were investigated in cancer tissues from 236 patients with colorectal adenocarcinoma and 32 patients with colorectal adenoma using real-time polymerase chain reaction and immunohistochemistry. The findings were then correlated with the clinicopathological features of these tumours. JK-1(FAM134B) protein was demonstrated in the colon cancer cells by Western blot. The protein was located in the nuclei of the tumour cells at both cellular and tissue levels. In colorectal adenocarcinomas, lower levels of JK-1(FAM134B) protein expression were associated with younger age (p=0.032), larger tumour size (p=0.004), advanced cancer stages (p=0.016) and higher rates of cancer recurrence (p=0.04). Also, lower levels of JK-1(FAM134B) mRNA expression were associated with advanced cancer stages (p=0.02) and presence of lymphovascular invasion (p=0.014). Higher JK-1(FAM134B) mRNA and protein expression levels were identified in adenomas and non-neoplastic mucosae, compared to carcinomas (p=0.005). To conclude, JK-1(FAM134B) mRNA expression and JK1 (FAM134B) protein levels varied with the different stages of progression of colorectal tumours. The expression levels of the gene were associated with clinicopathological features in patients with colorectal adenocarcinoma suggesting that JK-1(FAM134B) gene has roles in controlling some steps in the development of the invasive phenotypes from colorectal adenoma to early staged as well as advanced staged colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Kais Kasem
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Alfred K-Y Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith Medical School, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
11
|
miR-126 in human cancers: Clinical roles and current perspectives. Exp Mol Pathol 2014; 96:98-107. [DOI: 10.1016/j.yexmp.2013.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022]
|
12
|
Gopalan V, Pillai S, Ebrahimi F, Salajegheh A, Lam TC, Le TK, Langsford N, Ho YH, Smith RA, Lam AKY. Regulation of microRNA-1288 in colorectal cancer: altered expression and its clinicopathological significance. Mol Carcinog 2013; 53 Suppl 1:E36-44. [PMID: 24009195 DOI: 10.1002/mc.21993] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022]
Abstract
We aim to examine the miR-1288 expression in cancer cell lines and a large cohort of patients with colorectal cancer. Two colon cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The miRNA expressions of miR-1288 were tested on these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). An exogenous miR-1288 (mimic) was used to detect cell proliferation and cell cycle changes in SW480 using MTT calorimetric assay and flow cytometry, respectively. In addition, tissues from 122 patients with surgical resection of colorectum (82 adenocarcinomas, 20 adenomas, and 20 non-neoplastic tissues) were tested for miR-1288 expression by qRT-PCR. The colon cancer cell lines showed reduced expression of miR-1288 compared to normal colonic epithelial cell line. Over expression of miR-1288 in SW480 cell line showed increased cell proliferation and increased G2-M phase cells. In tissues, reduced miR-1288 expression was noted in majority of colorectal adenocarcinoma compared to colorectal adenoma and non-neoplastic tissues. Reduced or absent expression of miR-1288 was noted in 76% (n = 62/82) of the cancers. The expression levels of miR-1288 were higher in distal colorectal adenocarcinomas (P = 0.013) and in cancers of lower T staging (P = 0.033). To conclude, alternation of miR-1288 expression is important in the progression of colorectal cancer. The differential regulation of miR-1288 was found to be related to cancer location and pathological staging in colorectal cancers.
Collapse
Affiliation(s)
- Vinod Gopalan
- Cancer Molecular Pathology of Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alqurashi N, Gopalan V, Smith RA, Lam AKY. Clinical impacts of mammalian target of rapamycin expression in human colorectal cancers. Hum Pathol 2013; 44:2089-96. [PMID: 23773481 DOI: 10.1016/j.humpath.2013.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
This study investigated the clinicopathologic roles of mammalian target of rapamycin (mTOR) expression and its relationship to carcinogenesis and tumor progression in a colorectal adenoma-adenocarcinoma model. Two colon cancer cell lines with different pathologic stages (SW480 and SW48) and 1 normal colonic epithelial cell line (FHC) were used, in addition to 119 colorectal adenocarcinomas and 32 adenomas. mTOR expression profiles at messenger RNA (mRNA) and protein levels were investigated in the cells and tissues using real-time quantification polymerase chain reaction and immunohistochemistry. The findings were correlated with the clinicopathologic features of the tumors. The colon cell line from stage III cancer (SW48) showed higher expression of mTOR mRNA than that from stage II cancer (SW480). At the tissue level, mTOR showed higher mRNA and protein expression in colorectal carcinoma than in adenoma. The mRNA and protein expression was correlated with each other in approximately one-third of the carcinomas and adenomas. High levels of mTOR mRNA expression were noted more in carcinoma or adenoma arising from the distal portion of the large intestine (P = .025 and .019, respectively). Within the colorectal cancer population, a high level of expression of mTOR mRNA was related to the presence of lymph node metastases (P = .031), advanced pathologic stage (P = .05), and presence of persistent disease or tumor recurrence (P = .035). To conclude, the study has indicated that mTOR is likely to be involved in the development and progression of colorectal cancer and is linked to cancer initiation, invasiveness, and progression.
Collapse
Affiliation(s)
- Naif Alqurashi
- Pathology, School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia; Biology Department, College of Medicine, University of Dammam, Dammam 31451, Saudi Arabia
| | | | | | | |
Collapse
|
14
|
Gopalan V, Yasuda K, Pillai S, Tiang T, Leung M, Lu CT, Tang JCO, Smith RA, Lam AKY. Gene amplified in oesophageal cancer 1 (GAEC1)amplification in colorectal cancers and its impact on patient's survival. J Clin Pathol 2013; 66:721-3. [DOI: 10.1136/jclinpath-2013-201459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Lam AKY, Gopalan V, Nassiri MR, Kasim K, Dissanayake J, Tang JCO, Smith RA. Altered JS-2 expression in colorectal cancers and its clinical pathological relevance. Mol Oncol 2011; 5:475-81. [PMID: 21802380 DOI: 10.1016/j.molonc.2011.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 01/05/2023] Open
Abstract
JS-2 is a novel gene located at 5p15.2 and originally detected in primary oesophageal cancer. There is no study on the role of JS-2 in colorectal cancer. The aim of this study is to determine the gene copy number and expression of JS-2 in a large cohort of patients with colorectal tumours and correlate these to the clinicopathological features of the cancer patients. We evaluated the DNA copy number and mRNA expression of JS-2 in 176 colorectal tissues (116 adenocarcinomas, 30 adenomas and 30 non-neoplastic tissues) using real-time polymerase chain reaction. JS-2 expression was also evaluated in two colorectal cancer cell lines and a benign colorectal cell line. JS-2 amplification was noted in 35% of the colorectal adenocarcinomas. Significant differences in relative expression levels for JS-2 mRNA between different colorectal tissues were noted (p = 0.05). Distal colorectal adenocarcinoma had significantly higher copy number than proximal adenocarcinoma (p = 0.005). The relative expression level of JS-2 was different between colonic and rectal adenocarcinoma (p = 0.007). Mucinous adenocarcinoma showed higher JS-2 expression than non-mucinous adenocarcinoma (p = 0.02). Early T-stage cancers appear to have higher JS-2 copy number and lower expression of JS-2 mRNA than later stage cancers (p = 0.001 and 0.03 respectively). Colorectal cancer cell lines showed lower expression of JS-2 than the benign colorectal cell line. JS-2 copy number change and expression were shown for the first time to be altered in the carcinogenesis of colorectal cancer. In addition, genetic alteration of JS-2 was found to be related to location, pathological subtypes and staging of colorectal cancer.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Department of Pathology, Griffith Medical School, Gold Coast Campus, Gold Coast QLD 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|