1
|
Long Y, Wang Y, Qu M, Zhang D, Zhang X, Zhang J. Combined inhibition of EZH2 and the autotaxin-LPA-LPA2 axis exerts synergistic antitumor effects on colon cancer cells. Cancer Lett 2023; 566:216226. [PMID: 37230222 DOI: 10.1016/j.canlet.2023.216226] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Autotaxin (ATX), also known as ENPP2, is the key enzyme in lysophosphatidic acid (LPA) production. LPA acts on its receptors on the cell membrane to promote cell proliferation and migration, and thus, the ATX-LPA axis plays a critical role in tumorigenesis. Clinical data analysis indicated that in colon cancer, there is a strong negative correlation between the expression of ATX and EZH2, the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2). Here, we demonstrated that ATX expression was epigenetically silenced by PRC2, which was recruited by MTF2 and catalyzed H3K27me3 modification in the ATX promoter region. EZH2 inhibition is a promising strategy for cancer treatment, and ATX expression is induced in colon cancer cells by EZH2 inhibitors. With both EZH2 and ATX as targets, their combined inhibition exerted synergistic antitumor effects on colon cancer cells. In addition, LPA receptor 2 (LPA2) deficiency significantly enhanced the sensitivity to EZH2 inhibitors in colon cancer cells. In summary, our study identified ATX as a novel PRC2 target gene and found that cotargeting EZH2 and the ATX-LPA-LPA2 axis may be a potential combination therapy strategy for colon cancer.
Collapse
Affiliation(s)
- Yang Long
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuqin Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Mengxia Qu
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Di Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
3
|
ATPR regulates human mantle cell lymphoma cells differentiation via SOX11/CyclinD1/Rb/E2F1. Cell Signal 2022; 93:110280. [DOI: 10.1016/j.cellsig.2022.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
|
4
|
Watters JM, Wright G, Smith MA, Shah B, Wright KL. Histone deacetylase 8 inhibition suppresses mantle cell lymphoma viability while preserving natural killer cell function. Biochem Biophys Res Commun 2020; 534:773-779. [PMID: 33190829 DOI: 10.1016/j.bbrc.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Mantle Cell Lymphoma (MCL) is a non-Hodgkin lymphoma with a median survival rate of five years. Standard treatment with high-dose chemotherapy plus rituximab (anti-CD20 antibody) has extended overall survival although, the disease remains incurable. Histone deacetylases (HDAC) are a family of enzymes that regulate multiple proteins and cellular pathways through post-translational modification. Broad spectrum HDAC inhibitors have shown some therapeutic promise, inducing cell cycle inhibition and apoptosis in leukemia and non-Hodgkin's lymphoma. However, the therapeutic effects of these broad-spectrum HDAC inhibitors can detrimentally dampen Natural Killer (NK) cell cytotoxicity, reduce NK viability, and downregulate activation receptors important for NK mediated anti-tumor responses. Impairment of NK function in MCL patients during therapy potentially limits therapeutic activity of rituximab. Thus, there is an unmet need to decipher specific roles of individual HDACs in order to preserve and/or enhance NK function, while, directly impairing MCL viability. We investigated the impact of HDAC8 in MCL cell lines. Inhibition or genetic loss of HDAC8 caused MCL cells to undergo apoptosis. In contrast, exposure of primary human NK cells to an HDAC8 inhibitor does not alter viability, receptor expression, or antibody dependent cellular cytotoxicity (ADCC). However, an increase in effector cytokine interferon-gamma (IFNγ) producing NK cells was observed in response to HDAC8 inhibition. Taken together these data suggest that selective HDAC8 inhibitors may simultaneously preserve NK functional activity, while impairing MCL tumor growth, establishing a rationale for future clinical evaluation.
Collapse
Affiliation(s)
- January M Watters
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, USA
| | - Gabriela Wright
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew A Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bijal Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
5
|
Yang R, Huo Z, Duan Y, Tong W, Zheng Y, Su Y, Lou L, Zhang Q, Xu S, Peng C, Kuang D, Wang G. SOX11 inhibits tumor proliferation and promotes cell adhesion mediated-drug resistance via a CD43 dependent manner in mantle cell lymphoma. Leuk Lymphoma 2020; 61:2068-2081. [PMID: 32449421 DOI: 10.1080/10428194.2020.1762877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SOX11 is a critical biomarker for mantle cell lymphoma (MCL) diagnosis; however, its role remains unclear in MCL. Here, clinical-pathological analysis showed Ki67 index was negatively relevant to SOX11 expression only in CD43 positive cases. Coexpression of SOX11/CD43 indicated longer overall survival. In vitro, knockout/overexpression of SOX11 or CD43 promoted/inhibited cell proliferation respectively. CD43 overexpression reversed tumor proliferation induced by SOX11 knockdown. Furthermore, overexpressing/silencing the SOX11/CD43 gene affects phosphorylation of p38-MAPK while p38 inhibitor reversed proliferation induced by si-SOX11 or si-CD43, respectively. In CAM-DR model, both SOX11 and CD43 in MCL cells were elevated when co-cultured with M2-10B4 bone marrow fibroblasts or fibronectin. Knockdown/overexpression of SOX11 decreased/increased cell adhesion, respectively, and the effect induced by silencing SOX11 was reversed by overexpression of CD43. Collectively, SOX11 could inhibit tumor proliferation and promote CAM-DR in a CD43 dependent manner.
Collapse
Affiliation(s)
- Rumeng Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zitian Huo
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weilin Tong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yiyun Zheng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yinxia Su
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Liping Lou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qian Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Changqing Peng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
6
|
Grönroos T, Mäkinen A, Laukkanen S, Mehtonen J, Nikkilä A, Oksa L, Rounioja S, Marincevic-Zuniga Y, Nordlund J, Pohjolainen V, Paavonen T, Heinäniemi M, Lohi O. Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia. Sci Rep 2020; 10:2043. [PMID: 32029838 PMCID: PMC7005266 DOI: 10.1038/s41598-020-58970-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia is marked by aberrant transcriptional features that alter cell differentiation, self-renewal, and proliferative features. We sought to identify the transcription factors exhibiting altered and subtype-specific expression patterns in B-ALL and report here that SOX11, a developmental and neuronal transcription factor, is aberrantly expressed in the ETV6-RUNX1 and TCF3-PBX1 subtypes of acute B-cell leukemias. We show that a high expression of SOX11 leads to alterations of gene expression that are typically associated with cell adhesion, migration, and differentiation. A high expression is associated with DNA hypomethylation at the SOX11 locus and a favorable outcome. The results indicate that SOX11 expression marks a group of patients with good outcomes and thereby prompts further study of its use as a biomarker.
Collapse
Affiliation(s)
- Toni Grönroos
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Artturi Mäkinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Saara Laukkanen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Atte Nikkilä
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Department of Hematology, Tampere University Hospital, Tampere, Finland
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Virva Pohjolainen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland.,Department of Pathology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Yang Z, Jiang S, Lu C, Ji T, Yang W, Li T, Lv J, Hu W, Yang Y, Jin Z. SOX11: friend or foe in tumor prevention and carcinogenesis? Ther Adv Med Oncol 2019; 11:1758835919853449. [PMID: 31210798 PMCID: PMC6547177 DOI: 10.1177/1758835919853449] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y-related high-mobility-group box transcription factor 11
(SOX11) is an essential member of the SOX transcription factors and has been
highlighted as an important regulator in embryogenesis. SOX11 studies have only
recently shifted focus from its role in embryogenesis and development to its
function in disease. In particular, the role of SOX11 in carcinogenesis has
become of major interest in the field. SOX11 expression is elevated in a wide
variety of tumors. In many cancers, dysfunctional expression of SOX11 has been
correlated with increased cancer cell survival, inhibited cell differentiation,
and tumor progression through the induction of metastasis and angiogenesis.
Nevertheless, in a limited number of malignancies, SOX11 has also been
identified to function as a tumor suppressor. Herein, we review the correlation
between the expression of SOX11 and tumor behaviors. We also summarize the
mechanisms underlying the regulation of SOX11 expression and activity in
pathological conditions. In particular, we focus on the pathological processes
of cancer targeted by SOX11 and discuss whether SOX11 is protective or
detrimental during tumor progression. Moreover, SOX11 is highlighted as a
clinical biomarker for the diagnosis and prognosis of various human cancer. The
information reviewed here should assist in future experimental designs and
emphasize the potential of SOX11 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
8
|
Huang J, Ji EH, Zhao X, Cui L, Misuno K, Guo M, Huang Z, Chen X, Hu S. Sox11 promotes head and neck cancer progression via the regulation of SDCCAG8. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:138. [PMID: 30922366 PMCID: PMC6440126 DOI: 10.1186/s13046-019-1146-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Background SOX11 is a transcription factor that plays an important role in mantle cell lymphoma development. However, its functional role in head and neck squamous cell carcinoma (HNSCC) remains unknown. Methods Protein expression was measured with Western blotting, immunohistochemistry or quantitative proteomics, and gene expression was measured with quantitative RT-PCR. Functional role of SOX11 in HNSCC was evaluated with MTS/apoptosis, migration, invasion assays and a xenograft model. A SOX11-targeting gene, SDCCAG8, was confirmed with chromatin immunoprecipitation (ChIP), luciferase reporter and rescue assays. Results SOX11 was up-regulated in recurrent versus primary HNSCC and in highly invasive versus low invasive HNSCC cell lines. Silencing SOX11 in HNSCC cell lines significantly inhibited the cell proliferation, migration, invasion and resistance to Cisplatin, and vice versa. Quantitative proteomic analysis of SOX11-silencing HNSCC cells revealed a number of differentially expressed proteins, including a down-regulated tumor antigen SDCCAG8. Silencing of SDCCAG8 in HNSCC cells also significantly inhibited the cell proliferation, migration and invasion, and vice versa. ChIP assays demonstrated that endogenous SOX11 strongly bound to Sdccag8 gene promoter in highly invasive HNSCC cells. When over-expressed in low invasive HNSCC cells, wild type SOX11 but not mutant SOX11 induced the promoter activity of Sdccag8 and significantly induced the expression of SDCCAG8. However, exogenous mutant SOX11 abolished the expression of SDCCAG8 in highly invasive HNSCC cells. In addition, the inhibitory effects of SOX11 knockdown were partially rescued by over-expression of SDCCAG8 in HNSCC cells. Conclusion Collectively, our findings indicate SOX11 promotes HNSCC progression via the regulation of SDCCAG8. Electronic supplementary material The online version of this article (10.1186/s13046-019-1146-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junwei Huang
- School of Dentistry, University of California, Los Angeles, CA, 90095, USA.,Department of Otorhinolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Eoon Hye Ji
- School of Dentistry, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Li Cui
- School of Dentistry, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Kaori Misuno
- School of Dentistry, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Mian Guo
- School of Dentistry, University of California, Los Angeles, CA, 90095, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhigang Huang
- Department of Otorhinolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaohong Chen
- Department of Otorhinolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shen Hu
- School of Dentistry, University of California, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW SOX11 has emerged as a key transcription factor in the pathogenesis of mantle cell lymphoma (MCL) whereas it is not expressed in normal B cells or virtually in any other mature B-cell neoplasm. This review will examine the role of SOX11 as a biomarker in MCL, the new information on its transcriptional targets, and the mechanisms regulating its expression in MCL. RECENT FINDINGS SOX11 is highly expressed in conventional MCL, including cyclin D1-negative cases, but it is not expressed in the indolent leukemic nonnodal MCL subtype. These two MCL subtypes also differ in their cell-of-origin, IGHV mutational status and genomic instability. SOX11 promotes tumor growth of MCL cells in vivo and regulates a broad transcriptional program that includes B-cell differentiation pathways and tumor-microenvironment interactions, among others. The mechanisms upregulating SOX11 in MCL are not well understood but are mediated in part by the three-dimensional reconfiguration of the DNA, bringing together a distant enhancer region and the SOX11 promoter. SUMMARY SOX11 is a relevant element in the pathogenesis of MCL and has been instrumental to identify two distinct clinicobiological subtypes of this tumor. Further studies should clarify the mechanisms mediating its oncogenic potential and leading to its intriguing expression in these tumors.
Collapse
|
10
|
Liu Z, Zhong Y, Chen YJ, Chen H. SOX11 regulates apoptosis and cell cycle in hepatocellular carcinoma via Wnt/β-catenin signaling pathway. Biotechnol Appl Biochem 2018; 66:240-246. [PMID: 30517979 DOI: 10.1002/bab.1718] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality. Identifying key molecules involved in the regulation of HCC development is of great clinical significance. SOX11 is a transcription factor belonging to group C of Sry-related high mobility group box family whose abnormal expression is frequently seen in many kinds of human cancers. Here, we noted that the expression of SOX11 was decreased in human HCC tumors compared with that in matched normal tissues. Overexpression of SOX11 promoted growth inhibition and apoptosis in HCC cell line HuH-7. Mechanistically, SOX11 enhanced the expression of nemo-like kinase and the phosphorylation of TCF4, thereby blunting the activation of oncogenic Wnt/β-catenin signaling pathway in HuH-7 cells. Finally, SOX11 was also found to sensitize HuH-7 cells to chemotherapy drugs cisplatin and 5-fluorouraci. Therefore, our study identifies SOX11 as a potential tumor suppressor in HCC and may hopefully be beneficial for the clinical diagnosis or treatment of HCC.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Yu Jian Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Hui Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
11
|
Lord M, Arvidsson G, Wasik AM, Christensson B, Wright AP, Grandien A, Sander B. Impact of Sox11 over-expression in Ba/F3 cells. Haematologica 2018; 103:e594-e597. [PMID: 29954934 DOI: 10.3324/haematol.2018.197467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Martin Lord
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital
| | - Gustav Arvidsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet
| | - Agata M Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital
| | - Anthony P Wright
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet
| | - Alf Grandien
- Department of Medicine, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital
| |
Collapse
|
12
|
Emruli VK, Olsson R, Ek F, Ek S. Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma. BMC Cancer 2016; 16:493. [PMID: 27430213 PMCID: PMC4949756 DOI: 10.1186/s12885-016-2550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) is an aggressive disease with short median survival. Molecularly, MCL is defined by the t(11;14) translocation leading to overexpression of the CCND1 gene. However, recent data show that the neural transcription factor SOX11 is a disease defining antigen and several involved signaling pathways have been pin-pointed, among others the Wnt/β-catenin pathway that is of importance for proliferation in MCL. Therefore, we evaluated a compound library focused on the Wnt pathway with the aim of identifying Wnt-related targets that regulate growth and survival in MCL, with particular focus on SOX11-dependent growth regulation. Methods An inducible SOX11 knock-down system was used to functionally screen a library of compounds (n = 75) targeting the Wnt signaling pathway. A functionally interesting target, vacuolar-type H+-ATPase (V-ATPase), was further evaluated by western blot, siRNA-mediated gene silencing, immunofluorescence, and flow cytometry. Results We show that 15 out of 75 compounds targeting the Wnt pathway reduce proliferation in all three MCL cell lines tested. Furthermore, three substances targeting two different targets (V-ATPase and Dkk1) showed SOX11-dependent activity. Further validation analyses were focused on V-ATPase and showed that two independent V-ATPase inhibitors (bafilomycin A1 and concanamycin A) are sensitive to SOX11 levels, causing reduced anti-proliferative response in SOX11 low cells. We further show, using fluorescence imaging and flow cytometry, that V-ATPase is mainly localized to the plasma membrane in primary and MCL cell lines. Conclusions We show that SOX11 status affect V-ATPase dependent pathways, and thus may be involved in regulating pH in intracellular and extracellular compartments. The plasma membrane localization of V-ATPase indicates that pH regulation of the immediate extracellular compartment may be of importance for receptor functionality and potentially invasiveness in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2550-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venera Kuci Emruli
- Department of Immunotechnology, Lund University, Medicon Village, Scheelevägen 8, 223 87, Lund, Sweden
| | - Roger Olsson
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Fredrik Ek
- Department of Experimental Medical Science, Chemical Biology & Therapeutics, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Medicon Village, Scheelevägen 8, 223 87, Lund, Sweden.
| |
Collapse
|
13
|
Walter RFH, Mairinger FD, Werner R, Ting S, Vollbrecht C, Theegarten D, Christoph DC, Zarogoulidis K, Schmid KW, Zarogoulidis P, Wohlschlaeger J. SOX4, SOX11 and PAX6 mRNA expression was identified as a (prognostic) marker for the aggressiveness of neuroendocrine tumors of the lung by using next-generation expression analysis (NanoString). Future Oncol 2016; 11:1027-36. [PMID: 25804118 DOI: 10.2217/fon.15.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Neuroendocrine tumors of the lung (NELC) account for 25% of all lung cancer cases and transcription factors may drive dedifferentiation of these tumors. This study was conducted to identify supportive diagnostic and prognostic biomarkers. MATERIALS & METHODS A total of 16 TC, 13 AC, 16 large cell neuroendocrine carcinomas and 15 small cell lung cancer were investigated for the mRNA expression of 11 transcription factors and related genes (MYB, MYBBP1A, OCT4, PAX6, PCDHB, RBP1, SDCBP, SOX2, SOX4, SOX11, TEAD2). RESULTS SOX4 (p = 0.0002), SOX11 (p < 0.0001) and PAX6 (p = 0.0002) were significant for tumor type. Elevated PAX6 and SOX11 expression correlated with poor outcome in large cell neuroendocrine carcinomas and small cell lung cancer (p < 0.0001 and p = 0.0232, respectively) based on survival data of 34 patients (57%). CONCLUSION Aggressiveness of NELC correlated with increasing expression of transcription factors. SOX11 seems to be a highly valuable diagnostic and prognostic marker for aggressive NELC.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuci V, Nordström L, Conrotto P, Ek S. SOX11 and HIG-2 are cross-regulated and affect growth in mantle cell lymphoma. Leuk Lymphoma 2016; 57:1883-92. [DOI: 10.3109/10428194.2015.1121257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Liu DT, Peng-Zhao, Han JY, Lin FZ, Bu XM, Xu QX. Clinical and prognostic significance of SOX11 in breast cancer. Asian Pac J Cancer Prev 2015; 15:5483-6. [PMID: 25041022 DOI: 10.7314/apjcp.2014.15.13.5483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recently, the transcription factor SOX11 has gained extensive attention as a diagnostic marker in a series of cancers. However, to date, the possible roles of SOX11 in breast cancer has not been investigated. In this study, immunohistochemical staining for SOX11 was performed for 116 cases of breast cancer. Nuclear SOX11 was observed in 42 (36.2%) and cytoplasmic SOX11 in 52 (44.8%) of breast cancer samples. Moreover, high expression of cytoplasmic and nuclear SOX11 was associated with clinicopathological factors, including earlier tumor grade, absence of lymph node metastasis and smaller tumor size. Kaplan-Meier survival curves demonstrated high nuclear SOX11 expression to be associated with more prolonged overall survival than those with low expression and it could be an independent predictor of survival for breast cancer patients. It is worthwhile to note that cytoplasmic SOX11 was not correlated with prognosis of breast cancer patients. These data suggest the possibility that nuclear SOX11 could be as a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Dao-Tong Liu
- Department of General Surgery, The First People's Hospital of Jining City Affiliated to Jining Medical University, Jining, China E-mail :
| | | | | | | | | | | |
Collapse
|
17
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
18
|
Aberrant SOX11 promoter methylation is associated with poor prognosis in gastric cancer. Cell Oncol (Dordr) 2015; 38:183-94. [PMID: 25801783 DOI: 10.1007/s13402-015-0219-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer mortality world-wide. In recent years, aberrant SOX11 expression has been observed in various solid and hematopoietic malignancies, including GC. In addition, it has been reported that SOX11 expression may serve as an independent prognostic factor for the survival of GC patients. Here, we assessed the SOX11 gene promoter methylation status in various GC cell lines and primary GC tissues, and evaluated its clinical significance. METHODS Five GC cell lines were used to assess SOX11 expression by qRT-PCR. The effect of SOX11 expression restoration after 5-aza-2'-deoxycytidine (5-Aza-dC) treatment on GC growth was evaluated in GC cell line MKN45. Subsequently, 89 paired GC-normal gastric tissues were evaluated for their SOX11 gene promoter methylation status using methylation-specific PCR (MSP), and 20 paired GC-normal gastric tissues were evaluated for their SOX11 expression in relation to SOX11 gene promoter methylation. GC patient survival was assessed by Kaplan-Meier analyses and a Cox proportional hazard model was employed for multivariate analyses. RESULTS Down-regulation of SOX11 mRNA expression was observed in both GC cell lines and primary GC tissues. MSP revealed hyper-methylation of the SOX11 gene promoter in 55.1% (49/89) of the primary GC tissues tested and in 7.9% (7/89) of its corresponding non-malignant tissues. The SOX11 gene promoter methylation status was found to be related to the depth of GC tumor invasion, Borrmann classification and GC differentiation status. Upon 5-Aza-dC treatment, SOX11 expression was found to be up-regulated in MKN45 cells, in conjunction with proliferation inhibition. SOX11 gene promoter hyper-methylation was found to be significantly associated with a poor prognosis and to serve as an independent marker for survival using multivariate Cox regression analysis. CONCLUSIONS Our results indicate that aberrant SOX11 gene promoter methylation may underlie its down-regulation in GC. SOX11 gene promoter hyper-methylation may serve as a biomarker to predict the clinical outcome of GC.
Collapse
|
19
|
Utility and Diagnostic Pitfalls of SOX11 Monoclonal Antibodies in Mantle Cell Lymphoma and Other Lymphoproliferative Disorders. Appl Immunohistochem Mol Morphol 2014; 22:720-7. [DOI: 10.1097/pai.0000000000000067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Nordström L, Sernbo S, Eden P, Grønbaek K, Kolstad A, Räty R, Karjalainen ML, Geisler C, Ralfkiaer E, Sundström C, Laurell A, Delabie J, Ehinger M, Jerkeman M, Ek S. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma--a Nordic Lymphoma Group study. Br J Haematol 2014; 166:98-108. [PMID: 24684350 PMCID: PMC4282019 DOI: 10.1111/bjh.12854] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/12/2014] [Indexed: 11/29/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma, where survival has been remarkably improved by use of protocols including high dose cytarabine, rituximab and autologous stem cell transplantation, such as the Nordic MCL2/3 protocols. In 2008, a MCL international prognostic index (MIPI) was created to enable stratification of the clinical diverse MCL patients into three risk groups. So far, use of the MIPI in clinical routine has been limited, as it has been shown that it inadequately separates low and intermediate risk group patients. To improve outcome and minimize treatment-related morbidity, additional parameters need to be evaluated to enable risk-adapted treatment selection. We have investigated the individual prognostic role of the MIPI and molecular markers including SOX11, TP53 (p53), MKI67 (Ki-67) and CCND1 (cyclin D1). Furthermore, we explored the possibility of creating an improved prognostic tool by combining the MIPI with information on molecular markers. SOX11 was shown to significantly add prognostic information to the MIPI, but in multivariate analysis TP53 was the only significant independent molecular marker. Based on these findings, we propose that TP53 and SOX11 should routinely be assessed and that a combined TP53/MIPI score may be used to guide treatment decisions.
Collapse
Affiliation(s)
- Lena Nordström
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
22
|
Zhang LN, Cao X, Lu TX, Fan L, Wang L, Xu J, Zhang R, Zou ZJ, Wu JZ, Li JY, Xu W. Polyclonal antibody targeting SOX11 cannot differentiate mantle cell lymphoma from B-cell non-Hodgkin lymphomas. Am J Clin Pathol 2013; 140:795-800. [PMID: 24225745 DOI: 10.1309/ajcpebouj7gvyvlg] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To determine whether SOX11 is a diagnostic marker of mantle cell lymphoma (MCL). METHODS We analyzed SOX11 expression in 349 B-cell non-Hodgkin lymphomas (B-NHLs) via immunohistochemistry. RESULTS Nuclear staining of SOX11 was observed in 54 (93.1%) of 58 MCLs. We noticed that SOX11 protein was also expressed on the nuclei in 8 (21.6%) of 37 B-lymphoblastic lymphomas, 45 (32.6%) of 138 diffuse large B-cell lymphomas, 15 (44.1%) of 34 follicular lymphomas, 8 (30.8%) of 26 Burkitt lymphomas, 2 (10.0%) of 20 chronic lymphocytic leukemia/small cell lymphomas, and 3 (18.8%) of 16 marginal zone lymphomas. CONCLUSIONS Although the positive rate of SOX11 expression in MCL was significantly higher than other B-NHLs (P < .001), polyclonal antibody targeting SOX11 is not able to identify MCL from B-NHLs because the nuclear staining of SOX11 was widely positive in B-NHLs.
Collapse
Affiliation(s)
- Li-Na Zhang
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xin Cao
- The Affiliated Hospital of Nantong University, Nantong, China
| | - Ting-Xun Lu
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lei Fan
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Li Wang
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ji Xu
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Run Zhang
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhi-Jian Zou
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jia-Zhu Wu
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jian-Yong Li
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Xu
- Departments of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
23
|
Lu TX, Li JY, Xu W. The role of SOX11 in mantle cell lymphoma. Leuk Res 2013; 37:1412-9. [DOI: 10.1016/j.leukres.2013.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
|
24
|
Sernbo S, Borrebaeck CAK, Uhlén M, Jirström K, Ek S. Nuclear T-STAR protein expression correlates with HER2 status, hormone receptor negativity and prolonged recurrence free survival in primary breast cancer and decreased cancer cell growth in vitro. PLoS One 2013; 8:e70596. [PMID: 23923007 PMCID: PMC3726654 DOI: 10.1371/journal.pone.0070596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023] Open
Abstract
T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification.
Collapse
Affiliation(s)
- Sandra Sernbo
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
| | | | - Mathias Uhlén
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
25
|
Jian J, Guoying W, Jing Z. Increased expression of sex determining region Y-box 11 (SOX11) in cutaneous malignant melanoma. J Int Med Res 2013; 41:1221-7. [PMID: 23867449 DOI: 10.1177/0300060513476592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To observe sex determining region Y-box 11 (SOX11) gene expression in cutaneous malignant melanoma and its effect on tumour cell proliferation. METHODS Clinicopathological data and tissue samples from patients with cutaneous malignant melanoma, together with tissue samples from healthy volunteers (controls), were retrospectively reviewed. Protein levels of SOX11 and the antigen identified by monoclonal antibody Ki-67 (Ki-67) in skin lesions were analysed using immunohistochemistry. The correlation between protein levels and clinipathological parameters was investigated. RESULTS Out of 40 patient samples, 25 (62.5%) were positive for SOX11 protein in malignant melanoma tissue. This was significantly higher than in 40 control tissue samples, in which no SOX11 protein was detected. Presence of SOX11 protein was positively related to the proliferation index of cutaneous malignant melanoma tumour cells. Presence of SOX11 protein in cutaneous malignant melanoma was related to tumour type, tumour location, lymph node metastasis and 5-year survival rate. CONCLUSION Human cutaneous malignant melanoma tissues expressed high levels of SOX11 compared with healthy controls, suggesting that SOX11 may be a new prognostic marker for malignant melanoma.
Collapse
Affiliation(s)
- Jiao Jian
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China.
| | | | | |
Collapse
|
26
|
Korkolopoulou P, Levidou G, El-Habr EA, Adamopoulos C, Fragkou P, Boviatsis E, Themistocleous MS, Petraki K, Vrettakos G, Sakalidou M, Samaras V, Zisakis A, Saetta A, Chatziandreou I, Patsouris E, Piperi C. Sox11 expression in astrocytic gliomas: correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Br J Cancer 2013; 108:2142-52. [PMID: 23619925 PMCID: PMC3670505 DOI: 10.1038/bjc.2013.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Sox11 is a transcription factor expressed in foetal and neoplastic brain tissue, including gliomas. It has been shown to suppress the tumourigenicity of glioma stem cells in vivo, thereby being hypothesised to function as a tumour suppressor. Methods: We investigated the expression of Sox11 in 132 diffuse astrocytomas in relation to the regulator cell marker nestin, c-Met and IDH1-R132H, which have shown to be differentially expressed among the molecular subgroups of malignant gliomas, as well as to an inducer of astrocytic differentiation, that is, signal transducer and activator of transcription (p-STAT-3), clinicopathological features and survival. Results: Sox11 immunoreactivity was identified in all tumours irrespective of grade, but being correlated with p-STAT-3. Three out of seven cases showed partial Sox11 promoter methylation. In >50% of our cases neoplastic cells coexpressed Sox11 and nestin, a finding further confirmed in primary glioblastoma cell cultures. Furthermore, nestin, c-Met and IDH1-R132H expression differed among grade categories. Cluster analysis identified four groups of patients according to c-Met, nestin and IDH1-R132H expression. The c-Met/nestin high-expressor group displayed a higher Sox11 expression. Sox11 expression was an indicator of favourable prognosis in glioblastomas, which remained in multivariate analysis and validated in an independent set of 72 cases. The c-Met/nestin high-expressor group was marginally with shorter survival in univariate analysis. Conclusions: We highlight the importance of Sox11 expression as a favourable prognosticator in glioblastomas. c-Met/nestin/IDH1-R132H expression phenotypes recapitulate the molecular subgroups of malignant glioma.
Collapse
Affiliation(s)
- P Korkolopoulou
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens, 115 27, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nordström L, Andréasson U, Jerkeman M, Dictor M, Borrebaeck C, Ek S. Expanded clinical and experimental use of SOX11 - using a monoclonal antibody. BMC Cancer 2012; 12:269. [PMID: 22738398 PMCID: PMC3495897 DOI: 10.1186/1471-2407-12-269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/15/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The transcription factor SOX11 is of diagnostic and prognostic importance in mantle cell lymphoma (MCL) and epithelial ovarian cancer (EOC), respectively. Thus, there is an unmet clinical and experimental need for SOX11-targeting assays with low background, high specificity and robust performance in multiple applications, including immunohistochemistry (IHC-P) and flow cytometry, which until now has been lacking. METHODS We have developed SOX11-C1, a monoclonal mouse antibody targeting SOX11, and successfully evaluated its performance in western blots (WB), IHC-P, fluorescence microscopy and flow cytometry. RESULTS We confirm the importance of SOX11 as a diagnostic antigen in MCL as 100% of tissue micro array (TMA) cases show bright nuclear staining, using the SOX11-C1 antibody in IHC-P. We also show that previous reports of weak SOX11 immunostaining in a fraction of hairy cell leukemias (HCL) are not confirmed using SOX11-C1, which is consistent with the lack of transcription. Thus, high sensitivity and improved specificity are demonstrated using the monoclonal SOX11-C1 antibody. Furthermore, we show for the first time that flow cytometry can be used to separate SOX11 positive and negative cell lines and primary tumors. Of note, SOX11-C1 shows no nonspecific binding to primary B or T cells in blood and thus, can be used for analysis of B and T cell lymphomas from complex clinical samples. Dilution experiments showed that low frequencies of malignant cells (~1%) are detectable above background using SOX11 as a discriminant antigen in flow cytometry. CONCLUSIONS The novel monoclonal SOX11-specific antibody offers high sensitivity and improved specificity in IHC-P based detection of MCL and its expanded use in flow cytometry analysis of blood and tissue samples may allow a convenient approach to early diagnosis and follow-up of MCL patients.
Collapse
Affiliation(s)
- Lena Nordström
- Department of Immunotechnology, Lund University, BMCD13, Lund, SE-221 84, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, McLaughlin EA. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 2012; 7:e35553. [PMID: 22536405 PMCID: PMC3334999 DOI: 10.1371/journal.pone.0035553] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/21/2012] [Indexed: 12/16/2022] Open
Abstract
The last 100 years have seen a concerning decline in male reproductive health associated with decreased sperm production, sperm function and male fertility. Concomitantly, the incidence of defects in reproductive development, such as undescended testes, hypospadias and testicular cancer has increased. Indeed testicular cancer is now recognised as the most common malignancy in young men. Such cancers develop from the pre-invasive lesion Carcinoma in Situ (CIS), a dysfunctional precursor germ cell or gonocyte which has failed to successfully differentiate into a spermatogonium. It is therefore essential to understand the cellular transition from gonocytes to spermatogonia, in order to gain a better understanding of the aetiology of testicular germ cell tumours. MicroRNA (miRNA) are important regulators of gene expression in differentiation and development and thus highly likely to play a role in the differentiation of gonocytes. In this study we have examined the miRNA profiles of highly enriched populations of gonocytes and spermatogonia, using microarray technology. We identified seven differentially expressed miRNAs between gonocytes and spermatogonia (down-regulated: miR-293, 291a-5p, 290-5p and 294*, up-regulated: miR-136, 743a and 463*). Target prediction software identified many potential targets of several differentially expressed miRNA implicated in germ cell development, including members of the PTEN, and Wnt signalling pathways. These targets converge on the key downstream cell cycle regulator Cyclin D1, indicating that a unique combination of male germ cell miRNAs coordinate the differentiation and maintenance of pluripotency in germ cells.
Collapse
Affiliation(s)
- Skye C. McIver
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Simone J. Stanger
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Danielle M. Santarelli
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Shaun D. Roman
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A. McLaughlin
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
29
|
Sernbo S, Gustavsson E, Brennan DJ, Gallagher WM, Rexhepaj E, Rydnert F, Jirström K, Borrebaeck CA, Ek S. The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation. BMC Cancer 2011; 11:405. [PMID: 21943380 PMCID: PMC3187763 DOI: 10.1186/1471-2407-11-405] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/24/2011] [Indexed: 12/31/2022] Open
Abstract
Background The neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking. Methods SOX11 expression and clinicopathological data was compared using χ2 test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation. Results SOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5'-Aza-2'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11. Conclusions SOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.
Collapse
Affiliation(s)
- Sandra Sernbo
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Knock-down of SOX11 induces autotaxin-dependent increase in proliferation in vitro and more aggressive tumors in vivo. Mol Oncol 2011; 5:527-37. [PMID: 21880559 DOI: 10.1016/j.molonc.2011.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/01/2011] [Indexed: 12/11/2022] Open
Abstract
The transcription factor SOX11 is a novel diagnostic marker for mantle cell lymphoma (MCL), distinguishing this aggressive tumor from potential simulators. Recent data also show that the level of SOX11 correlates to in vitro growth properties in MCL, as well as the clinical progression. We have previously shown that MCL-associated pathways, such as Rb-E2F, are dysregulated leading to decreased proliferation upon overexpression of SOX11, emphasizing the impact of SOX11 on MCL-specific gene expression and growth control. However, it remains to be determined which growth regulatory pathways that are induced upon SOX11 knock-down, leading to an increased cellular growth. Consequently, we established a model cell line with constitutive down-regulation of SOX11. The highly proliferative features of this cell line were investigated by gene expression analysis, proliferation assay, cell cycle distribution and potential to induce tumors in NOD-SCID mice. Our in vitro studies demonstrated a SOX11-dependent regulation of MCL-specific gene expression. In addition, we identified autotaxin (ATX) to be regulated by SOX11. Our results clearly showed a correlation between SOX11 level and cellular growth rate, which was dependent on ATX, as well as a direct relation between the level of SOX11 in tumorigenic cells and the growth rate of these tumors in NOD-SCID mice.
Collapse
|