1
|
Lavogina D, Kask K, Kopanchuk S, Visser N, Laws M, Flaws JA, Kallak TK, Olovsson M, Damdimopoulou P, Salumets A. Phthalate monoesters affect membrane fluidity and cell-cell contacts in endometrial stromal adherent cell lines and spheroids. Reprod Toxicol 2024; 130:108733. [PMID: 39396682 DOI: 10.1016/j.reprotox.2024.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Phthalate monoesters have been identified as endocrine disruptors in a variety of models, yet understanding of their exact mechanisms of action and molecular targets in cells remains incomplete. Here, we set to determine whether epidemiologically relevant mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) can affect biological processes by altering cell plasma membrane fluidity or formation of cell-cell contacts. As a model system, we chose endometrial stromal cell lines, one of which was previously used in a transcriptomic study with MEHHP or MEHHP-containing mixtures. A short-term exposure (1 h) of membrane preparations to endocrine disruptors was sufficient to induce changes in membrane fluidity/rigidity, whereas different mixtures showed different effects at various depths of the bilayer. A longer exposure (96 h) affected the ability of cells to form spheroids and highlighted issues with membrane integrity in loosely assembled spheroids. Finally, in spheroids assembled from T-HESC cells, MEHHP interfered with the formation of cell-cell contacts as indicated by the immunostaining of zonula occludens 1 protein. Overall, this study emphasized the need to consider plasma membrane, membrane-bound organelles, and secretory vesicles as possible biological targets of endocrine disruptors and offered an explanation for a multitude of endocrine disruptor roles documented earlier.
Collapse
Affiliation(s)
- Darja Lavogina
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Keiu Kask
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sergei Kopanchuk
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nadja Visser
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Inoue H, Shiozaki A, Kosuga T, Shimizu H, Kudou M, Arita T, Konishi H, Komatsu S, Kuriu Y, Kubota T, Fujiwara H, Morinaga Y, Konishi E, Otsuji E. CACNA2D1 regulates the progression and influences the microenvironment of colon cancer. J Gastroenterol 2024; 59:556-571. [PMID: 38536483 DOI: 10.1007/s00535-024-02095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/03/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Calcium voltage-gated channel auxiliary subunit alpha 2/delta 1 (CACNA2D1), a gene encoding a voltage-gated calcium channel, has been reported as an oncogene in several cancers. However, its role in colon cancer (CC) remains unclear. This study aimed to investigate the function of CACNA2D1 and its effect on the microenvironment in CC. METHODS Immunohistochemistry (IHC) analysis was performed on samples collected from 200 patients with CC who underwent curative colectomy. Knockdown experiments were performed using CACNA2D1 siRNA in the human CC cell lines HCT116 and RKO, and cell proliferation, cycle, apoptosis, and migration were then analyzed. The fibroblast cell line CCD-18Co was co-cultured with CC cell lines to determine the effect of CACNA2D1 on fibroblasts and the relationship between CACNA2D1 and the cancer microenvironment. Gene expression profiles of cells were analyzed using microarray analysis. RESULTS IHC revealed that high CACNA2D1 expression was an independent poor prognostic factor in patients with CC and that CACNA2D1 expression and the stroma are correlated. CACNA2D1 depletion decreased cell proliferation and migration; CACNA2D1 knockdown increased the number of cells in the sub-G1 phase and induced apoptosis. CCD-18Co and HCT116 or RKO cell co-culture revealed that CACNA2D1 affects the cancer microenvironment via fibroblast regulation. Furthermore, microarray analysis showed that the p53 signaling pathway and epithelial-mesenchymal transition-associated pathways were enhanced in CACNA2D1-depleted HCT116 cells. CONCLUSIONS CACNA2D1 plays an important role in the progression and the microenvironment of CC by regulating fibroblasts and may act as a biomarker for disease progression and a therapeutic target for CC.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| |
Collapse
|
3
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
4
|
Du W, Novin A, Liu Y, Afzal J, Liu S, Suhail Y, Kshitiz. Stable and Oscillatory Hypoxia Differentially Regulate Invasibility of Breast Cancer Associated Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586706. [PMID: 38585723 PMCID: PMC10996662 DOI: 10.1101/2024.03.26.586706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
As local regions in the tumor outstrip their oxygen supply, hypoxia can develop, affecting not only the cancer cells, but also other cells in the microenvironment, including cancer associated fibroblasts (CAFs). Hypoxia is also not necessarily stable over time, and can fluctuate or oscillate. Hypoxia Inducible Factor-1 is the master regulator of cellular response to hypoxia, and can also exhibit oscillations in its activity. To understand how stable, and fluctuating hypoxia influence breast CAFs, we measured changes in gene expression in CAFs in normoxia, hypoxia, and oscillatory hypoxia, as well as measured change in their capacity to resist, or assist breast cancer invasion. We show that hypoxia has a profound effect on breast CAFs causing activation of key pathways associated with fibroblast activation, but reduce myofibroblast activation and traction force generation. We also found that oscillatory hypoxia, while expectedly resulted in a "sub-hypoxic" response in gene expression, it resulted in specific activation of pathways associated with actin polymerization and actomyosin maturation. Using traction force microscopy, and a nanopatterned stromal invasion assay, we show that oscillatory hypoxia increases contractile force generation vs stable hypoxia, and increases heterogeneity in force generation response, while also additively enhancing invasibility of CAFs to MDA-MB-231 invasion. Our data show that stable and unstable hypoxia can regulate many mechnobiological characteristics of CAFs, and can contribute to transformation of CAFs to assist cancer dissemination and onset of metastasis.
Collapse
Affiliation(s)
- Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Junaid Afzal
- Department of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
5
|
Dos Santos MV, Holth A, Bischof K, Davidson B. Occludin is overexpressed in tubo-ovarian high-grade serous carcinoma compared to mesothelioma and is a marker of tumor progression and chemoresistance. Clin Exp Metastasis 2024; 41:69-76. [PMID: 38141113 PMCID: PMC10830600 DOI: 10.1007/s10585-023-10251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023]
Abstract
The objective of this study was to analyze the expression and prognostic role of the tight junction protein occludin in high-grade serous carcinoma (HGSC). Occludin protein expression by immunohistochemistry was analyzed in 602 HGSC (417 effusions, 185 surgical specimens). Expression in mesothelioma (n = 87; 45 effusions, 42 surgical specimens) was studied for comparative purposes. Occludin protein expression was found in 587/602 (98%) HGSC vs. 40/87 (46%) mesotheliomas and was predominantly limited to < 5% of cells in the latter (p < 0.001). Occludin was additionally overexpressed in HGSC effusions compared to surgical specimens (p < 0.001) and was overexpressed in post-chemotherapy effusions compared to chemo-naive effusions tapped at diagnosis (p = 0.015). Occludin expression in HGSC surgical specimens was associated with poor chemoresponse (p < 0.001) and primary resistance (p = 0.001). Expression in effusions and surgical specimens was unrelated to survival (p > 0.05). In conclusion, occludin expression is higher in HGSC compared to mesothelioma, and this protein is overexpressed in HGSC effusions, possibly reflecting changes in adhesion related to anchorage-independent growth in this microenvironment. Overexpression in post-chemotherapy compared to chemo-naïve effusions suggest a role in disease progression. Occludin expression in surgical specimens may be related to chemoresistance.
Collapse
Affiliation(s)
- Margarida Varela Dos Santos
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Montebello, Oslo, Norway
- Permanent Address: Serviço de Anatomia Patológica, Centro Hospitalar Universitário de Lisboa Central E.P.E, Rua José António Serrano, 1150-199, Lisbon, Portugal
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Montebello, Oslo, Norway
| | - Katharina Bischof
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Montebello, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| |
Collapse
|
6
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
7
|
Poplawski P, Alseekh S, Jankowska U, Skupien-Rabian B, Iwanicka-Nowicka R, Kossowska H, Fogtman A, Rybicka B, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Hanusek J, Koblowska M, Fernie AR, Piekiełko-Witkowska A. Coordinated reprogramming of renal cancer transcriptome, metabolome and secretome associates with immune tumor infiltration. Cancer Cell Int 2023; 23:2. [PMID: 36604669 PMCID: PMC9814214 DOI: 10.1186/s12935-022-02845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.
Collapse
Affiliation(s)
- Piotr Poplawski
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Saleh Alseekh
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Urszula Jankowska
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bozena Skupien-Rabian
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Roksana Iwanicka-Nowicka
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Helena Kossowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Fogtman
- grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Joanna Bogusławska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jan Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marta Koblowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
8
|
Liu C, Wang J, Zheng Y, Zhu Y, Zhou Z, Liu Z, Lin C, Wan Y, Wen Y, Liu C, Yuan M, Zeng YA, Yan Z, Ge G, Chen J. Autocrine pro-legumain promotes breast cancer metastasis via binding to integrin αvβ3. Oncogene 2022; 41:4091-4103. [PMID: 35854065 DOI: 10.1038/s41388-022-02409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Tumor metastasis is the leading cause of cancer-associated mortality. Unfortunately, the underlying mechanism of metastasis is poorly understood. Expression of legumain (LGMN), an endo-lysosomal cysteine protease, positively correlates with breast cancer metastatic progression and poor prognosis. Here, we report that LGMN is secreted in the zymogen form by motile breast cancer cells. Through binding to cell surface integrin αvβ3 via an RGD motif, the autocrine pro-LGMN activates FAK-Src-RhoA signaling in cancer cells and promotes cancer cell migration and invasion independent of LGMN protease activity. Either silencing LGMN expression or mutationally abolishing pro-LGMN‒αvβ3 interaction significantly inhibits cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Finally, we developed a monoclonal antibody against LGMN RGD motif, which blocks pro-LGMN‒αvβ3 binding, and effectively suppresses cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Thus, disruption of pro-LGMN‒integrin αvβ3 interaction may be a potentially promising strategy for treating breast cancer metastasis.
Collapse
Affiliation(s)
- Cui Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - JunLei Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ZhengHang Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - ZhaoYuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ChangDong Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - YaoYing Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - YaTing Wen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - ChunYe Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - MengYa Yuan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - ZhanJun Yan
- Department of Orthopedics, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215000, China.
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
9
|
Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet 2022; 13:783016. [PMID: 35281827 PMCID: PMC8907593 DOI: 10.3389/fgene.2022.783016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Claudins (CLDNs) are a family of closely related transmembrane proteins that have been linked to oncogenic transformation and metastasis across a range of cancers, suggesting that they may be valuable diagnostic and/or prognostic biomarkers that can be used to evaluate patient outcomes. However, CLDN expression patterns associated with colorectal cancer (CRC) remain to be defined.Methods: The mRNA levels of 21 different CLDN family genes were assessed across 20 tumor types using the Oncomine database. Correlations between these genes and patient clinical outcomes, immune cell infiltration, clinicopathological staging, lymph node metastasis, and mutational status were analyzed using the GEPIA, UALCAN, Human Protein Atlas, Tumor Immune Estimation Resource, STRING, Genenetwork, cBioportal, and DAVID databases in an effort to clarify the potential functional roles of different CLDN protein in CRC. Molecular docking analyses were used to probe potential interactions between CLDN4 and TGFβ1. Levels of CLDN4 and CLDN11 mRNA expression in clinical CRC patient samples and in the HT29 and HCT116 cell lines were assessed via qPCR. CLDN4 expression levels in these 2 cell lines were additionally assessed following TGFβ1 inhibitor treatment.Results: These analyses revealed that COAD and READ tissues exhibited the upregulation of CLDN1, CLDN2, CLDN3, CLDN4, CLDN7, and CLDN12 as well as the downregulation of CLDN5 and CLDN11 relative to control tissues. Higher CLDN11 and CLDN14 expression as well as lower CLDN23 mRNA levels were associated with poorer overall survival (OS) outcomes. Moreover, CLDN2 and CLDN3 or CLDN11 mRNA levels were significantly associated with lymph node metastatic progression in COAD or READ lower in COAD and READ tissues. A positive correlation between the expression of CLDN11 and predicted macrophage, dendritic cell, and CD4+ T cell infiltration was identified in CRC, with CLDN12 expression further being positively correlated with CD4+ T cell infiltration whereas a negative correlation was observed between such infiltration and the expression of CLDN3 and CLDN15. A positive correlation between CLDN1, CLDN16, and neutrophil infiltration was additionally detected, whereas neutrophil levels were negatively correlated with the expression of CLDN3 and CLDN15. Molecular docking suggested that CLDN4 was able to directly bind via hydrogen bond with TGFβ1. Relative to paracancerous tissues, clinical CRC tumor tissue samples exhibited CLDN4 and CLDN11 upregulation and downregulation, respectively. LY364947 was able to suppress the expression of CLDN4 in both the HT29 and HCT116 cell lines.Conclusion: Together, these results suggest that the expression of different CLDN family genes is closely associated with CRC tumor clinicopathological staging and immune cell infiltration. Moreover, CLDN4 expression is closely associated with TGFβ1 in CRC, suggesting that it and other CLDN family members may represent viable targets for antitumor therapeutic intervention.
Collapse
Affiliation(s)
- Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenqi Zhang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinxi Dam
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kai Huang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yihan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhicong Qiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tao Sun
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Zhenduo Zhang
- Shijiazhuang People’s Hospital, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| |
Collapse
|
10
|
Attaran S, Bissell MJ. The role of tumor microenvironment and exosomes in dormancy and relapse. Semin Cancer Biol 2022; 78:35-44. [PMID: 34757184 PMCID: PMC9605861 DOI: 10.1016/j.semcancer.2021.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022]
Abstract
Recent advancements in the field of cancer have established that the process of metastasis is organ-specific with tumor cell dissemination occurring in the very early stages of disease. Pre-metastatic niches are actively remodeled and transformed by both primary tumor specific factors and by influences from the extracellular matrix.Although improvements in cancer therapies have significantly improved outcomes in patients with early stage disease, the risk of recurrence and relapse leading to mortality remains high. Recent studies have emerged highlighting the influence of dormant tumor cells and exosomes as key players in cancer relapse. In this review we discuss the critical mediators of tumor progression and their link to cancer dormancy, while also exploring possible therapeutics for targeting relapse.
Collapse
Affiliation(s)
- Shireen Attaran
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, United States.
| | - Mina J Bissell
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, United States
| |
Collapse
|
11
|
Ghosh D, Dutta A, Kashyap A, Upmanyu N, Datta S. PLP2 drives collective cell migration via ZO-1-mediated cytoskeletal remodeling at the leading edge in human colorectal cancer cells. J Cell Sci 2021; 134:271878. [PMID: 34409455 DOI: 10.1242/jcs.253468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 08/11/2021] [Indexed: 01/06/2023] Open
Abstract
Collective cell migration (CCM), in which cell-cell integrity remains preserved during movement, plays an important role in the progression of cancer. However, studies describing CCM in cancer progression are majorly focused on the effects of extracellular tissue components on moving cell plasticity. The molecular and cellular mechanisms of CCM during cancer progression remain poorly explored. Here, we report that proteolipid protein 2 (PLP2), a colonic epithelium-enriched transmembrane protein, plays a vital role in the CCM of invasive human colorectal cancer (CRC) epithelium by modulating leading-edge cell dynamics in 2D. The extracellular pool of PLP2, secreted via exosomes, was also found to contribute to the event. During CCM, the protein was found to exist in association with ZO-1 (also known as TJP1) and to be involved in the positioning of the latter at the migrating edge. PLP2-mediated positioning of ZO-1 at the leading edge further alters actin cytoskeletal organization that involves Rac1 activation. Taken together, our findings demonstrate that PLP2, via its association with ZO-1, drives CCM in CRC epithelium by modulating the leading-edge actin cytoskeleton, thereby opening up new avenues of cancer research. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.,School of Pharmacy and Research, People's University, Bhopal 462037, India
| | - Ankita Dutta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Anjali Kashyap
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Neeraj Upmanyu
- School of Pharmacy and Research, People's University, Bhopal 462037, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
12
|
Shi X, Luo J, Weigel KJ, Hall SC, Du D, Wu F, Rudolph MC, Zhou H, Young CD, Wang XJ. Cancer-Associated Fibroblasts Facilitate Squamous Cell Carcinoma Lung Metastasis in Mice by Providing TGFβ-Mediated Cancer Stem Cell Niche. Front Cell Dev Biol 2021; 9:668164. [PMID: 34527666 PMCID: PMC8435687 DOI: 10.3389/fcell.2021.668164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been shown to enhance squamous cell carcinoma (SCC) growth, but it is unclear whether they promote SCC lung metastasis. We generated CAFs from K15.KrasG12D.Smad4-/- mouse SCCs. RNA expression analyses demonstrated that CAFs had enriched transforming growth factor-beta (TGFβ) signaling compared to normal tissue-associated fibroblasts (NAFs), therefore we assessed how TGFβ-enriched CAFs impact SCC metastasis. We co-injected SCC cells with CAFs to the skin, tail vein, or the lung to mimic sequential steps of lung metastasis. CAFs increased SCC volume only in lung co-transplantations, characterized with increased proliferation and angiogenesis and decreased apoptosis compared to NAF co-transplanted SCCs. These CAF effects were attenuated by a clinically relevant TGFβ receptor inhibitor, suggesting that CAFs facilitated TGFβ-dependent SCC cell seeding and survival in the lung. CAFs also increased tumor volume when co-transplanted to the lung with limiting numbers of SCC cancer stem cells (CSCs). In vitro, CSC sphere formation and invasion were increased either with co-cultured CAFs or with CAF conditioned media (which contains the highest TGFβ1 concentration) and these CAF effects were blocked by TGFβ inhibition. Further, TGFβ activation was higher in primary human oral SCCs with lung metastasis than SCCs without lung metastasis. Similarly, TGFβ activation was detected in the lungs of mice with micrometastasis. Our data suggest that TGFβ-enriched CAFs play a causal role in CSC seeding and expansion in the lung during SCC metastasis, providing a prognostic marker and therapeutic target for SCC lung metastasis.
Collapse
Affiliation(s)
- Xueke Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelsey J. Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Spencer C. Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Danfeng Du
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael C. Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Christian D. Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, United States
| |
Collapse
|
13
|
Chandra Jena B, Sarkar S, Rout L, Mandal M. The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett 2021; 520:222-232. [PMID: 34363903 DOI: 10.1016/j.canlet.2021.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, the Transforming growth factor- β (TGF-β) has been significantly considered as an effective and ubiquitous mediator of cell growth. The cytokine, TGF-β is being increasingly recognized as the most potent inducer of cancer cell initiation, differentiation, migration as well as progression through both the SMAD-dependent and independent pathways. There is growing evidence that supports the role of secretory cytokine TGF-β as a crucial mediator of tumor-stroma crosstalk. Contextually, the CAFs are the prominent component of tumor stroma that helps in tumor progression and onset of chemoresistance. The interplay between the CAFs and the tumor cells through the paracrine signals is facilitated by cytokine TGF-β to induce the malignant progression. Here in this review, we have dissected the most recent advancements in understanding the mechanisms of TGF-β induced CAF activation, their multiple origins, and most importantly their role in conferring chemoresistance. Considering the pivotal role of TGF-β in tumor perogression and associated stemness, it is one the proven clinical targets We have also included the clinical trials going on, targeting the TGF-β and CAFs crosstalk with the tumor cells. Ultimately, we have underscored some of the outstanding issues that must be deciphered with utmost importance to unravel the successful strategies of anti-cancer therapies.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Siddik Sarkar
- CSIR-Indian Institue of Chemical Biology, Translational Research Unit of Excellence, Kolkata, West Bengal, India
| | - Lipsa Rout
- Department of Chemistry, Institute of Technical Education and Research, Siksha'O'Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
14
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
15
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Prieto-García E, Díaz-García CV, Agudo-López A, Pardo-Marqués V, García-Consuegra I, Asensio-Peña S, Alonso-Riaño M, Pérez C, Gómez C, Adeva J, Paz-Ares L, López-Martín JA, Agulló-Ortuño MT. Tumor-Stromal Interactions in a Co-Culture Model of Human Pancreatic Adenocarcinoma Cells and Fibroblasts and Their Connection with Tumor Spread. Biomedicines 2021; 9:biomedicines9040364. [PMID: 33807441 PMCID: PMC8065458 DOI: 10.3390/biomedicines9040364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022] Open
Abstract
One key feature of pancreatic ductal adenocarcinoma (PDAC) is a dense desmoplastic reaction that has been recognized as playing important roles in metastasis and therapeutic resistance. We aim to study tumor-stromal interactions in an in vitro coculture model between human PDAC cells (Capan-1 or PL-45) and fibroblasts (LC5). Confocal immunofluorescence, Enzyme-Linked Immunosorbent Assay (ELISA), and Western blotting were used to evaluate the expressions of activation markers; cytokines arrays were performed to identify secretome profiles associated with migratory and invasive properties of tumor cells; extracellular vesicle production was examined by ELISA and transmission electron microscopy. Coculture conditions increased FGF-7 secretion and α-SMA expression, characterized by fibroblast activation and decreased epithelial marker E-cadherin in tumor cells. Interestingly, tumor cells and fibroblasts migrate together, with tumor cells in forming a center surrounded by fibroblasts, maximizing the contact between cells. We show a different mechanism for tumor spread through a cooperative migration between tumor cells and activated fibroblasts. Furthermore, IL-6 levels change significantly in coculture conditions, and this could affect the invasive and migratory capacities of cells. Targeting the interaction between tumor cells and the tumor microenvironment might represent a novel therapeutic approach to advanced PDAC.
Collapse
Affiliation(s)
- Elena Prieto-García
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
| | - C. Vanesa Díaz-García
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
| | - Alba Agudo-López
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
| | - Virginia Pardo-Marqués
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
| | - Inés García-Consuegra
- Proteomic Unit, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.)
- Biomedical Research Networking Center (CIBERER), U723, Instituto de Salud Carlos III. Av. de Córdoba S/N, 28041 Madrid, Spain
| | - Sara Asensio-Peña
- Proteomic Unit, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.)
- Laboratory of Rare Diseases, Mitochondrial &Neuromuscular Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain
| | - Marina Alonso-Riaño
- Pathology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba S/N, 28041 Madrid, Spain;
| | - Carlos Pérez
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
| | - Carlos Gómez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba S/N, 28041 Madrid, Spain; (C.G.); (J.A.)
| | - Jorge Adeva
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba S/N, 28041 Madrid, Spain; (C.G.); (J.A.)
| | - Luis Paz-Ares
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba S/N, 28041 Madrid, Spain; (C.G.); (J.A.)
- Biomedical Research Networking Center (CIBERONC), Instituto de Salud Carlos III, Av. de Córdoba S/N, 28041 Madrid, Spain
- Medicine Department, Facultad de Medicina y Cirugía (UCM), Av. de Séneca, 2, 28040 Madrid, Spain
| | - José A. López-Martín
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Av. de Córdoba S/N, 28041 Madrid, Spain; (C.G.); (J.A.)
| | - M. Teresa Agulló-Ortuño
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Hospital 12 de Octubre (i+12), Av. de Córdoba S/N, 28041 Madrid, Spain; (E.P.-G.); (C.V.D.-G.); (A.A.-L.); (V.P.-M.); (C.P.); (L.P.-A.); (J.A.L.-M.)
- Biomedical Research Networking Center (CIBERONC), Instituto de Salud Carlos III, Av. de Córdoba S/N, 28041 Madrid, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, Facultad de Fisioterapia y Enfermería, (UCLM), Av. de Carlos III, S/N, 45071 Toledo, Spain
- Correspondence:
| |
Collapse
|
17
|
Domogauer JD, de Toledo SM, Howell RW, Azzam EI. Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity. Cell Commun Signal 2021; 19:30. [PMID: 33637118 PMCID: PMC7912493 DOI: 10.1186/s12964-021-00711-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are a major component of the cancer stroma, and their response to therapeutic treatments likely impacts the outcome. We tested the hypothesis that CAFs develop unique characteristics that enhance their resistance to ionizing radiation. Methods CAFs were generated through intimate coculture of normal human fibroblasts of skin or lung origin with various human cancer cell types using permeable microporous membrane inserts. Fibroblasts and cancer cells are grown intimately, yet separately, on either side of the insert’s membrane for extended times to generate activated fibroblast populations highly enriched in CAFs. Results The generated CAFs exhibited a decrease in Caveolin-1 protein expression levels, a CAF biomarker, which was further enhanced when the coculture was maintained under in-vivo-like oxygen tension conditions. The level of p21Waf1 was also attenuated, a characteristic also associated with accelerated tumor growth. Furthermore, the generated CAFs experienced perturbations in their redox environment as demonstrated by increases in protein carbonylation, mitochondrial superoxide anion levels, and modulation of the activity of the antioxidants, manganese superoxide dismutase and catalase. Propagation of the isolated CAFs for 25 population doublings was associated with enhanced genomic instability and a decrease in expression of the senescence markers β-galactosidase and p16INK4a. With relevance to radiotherapeutic treatments, CAFs in coculture with cancer cells of diverse origins (breast, brain, lung, and prostate) were resistant to the clastogenic effects of 137Cs γ rays compared to naïve fibroblasts. Addition of repair inhibitors of single- or double-stranded DNA breaks attenuated the resistance of CAFs to the clastogenic effects of γ rays, supporting a role for increased ability to repair DNA damage in CAF radioresistance. Conclusions This study reveals that CAFs are radioresistant and experience significant changes in indices of oxidative metabolism. The CAFs that survive radiation treatment likely modulate the fate of the associated cancer cells. Identifying them together with their mode of communication with cancer cells, and eradicating them, particularly when they may exist at the margin of the radiotherapy planning target volume, may improve the efficacy of cancer treatments.![]() Video Abstract
Collapse
Affiliation(s)
- Jason D Domogauer
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Sonia M de Toledo
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Roger W Howell
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Edouard I Azzam
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA.
| |
Collapse
|
18
|
Badia-Ramentol J, Linares J, Gómez-Llonin A, Calon A. Minimal Residual Disease, Metastasis and Immunity. Biomolecules 2021; 11:130. [PMID: 33498251 PMCID: PMC7909268 DOI: 10.3390/biom11020130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Progression from localized to metastatic disease requires cancer cells spreading to distant organs through the bloodstream. Only a small proportion of these circulating tumor cells (CTCs) survives dissemination due to anoikis, shear forces and elimination by the immune system. However, all metastases originate from CTCs capable of surviving and extravasating into distant tissue to re-initiate a tumor. Metastasis initiation is not always immediate as disseminated tumor cells (DTCs) may enter a non-dividing state of cell dormancy. Cancer dormancy is a reversible condition that can be maintained for many years without being clinically detectable. Subsequently, late disease relapses are thought to be due to cancer cells ultimately escaping from dormant state. Cancer dormancy is usually associated with minimal residual disease (MRD), where DTCs persist after intended curative therapy. Thus, MRD is commonly regarded as an indicator of poor prognosis in all cancers. In this review, we examine the current understanding of MRD and immunity during cancer progression to metastasis and discuss clinical perspectives for oncology.
Collapse
Affiliation(s)
| | | | | | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (J.B.-R.); (J.L.); (A.G.-L.)
| |
Collapse
|
19
|
Wei L, Shao N, Peng Y, Zhou P. Inhibition of Cathepsin S Restores TGF-β-induced Epithelial-to-mesenchymal Transition and Tight Junction Turnover in Glioblastoma Cells. J Cancer 2021; 12:1592-1603. [PMID: 33613746 PMCID: PMC7890330 DOI: 10.7150/jca.50631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 11/05/2022] Open
Abstract
Background: Invasive growth is one of the most typical features of aggressive types of malignant cancer, including glioblastoma. Lysosomal cysteine protease-cathepsin S (CTSS), has been reported to be involved in invasive growth and distant metastasis of cancer cells. However, the underlying mechanisms remained elusive. Methods: U87 and U251 human glioblastoma cell lines were applied in this study. Cell migration and invasion ability were measured by wound healing assay and transwell assay. Western blot was employed to detect the expression levels of proteins. Immunofluorescence assays of cells and tissues were used to visualize the localization and expression of proteins. The SPSS software was used for statistical analysis. Results: Our results showed that the high expression of CTSS was link with the grades of glioma tissues. The CTSS inhibitor-Z-FL-COCHO (ZFL), could attenuate TGF-β-induced invasive growth as proven by wound healing and transwell assays. Furthermore, inhibition of CTSS could reverse TGF-β-induced epithelial-to-mesenchymal transition (EMT) and restore TGF-β-triggered tight junction proteins turnover, thus decreasing glioblastoma cell mobility. We also observed that TGF-β could change the morphology of glioblastoma cells, redistribute intermediate-filament, vimentin, which was highly relevant to mesenchymal type cells and enhanced mobility. However, inhibition of CTSS could significantly restore this transformation. Our results proved that PI3K/AKT/mTOR pathway was significantly suppressed in the TGF-β+ZFL (CTSS inhibitor) groups, and AKT activator-SC79, could reverse the anti-invasion effect of CTSS, indicating an important role of PI3K/AKT/mTOR pathway in this process. Conclusion: Z-FL-COCHO (ZFL), a CTSS inhibitor, could reverse TGF-β-induced EMT and change of tight junction proteins via PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Li Wei
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Naiyuan Shao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
20
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
21
|
Transforming Growth Factor-β Signaling in Fibrotic Diseases and Cancer-Associated Fibroblasts. Biomolecules 2020; 10:biom10121666. [PMID: 33322749 PMCID: PMC7763058 DOI: 10.3390/biom10121666] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential in embryo development and maintaining normal homeostasis. Extensive evidence shows that TGF-β activation acts on several cell types, including epithelial cells, fibroblasts, and immune cells, to form a pro-fibrotic environment, ultimately leading to fibrotic diseases. TGF-β is stored in the matrix in a latent form; once activated, it promotes a fibroblast to myofibroblast transition and regulates extracellular matrix (ECM) formation and remodeling in fibrosis. TGF-β signaling can also promote cancer progression through its effects on the tumor microenvironment. In cancer, TGF-β contributes to the generation of cancer-associated fibroblasts (CAFs) that have different molecular and cellular properties from activated or fibrotic fibroblasts. CAFs promote tumor progression and chronic tumor fibrosis via TGF-β signaling. Fibrosis and CAF-mediated cancer progression share several common traits and are closely related. In this review, we consider how TGF-β promotes fibrosis and CAF-mediated cancer progression. We also discuss recent evidence suggesting TGF-β inhibition as a defense against fibrotic disorders or CAF-mediated cancer progression to highlight the potential implications of TGF-β-targeted therapies for fibrosis and cancer.
Collapse
|
22
|
General Study and Gene Expression Profiling of Endotheliocytes Cultivated on Electrospun Materials. MATERIALS 2019; 12:ma12244082. [PMID: 31817735 PMCID: PMC6947544 DOI: 10.3390/ma12244082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2’-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.
Collapse
|
23
|
Development of a Stromal Microenvironment Experimental Model Containing Proto-Myofibroblast Like Cells and Analysis of Its Crosstalk with Melanoma Cells: A New Tool to Potentiate and Stabilize Tumor Suppressor Phenotype of Dermal Myofibroblasts. Cells 2019; 8:cells8111435. [PMID: 31739477 PMCID: PMC6912587 DOI: 10.3390/cells8111435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma is one of the most aggressive solid tumors and includes a stromal microenvironment that regulates cancer growth and progression. The components of stromal microenvironment such as fibroblasts, fibroblast aggregates and cancer-associated fibroblasts (CAFs) can differently influence the melanoma growth during its distinct stages. In this work, we have developed and studied a stromal microenvironment model, represented by fibroblasts, proto-myofibroblasts, myofibroblasts and aggregates of inactivated myofibroblasts, such as spheroids. In particular, we have generated proto-myofibroblasts from primary cutaneous myofibroblasts. The phenotype of proto-myofibroblasts is characterized by a dramatic reduction of α-smooth muscle actin (α-SMA) and cyclooxygenase-2 (COX-2) protein levels, as well as an enhancement of cell viability and migratory capability compared with myofibroblasts. Furthermore, proto-myofibroblasts display the mesenchymal marker vimentin and less developed stress fibers, with respect to myofibroblasts. The analysis of crosstalk between the stromal microenvironment and A375 or A2058 melanoma cells has shown that the conditioned medium of proto-myofibroblasts is cytotoxic, mainly for A2058 cells, and dramatically reduces the migratory capability of both cell lines compared with the melanoma-control conditioned medium. An array analysis of proto-myofibroblast and melanoma cell-conditioned media suggests that lower levels of some cytokines and growth factors in the conditioned medium of proto-myofibroblasts could be associated with their anti-tumor activity. Conversely, the conditioned media of melanoma cells do not influence the cell viability, outgrowth, and migration of proto-myofibroblasts from spheroids. Interestingly, the conditioned medium of proto-myofibroblasts does not alter the cell viability of both BJ-5ta fibroblast cells and myofibroblasts. Hence, proto-myofibroblasts could be useful in the study of new therapeutic strategies targeting melanoma.
Collapse
|
24
|
Wershof E, Park D, Jenkins RP, Barry DJ, Sahai E, Bates PA. Matrix feedback enables diverse higher-order patterning of the extracellular matrix. PLoS Comput Biol 2019; 15:e1007251. [PMID: 31658254 PMCID: PMC6816557 DOI: 10.1371/journal.pcbi.1007251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The higher-order patterning of extra-cellular matrix in normal and pathological tissues has profound consequences on tissue function. Whilst studies have documented both how fibroblasts create and maintain individual matrix fibers and how cell migration is altered by the fibers they interact with, a model unifying these two aspects of tissue organization is lacking. Here we use computational modelling to understand the effect of this interconnectivity between fibroblasts and matrix at the mesoscale level. We created a unique adaptation to the Vicsek flocking model to include feedback from a second layer representing the matrix, and use experimentation to parameterize our model and validate model-driven hypotheses. Our two-layer model demonstrates that feedback between fibroblasts and matrix increases matrix diversity creating higher-order patterns. The model can quantitatively recapitulate matrix patterns of tissues in vivo. Cells follow matrix fibers irrespective of when the matrix fibers were deposited, resulting in feedback with the matrix acting as temporal 'memory' to collective behaviour, which creates diversity in topology. We also establish conditions under which matrix can be remodelled from one pattern to another. Our model elucidates how simple rules defining fibroblast-matrix interactions are sufficient to generate complex tissue patterns.
Collapse
Affiliation(s)
- Esther Wershof
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Danielle Park
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Robert P. Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David J. Barry
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
25
|
Wang D, Cai J, Zhao F, Liu J. Low-quality rice straw forage increases the permeability of mammary epithelial tight junctions in lactating dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2037-2041. [PMID: 30142692 DOI: 10.1002/jsfa.9330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is known that milking frequency and plasma hormones play important roles in regulating mammary permeability. However, it is still not known whether nutritional factors can influence udder permeability. DESIGN This study was conducted to investigate mammary epithelial tight-junction permeability in lactating dairy cows fed different forage-based diets. Twenty mid-lactating dairy cows were allocated to ten blocks based on their parity and milk yield and then randomly assigned into rice straw-based diet and alfalfa-based diet groups. Both diets contained 15% corn silage and 55% concentrate (dry matter basis). In terms of forage sources, rice straw-based diets (RS) contained 30% rice straw, whereas alfalfa-based diets (AH) contained 23% alfalfa hay plus 7% Chinese wild rye hay. RESULTS The concentrations of Na+ , Na+ /K+ ratio, bovine serum albumin, and plasmin in the milk, the plasma lactose concentration, and the mRNA abundance of BCL2 associated agonist of cell death, phosphatase and tensin homolog, and insulin like growth factor binding protein 5 in the mammary gland were greater in RS-fed cows than in AH-fed animals. Mammary expression of proliferating cell nuclear antigen and occludin was lower in RS-fed cows compared with the AH-fed group. The expressions of growth hormone receptor, claudin-1, -3, -4, and ZO-1 were similar in the two diet groups. CONCLUSION The cows fed RS showed higher mammary alveolar permeability, likely due to its effect on proliferation/apoptosis rates of mammary epithelial cells. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diming Wang
- MoE Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jie Cai
- MoE Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Fengqi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
26
|
Cherradi S, Martineau P, Gongora C, Del Rio M. Claudin gene expression profiles and clinical value in colorectal tumors classified according to their molecular subtype. Cancer Manag Res 2019; 11:1337-1348. [PMID: 30863148 PMCID: PMC6389001 DOI: 10.2147/cmar.s188192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Colorectal cancer (CRC) is a heterogeneous disease that can be classified into distinct molecular subtypes. The aims of this study were 1) to compare claudin (CLDN) gene expression in CRC samples and normal colon mucosa, and then in the different CRC molecular subtypes, and 2) to assess their prognostic value. Patients and methods CLDN expression in CRC samples was analyzed using gene expression data for a cohort of 143 primary CRC samples, and compared in the same CRC samples classified into different molecular subtypes (C1 to C6 according to the Marisa's classification, and CMS1 to CMS4 of the consensus classification). Comparison of CLDN expression in normal and tumor colon samples was also made on a smaller number of samples. Then, the relationship between CLDN expression profiles and overall survival (OS) and progression-free survival was examined. Results Compared with normal mucosa, CLDN1 and CLDN2 were upregulated, whereas CLDN5, 7, 8, and 23 were downregulated in CRC samples. Variations in CLDN expression profiles were observed mainly in the CMS2/C1 and CMS4/C4 subtypes. Overall, expression of CLDN2 or CLDN4 alone had a strong prognostic value that increased when they were associated. In the CMS4/C4 subtypes, lower expressions of CLDN11, CLDN12, and CLDN23 were associated with longer OS. Conversely, in the CMS2 and C1 subtypes, low CLDN23 expression was associated with shorter OS and progression-free survival, suggesting a dual role for CLDN23 as a tumor suppressor/promoter in CRC. CLDN6 and CLDN11 had a prognostic value in the CMS2 and C4 subtypes, respectively. Conclusion This analysis of CLDN gene expression profiles and prognostic value in CRC samples classified according to their molecular subtype shows that CRC heterogeneity must be taken into account when assessing CLDN potential value as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Sara Cherradi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France,
| | - Pierre Martineau
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France,
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France,
| | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France,
| |
Collapse
|
27
|
Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol 2019; 9:1942. [PMID: 30728783 PMCID: PMC6351700 DOI: 10.3389/fphys.2018.01942] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of epithelial cells to organize through cell–cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Santosh K Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
28
|
Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, Tang Y, Fang N, Wang F, El-Sayed MA. Gold Nanorod Photothermal Therapy Alters Cell Junctions and Actin Network in Inhibiting Cancer Cell Collective Migration. ACS NANO 2018; 12:9279-9290. [PMID: 30118603 PMCID: PMC6156989 DOI: 10.1021/acsnano.8b04128] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most cancer-related deaths come from metastasis. It was recently discovered that nanoparticles could inhibit cancer cell migration. Whereas most researchers focus on single-cell migration, the effect of nanoparticle treatment on collective cell migration has not been explored. Collective migration occurs commonly in many types of cancer metastasis, where a group of cancer cells move together, which requires the contractility of the cytoskeleton filaments and the connection of neighboring cells by the cell junction proteins. Here, we demonstrate that gold nanorods (AuNRs) and the introduction of near-infrared light could inhibit the cancer cell collective migration by altering the actin filaments and cell junctions with significantly triggered phosphorylation changes of essential proteins, using mass spectrometry-based phosphoproteomics. Further observation using super-resolution stochastic optical reconstruction microscopy (STORM) showed the actin cytoskeleton filament bundles were disturbed, which is difficult to differentiate under a normal fluorescence microscope. The decreased expression level of N-cadherin junctions and morphological changes of tight junction protein zonula occludens 2 were also observed. All of these results indicate possible functions of the AuNR treatments in regulating and remodeling the actin filaments and cell junction proteins, which contribute to decreasing cancer cell collective migration.
Collapse
Affiliation(s)
- Yue Wu
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Moustafa R. K. Ali
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Bin Dong
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
| | - Tiegang Han
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
| | - Jin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tang
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ning Fang
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
- Corresponding Author: Ning Fang, , Fangjun Wang, , Mostafa A. El-Sayed,
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning, P. R. China
- Corresponding Author: Ning Fang, , Fangjun Wang, , Mostafa A. El-Sayed,
| | - Mostafa A. El-Sayed
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
- Corresponding Author: Ning Fang, , Fangjun Wang, , Mostafa A. El-Sayed,
| |
Collapse
|
29
|
Claudin 11 regulates bone homeostasis via bidirectional EphB4-EphrinB2 signaling. Exp Mol Med 2018; 50:1-18. [PMID: 29700355 PMCID: PMC5938033 DOI: 10.1038/s12276-018-0076-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Claudins (Cldns) are well-established components of tight junctions (TJs) that play a pivotal role in the modulation of paracellular permeability. Several studies have explored the physiologic aspects of Cldn family members in bone metabolism. However, the effect of Cldn11, a major component of central nervous system myelin, on bone homeostasis has not been reported. In this study, we demonstrate that Cldn11 is a potential target for bone disease therapeutics as a dual modulator of osteogenesis enhancement and osteoclastogenesis inhibition. We found that Cldn11 played a negative role in the receptor activator of nuclear factor kappa B ligand-induced osteoclast (OC) differentiation and function by downregulating the phosphorylated form of extracellular signal-regulated kinase (ERK), Bruton's tyrosine kinase, and phospholipase C gamma 2, in turn impeding c-Fos and nuclear factor in activated T cell c1 expression. The enhancement of osteoblast (OB) differentiation by positive feedback of Cldn11 was achieved through the phosphorylation of Smad1/5/8, ERK, and c-Jun amino-terminal kinase. Importantly, this Cldn11-dependent dual event in bone metabolism arose from targeting EphrinB2 ligand reverse signaling in OC and EphB4 receptor forward signaling in OB. In agreement with these in vitro effects, subcutaneous injection of Cldn11 recombinant protein exerted anti-resorbing effects in a lipopolysaccharide-induced calvarial bone loss mouse model and increased osteogenic activity in a calvarial bone formation model. These findings suggest that Cldn11 is a novel regulator in bone homeostasis.
Collapse
|
30
|
Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, Chen W. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget 2018; 8:1290-1303. [PMID: 27901488 PMCID: PMC5352055 DOI: 10.18632/oncotarget.13609] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, play an important role in cancer progression but little is known about how CAFs affect tumorigenesis and development. MicroRNAs (miRNAs) are small non-coding RNAs that can negatively regulate target mRNA expression at post-transcriptional levels. In head and neck cancer (HNC), our analysis of miRNA arrays showed that miR-7, miR-196 and miR-335 were significantly up-regulated in CAFs when compared with their paired normal fibroblasts (NFs). FAP, α-SMA and FSP, specific markers of CAFs, were significantly expressed in CAFs. Functionally, exogenous expression of miR-7 in NFs induced a functional conversion of NFs into CAFs. In contrast, inhibition of miR-7 expression in CAFs could induce a functional conversion of CAFs into NFs. Our study demonstrated that overexpression of miR-7 in NFs significantly increased the migration activity and growth rates of cancer cells in co-culture experiments. Mechanistically, we confirmed that the RASSF2-PAR-4 axis was mainly responsible for miR-7 functions in CAFs using bioinformatics methods. Overexpression of miR-7 in CAFs led to down-regulation of RASSF2, which dramatically decreased the secretion of PAR-4 from CAFs and then enhanced the proliferation and migration of the co-cultured cancer cells. Thus, these results reveal that the inactivation of the RASSF2-PAR-4 axis controlled by miR-7 may be a novel strategy for gene therapy in HNCs.
Collapse
Affiliation(s)
- Zongze Shen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Qin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Gang Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
31
|
Suvarna K, Honda K, Kondoh Y, Osada H, Watanabe N. Identification of a small-molecule ligand of β-arrestin1 as an inhibitor of stromal fibroblast cell migration accelerated by cancer cells. Cancer Med 2018; 7:883-893. [PMID: 29380537 PMCID: PMC5852355 DOI: 10.1002/cam4.1339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023] Open
Abstract
Stromal fibroblasts, which occupy a major portion of the tumor microenvironment, play an important role in cancer metastasis. Thus, targeting of these fibroblasts activated by cancer cells (carcinoma‐associated fibroblasts; CAFs) might aid in the improved treatment of cancer metastasis. NIH3T3 fibroblasts cocultured with MCF7 cells displayed enhanced migration compared to NIH3T3 fibroblasts cultured alone. We used this system to identify the small‐molecule inhibitors responsible for their enhanced migration, a characteristic of CAFs. We selected β‐arrestin1, which showed high expression in cocultured cells, as a molecular target for such inhibitors. Cofilin, a protein downstream of β‐arrestin1, is activated/dephosphorylated in this condition. The small‐molecule ligands of β‐arrestin1 obtained by chemical array were then examined using a wound healing coculture assay. RKN5755 was identified as a selective inhibitor of activated fibroblasts. RKN5755 inhibited the enhanced migration of fibroblasts cocultured with cancer cells by binding to β‐arrestin1 and interfering with β‐arrestin1‐mediated cofilin signaling pathways. Therefore, these results demonstrate the role of β‐arrestin1 in the activation of fibroblasts and inhibiting this protein by small molecule inhibitor might be a potential therapeutic target for the stromal fibroblast activation (cancer–stroma interaction).
Collapse
Affiliation(s)
- Kruthi Suvarna
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan.,Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaori Honda
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan.,Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Treatment-related survival associations of claudin-2 expression in fibroblasts of colorectal cancer. Virchows Arch 2017; 472:395-405. [PMID: 29134439 PMCID: PMC5887004 DOI: 10.1007/s00428-017-2263-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
Claudin-2 is a trans-membrane protein—component of tight junctions in epithelial cells. Elevated claudin-2 expression has been reported in colorectal cancer (CRC). The aim of this study was to investigate the expression patterns of claudin-2 in human CRC samples and analyze its association with clinical characteristics and treatment outcome. TMAs of primary tumors from two cohorts of metastatic CRC (mCRC) were used. Claudin-2 IHC staining was evaluated in a semi-quantitative manner in different regions and cell types. Claudin-2 expression was also analyzed by immunofluorescence in primary cultures of human CRC cancer-associated fibroblasts (CAFs). Initial analyses identified previously unrecognized expression patterns of claudin-2 in CAFs of human CRC. Claudin-2 expression in CAFs of the invasive margin was associated with shorter progression-free survival. Subgroup analyses demonstrated that the survival associations occurred among cases that received 5-FU+oxaliplatin combination treatment, but not in patients receiving 5-FU±irinotecan. The finding was validated by analyses of the independent cohort. In summary, previously unreported stromal expression of claudin-2 in CAFs of human CRC was detected together with significant association between high claudin-2 expression in CAFs and shorter survival in 5-FU+oxaliplatin-treated mCRC patients.
Collapse
|
33
|
Nagaraja AS, Dood RL, Armaiz-Pena G, Kang Y, Wu SY, Allen JK, Jennings NB, Mangala LS, Pradeep S, Lyons Y, Haemmerle M, Gharpure KM, Sadaoui NC, Rodriguez-Aguayo C, Ivan C, Wang Y, Baggerly K, Ram P, Lopez-Berestein G, Liu J, Mok SC, Cohen L, Lutgendorf SK, Cole SW, Sood AK. Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2017; 2:93076. [PMID: 28814667 DOI: 10.1172/jci.insight.93076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Adrenergic signaling is known to promote tumor growth and metastasis, but the effects on tumor stroma are not well understood. An unbiased bioinformatics approach analyzing tumor samples from patients with known biobehavioral profiles identified a prominent stromal signature associated with cancer-associated fibroblasts (CAFs) in those with a high biobehavioral risk profile (high Center for Epidemiologic Studies Depression Scale [CES-D] score and low social support). In several models of epithelial ovarian cancer, daily restraint stress resulted in significantly increased CAF activation and was abrogated by a nonspecific β-blocker. Adrenergic signaling-induced CAFs had significantly higher levels of collagen and extracellular matrix components than control tumors. Using a systems-based approach, we found INHBA production by cancer cells to induce CAFs. Ablating inhibin β A decreased CAF phenotype both in vitro and in vivo. In preclinical models of breast and colon cancers, there were increased CAFs and collagens following daily restraint stress. In an independent data set of renal cell carcinoma patients, there was an association between high depression (CES-D) scores and elevated expression of ACTA2, collagens, and inhibin β A. Collectively, our findings implicate adrenergic influences on tumor stroma as important drivers of CAFs and establish inhibin β A as an important regulator of the CAF phenotype in ovarian cancer.
Collapse
Affiliation(s)
| | - Robert L Dood
- Department of Gynecologic Oncology and Reproductive Medicine
| | | | - Yu Kang
- Department of Gynecologic Oncology and Reproductive Medicine
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine
| | - Julie K Allen
- Department of Gynecologic Oncology and Reproductive Medicine
| | | | | | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine
| | - Yasmin Lyons
- Department of Gynecologic Oncology and Reproductive Medicine
| | | | | | | | | | | | - Ying Wang
- Department of Bioinformatics and Computational Biology
| | | | | | | | | | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan K Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Steve W Cole
- Department of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles School of Medicine, UCLA Molecular Biology Institute, and Norman Cousins Center, Los Angeles, California, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine.,Center for RNAi and Non-Coding RNA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
34
|
Forse CL, Rahimi M, Diamandis EP, Assarzadegan N, Dawson H, Grin A, Kennedy E, O'Connor B, Messenger DE, Riddell RH, Kirsch R, Karagiannis GS. HtrA3 stromal expression is correlated with tumor budding in stage II colorectal cancer. Exp Mol Pathol 2017; 103:94-100. [PMID: 28716573 DOI: 10.1016/j.yexmp.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022]
Abstract
Tumor budding is a well-established adverse prognostic factor in colorectal carcinoma (CRC). It may represent a form of epithelial-to-mesenchymal transition (EMT), although the underlying mechanisms remain unclear. High-temperature requirement A3 (HtrA3) is an inhibitor of the bone morphogenetic protein pathway, the suppression of which has been linked to EMT. Since HtrA3 is highly expressed in the desmoplastic stroma at the CRC invasive front, we sought to evaluate the relationship between tumor budding and HtrA3 expression in 172 stage II CRC resection specimens. All tumors were evaluated for tumor budding, with the highest budding slide selected for pan-keratin (CK) and HtrA3 immunohistochemistry. Representative areas of tumor core and invasive front, including budding and non-budding areas, were marked on CK stained slides, and then evaluated on HtrA3 stained slides. HtrA3 expression in tumor cells (tHtrA3) and peritumoral stroma (sHtrA3) was assessed for staining percentage and intensity (the product yielding a final score). Tumors with high-grade tumor budding (HGTB) showed increased expression of sHtrA3 in budding areas compared to non-budding areas at the invasive front (P<0.001). In addition, sHtrA3 expression at the invasive front was significantly higher in HGTB tumors compared to minimally budding tumors (P<0.05). tHtrA3 expression at the invasive front was significantly associated with high histological grade (P<0.05). Higher sHtrA3 expression in the tumor core (but not invasive front) was significantly associated with decreased 5-year overall survival on univariate analysis (P<0.05), but not multivariate analysis. HtrA3 expression in the peritumoral stroma of patients with stage II CRC is associated with HGTB and may be a novel marker of poor outcome.
Collapse
Affiliation(s)
- Catherine L Forse
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Mahdi Rahimi
- Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada; Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto, ON, Canada; University Health Network, Department of Clinical Biochemistry, Toronto, ON, Canada
| | - Naziheh Assarzadegan
- Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto, ON, Canada
| | - Heather Dawson
- University of Bern, Institute of Pathology, Bern, Switzerland
| | - Andrea Grin
- Department of Laboratory Medicine, Peterborough Regional Health Centre, Peterborough, ON, Canada
| | - Erin Kennedy
- Mount Sinai Hospital, Division of General Surgery, Toronto, ON, Canada
| | - Brenda O'Connor
- Mount Sinai Hospital, Zane Cohen Clinical Research Centre, Toronto, ON, Canada
| | - David E Messenger
- Department of Colorectal Surgery, University Hospitals Bristol NHS Foundation Trust, United Kingdom
| | - Robert H Riddell
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada; Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto, ON, Canada
| | - Richard Kirsch
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada; Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto, ON, Canada
| | - George S Karagiannis
- Albert Einstein College of Medicine, Department of Anatomy & Structural Biology, Bronx, NY, United States.
| |
Collapse
|
35
|
Luo H, Zhou DJ, Chen Z, Zhou QQ, Wu K, Tian K, Li ZW, Xiao ZL. Establishment and evaluation of an experimental rat model for high-altitude intestinal barrier injury. Exp Ther Med 2016; 13:475-482. [PMID: 28352318 PMCID: PMC5348649 DOI: 10.3892/etm.2016.4012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/28/2016] [Indexed: 01/19/2023] Open
Abstract
In the present study an experimental high-altitude intestinal barrier injury rat model was established by simulating an acute hypoxia environment, to provide an experimental basis to assess the pathogenesis, prevention and treatment of altitude sickness. A total of 70 healthy male Sprague-Dawley rats were divided into two groups: Control group (group C) and a high-altitude hypoxia group (group H). Following 2 days adaptation, the rats in group H were exposed to a simulated 4,000-m, high-altitude hypoxia environment for 3 days to establish the experimental model. To evaluate the model, bacterial translocation, serum lipopolysaccharide level, pathomorphology, ultrastructure and protein expression in rats were assessed. The results indicate that, compared with group C, the rate of bacterial translocation and the apoptotic index of intestinal epithelial cells were significantly higher in group H (P<0.01). Using a light microscope it was determined that the intestinal mucosa was thinner in group H, there were fewer epithelial cells present and the morphology was irregular. Observations with an electron microscope indicated that the intestinal epithelial cells in group H were injured, the spaces among intestinal villi were wider, the tight junctions among cells were open and lanthanum nitrate granules (from the fixing solution) had diffused into the intestinal mesenchyme. The expression of the tight junction protein occludin was also decreased in group H. Therefore, the methods applied in the present study enabled the establishment of a stable, high-altitude intestinal barrier injury model in rats.
Collapse
Affiliation(s)
- Han Luo
- Respiratory Department, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Dai-Jun Zhou
- The Fourth Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhang Chen
- Respiratory Department, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Qi-Quan Zhou
- High Altitude Military Medical Science Academy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Kui Wu
- Respiratory Department, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Kun Tian
- Respiratory Department, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Zhi-Wei Li
- Respiratory Department, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Zhen-Liang Xiao
- Respiratory Department, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
36
|
Beach JA, Aspuria PJP, Cheon DJ, Lawrenson K, Agadjanian H, Walsh CS, Karlan BY, Orsulic S. Sphingosine kinase 1 is required for TGF-β mediated fibroblastto- myofibroblast differentiation in ovarian cancer. Oncotarget 2016; 7:4167-82. [PMID: 26716409 PMCID: PMC4826197 DOI: 10.18632/oncotarget.6703] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/05/2015] [Indexed: 02/01/2023] Open
Abstract
Sphingosine kinase 1 (SPHK1), the enzyme that produces sphingosine 1 phosphate (S1P), is known to be highly expressed in many cancers. However, the role of SPHK1 in cells of the tumor stroma remains unclear. Here, we show that SPHK1 is highly expressed in the tumor stroma of high-grade serous ovarian cancer (HGSC), and is required for the differentiation and tumor promoting function of cancer-associated fibroblasts (CAFs). Knockout or pharmacological inhibition of SPHK1 in ovarian fibroblasts attenuated TGF-β-induced expression of CAF markers, and reduced their ability to promote ovarian cancer cell migration and invasion in a coculture system. Mechanistically, we determined that SPHK1 mediates TGF-β signaling via the transactivation of S1P receptors (S1PR2 and S1PR3), leading to p38 MAPK phosphorylation. The importance of stromal SPHK1 in tumorigenesis was confirmed in vivo, by demonstrating a significant reduction of tumor growth and metastasis in SPHK1 knockout mice. Collectively, these findings demonstrate the potential of SPHK1 inhibition as a novel stroma-targeted therapy in HGSC.
Collapse
Affiliation(s)
- Jessica A Beach
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.,Graduate Program in Biomedical Science and Translational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul-Joseph P Aspuria
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Dong-Joo Cheon
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Hasmik Agadjanian
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Christine S Walsh
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sandra Orsulic
- Women's Cancer Program at The Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Sánchez CA, Andahur EI, Valenzuela R, Castellón EA, Fullá JA, Ramos CG, Triviño JC. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 2016; 7:3993-4008. [PMID: 26675257 PMCID: PMC4826185 DOI: 10.18632/oncotarget.6540] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Eliana I Andahur
- Urology Department, Las Condes Clinic, Santiago, Chile.,Faculty of Science, University of Chile, Santiago, Chile
| | | | | | - Juan A Fullá
- Urology Department, Las Condes Clinic, Santiago, Chile
| | | | | |
Collapse
|
38
|
Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
|
39
|
Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, Aziz M, Déchelotte P, Savoye G, Marion-Letellier R. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol 2014; 20:18207-18215. [PMID: 25561788 PMCID: PMC4277958 DOI: 10.3748/wjg.v20.i48.18207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/30/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether targeting proteasome might reverse intestinal fibrosis in rats.
METHODS: Chronic colitis was induced in rats by repeated administration of increasing dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 15, 30, 45, 60, 60, 60 mg) by rectal injection for 6 wk (from day 0 to day 35), while control rats received the vehicle. TNBS + bortezomib (BTZ) rats received intraperitoneal injections of BTZ twice weekly (from day 37 to day 44) at a dose of 25 mg/kg, whereas the control and TNBS groups received the same amount of the vehicle. Histologic scoring of inflammation and fibrosis was performed. Colonic production of transforming growth factor (TGF)-β was measured by ELISA. Colon fibrosis-related proteins such as phospho-p38, phospho-SMAD2/3, Akt and peroxisome proliferator activated receptor γ (PPARγ) were studied by western blot. Expression of the tight junction proteins, occludin and claudin-1, were assessed by Western blot. Colon proteasome activities (chymotrypsin-like and trypsin-like activities) were assessed.
RESULTS: TNBS-treated rats had a higher colon weight/length ratio compared to control rats (P < 0.01). Furthermore, fibrosis and inflammation scores were higher in TNBS-treated rats compared to control rats (P < 0.01 for both). Colonic production of TGF-β production tended to be higher in TNBS-treated rats (P < 0.06). Fibrosis-related proteins such as phospho-p38, phospho-SMAD2/3, and PPARγ were significantly higher in TNBS-treated rats compared to control rats (all P < 0.05). TNBS rats had a higher expression of Akt compared to control rats (P < 0.01). Tight junction proteins were modified by repeated TNBS challenge: colon occludin expression rose significantly (P < 0.01), whereas claudin-1 expression fell (P < 0.01). Bortezomib inhibition significantly decreased chymotrypsin-like activity (P < 0.05), but had no significant effect on trypsin-like activity (P > 0.05). In contrast, bortezomib had no effect on other studied parameters such as fibrosis score, TGF-β signaling, or tight junction expression (P > 0.05 for all).
CONCLUSION: Rats with TNBS-induced chronic colitis exhibited colon fibrosis associated with higher TGF-β signaling. Proteasome inhibition by bortezomib had no effect on fibrosis in our experimental conditions.
Collapse
|
40
|
Karagiannis GS, Treacy A, Messenger D, Grin A, Kirsch R, Riddell RH, Diamandis EP. Expression patterns of bone morphogenetic protein antagonists in colorectal cancer desmoplastic invasion fronts. Mol Oncol 2014; 8:1240-52. [PMID: 24812030 DOI: 10.1016/j.molonc.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 01/31/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with dual functions in cancer development and progression. Recently, certain tumor-promoting roles have been identified for selected antagonists/inhibitors (BMPIs) of this developmental pathway. A recent focus on the implication of BMP in colorectal cancer progression has emerged, mainly due to the presence of inactivating mutations in several members of the canonical signaling cascade. However, the detailed expression profiles of BMPIs remain largely unknown. Based on our previous work, whereby three specific BMPIs, gremlin-1 (GREM1), high-temperature requirement A3 (HTRA3) and follistatin (FST) were collectively overexpressed in desmoplastic cocultures of colorectal cancer (CRC), here, we undertook an immunohistochemical approach to describe the patterns of their expression in CRC patients. Two major characteristics described the BMPI expression signature: First, the synchronous and coordinated stromal and epithelial overexpression of individual BMPIs in desmoplastic lesions, which demonstrated that all three of them contribute to increasing levels of BMP antagonism in such areas. Second, the presence of microenvironmental polarity in the BMPI pattern of expression, which was indicated through the preferential expression of HTRA3 in the stromal, and the parallel FST/GREM1 expression in the epithelial component of the investigated sections. In addition, expression of HTRA3 in the epithelial compartment of the tumors demonstrated a significant predictive power to discriminate between tumor-budding-bearing and tumor-budding-free desmoplastic microenvironments. Together, these findings contribute to the understanding of signaling dynamics of BMP antagonism in the colorectal cancer desmoplastic invasion front.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ann Treacy
- MC Pathology, The Laboratory, Charlemont Clinic, Charlemont Mall, Dublin, Ireland
| | - David Messenger
- Zane Cohen Clinical Research Centre, Mount Sinai Hospital, Toronto, Canada; Division of General Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Andrea Grin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St Michael's Hospital, Toronto, Canada
| | - Richard Kirsch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert H Riddell
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Integrative Analysis of Gene Expression and Promoter Methylation during Reprogramming of a Non-Small-Cell Lung Cancer Cell Line Using Principal Component Analysis-Based Unsupervised Feature Extraction. INTELLIGENT COMPUTING IN BIOINFORMATICS 2014. [DOI: 10.1007/978-3-319-09330-7_52] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
42
|
Karagiannis GS, Schaeffer DF, Cho CKJ, Musrap N, Saraon P, Batruch I, Grin A, Mitrovic B, Kirsch R, Riddell RH, Diamandis EP. Collective migration of cancer-associated fibroblasts is enhanced by overexpression of tight junction-associated proteins claudin-11 and occludin. Mol Oncol 2013; 8:178-95. [PMID: 24268521 DOI: 10.1016/j.molonc.2013.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
It has been suggested that cancer-associated fibroblasts (CAFs) positioned at the desmoplastic areas of various types of cancer are capable of executing a migratory program, characterized by accelerated motility and collective configuration. Since CAFs are reprogrammed derivatives of normal progenitors, including quiescent fibroblasts, we hypothesized that such migratory program could be context-dependent, thus being regulated by specific paracrine signals from the adjacent cancer population. Using the traditional scratch assay setup, we showed that only specific colon cancer cell lines (i.e. HT29) were able to induce collective CAF migration. By performing quantitative proteomics (SILAC), we identified a 2.7-fold increase of claudin-11, a member of the tight junction apparatus, in CAFs that exerted such collectivity in their migratory pattern. Further proteomic investigations of cancer cell line secretomes revealed a specific signature, involving TGF-β, as potential mediator of this effect. Normal colonic fibroblasts stimulated with TGF-β exerted myofibroblastic differentiation, occludin (OCLN) and claudin-11 (CLDN11) overexpression and cohort formation. Subsequently, inhibition of TGF-β attenuated all the previous effects. Immunohistochemistry of the universal tight junction marker occludin in a cohort of 30 colorectal adenocarcinoma patients defined a CAF subpopulation expressing tight junctions. Overall, these data suggest that cancer cells may induce CLDN11 overexpression and subsequent collective migration of peritumoral CAFs via TGF-β secretion.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| | - Chan-Kyung J Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Natasha Musrap
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Punit Saraon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Andrea Grin
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bojana Mitrovic
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Richard Kirsch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Robert H Riddell
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|