1
|
Guo Y, Chen M, Yang J, Zhou W, Feng G, Wang Y, Ji T, Zhang Y, Liu Z. CAF-secreted COL5A2 activates the PI3K/AKT pathway to mediate erlotinib resistance in head and neck squamous cell carcinoma. Oral Dis 2024. [PMID: 39286945 DOI: 10.1111/odi.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To investigate the mechanisms behind acquired resistance to erlotinib in head and neck squamous cell carcinoma (HNSCC) with a focus on the role of cancer-associated fibroblasts (CAFs) and the PI3K/AKT signaling pathway. MATERIALS AND METHODS This study analyzed gene expression profiles of erlotinib-sensitive and -resistant HNSCC cell lines using datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. It included microarray and RNA-sequencing data, differentially expressed genes (DEGs) analysis, and pathway enrichment. In vitro experiments assessed the functional role of CAFs and the impact of the extracellular matrix component COL5A2 on erlotinib resistance. RESULTS We identified 124 DEGs associated with erlotinib resistance, with key genes like COL5A2 significantly upregulated. CAFs were found to highly express COL5A2, enhancing erlotinib resistance by activating the PI3K/AKT pathway. Higher erlotinib resistance scores correlated with increased infiltration of CAFs. CONCLUSIONS Erlotinib resistance in HNSCC is significantly influenced by the tumor microenvironment (TME), particularly through CAFs and the PI3K/AKT pathway. Targeting these mechanisms may offer new therapeutic strategies to overcome resistance in HNSCC patients.
Collapse
Affiliation(s)
- Yibo Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingtao Chen
- Department of Oral and Maxillofacial Surgery, Shanghai Fengxian Fengcheng Hospital, Shanghai, China
| | - Jie Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Guanying Feng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yang Wang
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Tong Ji
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhang C, Deng J, Li K, Lai G, Liu H, Zhang Y, Xie B, Zhong X. Mononuclear phagocyte system-related multi-omics features yield head and neck squamous cell carcinoma subtypes with distinct overall survival, drug, and immunotherapy responses. J Cancer Res Clin Oncol 2024; 150:37. [PMID: 38279056 PMCID: PMC10817853 DOI: 10.1007/s00432-023-05512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/10/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features using machine learning lacked. METHODS In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize "similarity network fusion" and "MoCluster" algorithms to cluster patients' multi-omics features. Subsequently, based on the corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be verified by two independent validation sets using "the nearest template prediction". RESULTS We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called "getMPsub" to classify HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by "getMPsub" also illustrated similar differences between the two subtypes. CONCLUSIONS Our study identified two HNSCC subtypes by machine learning and explored their biological difference. Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the precision medicine of HNSCC.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Jielian Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Hui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
| |
Collapse
|
3
|
Adesoye T, Tripathy D, Hunt KK, Keyomarsi K. Exploring Novel Frontiers: Leveraging STAT3 Signaling for Advanced Cancer Therapeutics. Cancers (Basel) 2024; 16:492. [PMID: 38339245 PMCID: PMC10854592 DOI: 10.3390/cancers16030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a significant role in diverse physiologic processes, including cell proliferation, differentiation, angiogenesis, and survival. STAT3 activation via phosphorylation of tyrosine and serine residues is a complex and tightly regulated process initiated by upstream signaling pathways with ligand binding to receptor and non-receptor-linked kinases. Through downstream deregulation of target genes, aberrations in STAT3 activation are implicated in tumorigenesis, metastasis, and recurrence in multiple cancers. While there have been extensive efforts to develop direct and indirect STAT3 inhibitors using novel drugs as a therapeutic strategy, direct clinical application remains in evolution. In this review, we outline the mechanisms of STAT3 activation, the resulting downstream effects in physiologic and malignant settings, and therapeutic strategies for targeting STAT3. We also summarize the pre-clinical and clinical evidence of novel drug therapies targeting STAT3 and discuss the challenges of establishing their therapeutic efficacy in the current clinical landscape.
Collapse
Affiliation(s)
- Taiwo Adesoye
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Teodora Maria Toadere
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andra Țichindeleanu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Șerban Ellias Trella
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Zeno Sparchez
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Raudenska M, Balvan J, Hanelova K, Bugajova M, Masarik M. Cancer-associated fibroblasts: Mediators of head and neck tumor microenvironment remodeling. Biochim Biophys Acta Rev Cancer 2023; 1878:188940. [PMID: 37331641 DOI: 10.1016/j.bbcan.2023.188940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are involved in critical aspects of head and neck squamous cell carcinoma (HNSCC) pathogenesis, such as the formation of a tumor-permissive extracellular matrix structure, angiogenesis, or immune and metabolic reprogramming of the tumor microenvironment (TME), with implications for metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effect of CAFs in TME is likely to reflect the heterogeneity and plasticity of their population, with context-dependent effects on carcinogenesis. The specific properties of CAFs provide many targetable molecules that could play an important role in the future therapy of HNSCC. In this review article, we will focus on the role of CAFs in the TME of HNSCC tumors. We will also discuss clinically relevant agents targeting CAFs, their signals, and signaling pathways, which are activated by CAFs in cancer cells, with the potential for repurposing for HNSCC therapy.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, / U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
6
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
7
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
8
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
9
|
Ibrutinib reverses IL-6-induced osimertinib resistance through inhibition of Laminin α5/FAK signaling. Commun Biol 2022; 5:155. [PMID: 35197546 PMCID: PMC8866396 DOI: 10.1038/s42003-022-03111-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osimertinib, a 3rd generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the first-line standard-of-care for EGFR-mutant non-small cell lung cancer (NSCLC) patients, while acquired drug resistance will inevitably occur. Interleukin-6 (IL-6) is a keystone cytokine in inflammation and cancer, while its role in osimertinib efficacy was unknown. Here we show that clinically, plasma IL-6 level predicts osimertinib efficacy in EGFR mutant NSCLC patients. Highly increased IL-6 levels are found in patients with acquired resistance to osimertinib. Addition of IL-6 or exogenous overexpression of IL-6 directly induces osimertinib resistance. Proteomics reveals LAMA5 (Laminin α5) and PTK2, protein tyrosine kinase 2, also called focal adhesion kinase (FAK), are activated in osimertinib-resistant cells, and siRNA knockdown of LAMA5 or PTK2 reverses IL-6-mediated osimertinib resistance. Next, using a large-scale compound screening, we identify ibrutinib as a potent inhibitor of IL-6 and Laminin α5/FAK signaling, which shows synergy with osimertinib in osimertinib-resistant cells with high IL-6 levels, but not in those with low IL-6 levels. In vivo, this combination inhibits tumor growth of xenografts bearing osimertinib-resistant tumors. Taken together, we conclude that Laminin α5/FAK signaling is responsible for IL-6-induced osimertinib resistance, which could be reversed by combination of ibrutinib and osimertinib. The resistance mechanism of osimertinib, a third-generation EGFR-TKI, is mediated by IL-6 and Laminin α5/FAK signaling. Ibrutinib combined with osimertinib is presented as a strategy for overcoming osimertinib acquired resistance in EGFR mutant NSCLC.
Collapse
|
10
|
Li M, Jin S, Zhang Z, Ma H, Yang X. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett 2021; 527:28-40. [PMID: 34902522 DOI: 10.1016/j.canlet.2021.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
Ferroptosis resistance is an important mechanism of tumor progression. Interleukin-6 (IL-6) is a representative inflammatory cytokine during chronic inflammation; however, our current understanding of its regulatory role of ferroptosis during carcinogenesis of head and neck squamous cell carcinoma is limited. Chromatin immunoprecipitation and functional observations were performed to investigate xCT-regulatory function of IL-6. We observed a gradual increase in lipid peroxide 4-hydroxynonenal and IL-6 levels during progression from normal oral mucosa to leukoplakia and HNSCC. Meanwhile, the expression of xCT, a key amino acid antiporter assisting ferroptosis resistance, was correlated with IL-6 levels. The upregulated expression of xCT in HNSCC is associated with poor prognosis. Silencing of xCT inhibited HNSCC cell proliferation in vitro and tumor growth in vivo, inducing ferroptosis. Mechanistically, IL-6 transcriptionally activates xCT expression through the JAK2/STAT3 pathway. Furthermore, IL-6 reversed ferroptosis and growth suppression that was induced by xCT knockdown or ferroptosis inducer erastin. Our results demonstrate the critical role of IL-6-induced ferroptosis resistance during HNSCC carcinogenesis. The IL-6/STAT3/xCT axis acts as a novel mechanism driving tumor progression and thus may potentially be utilized as a target for tumor prevention and therapy.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639, Zhizaoju Rd, Shanghai, 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Rd, Shanghai, 200011, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639, Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
11
|
Wang S, Wang Y, Huang Z, Wei H, Wang X, Shen R, Lan W, Zhong G, Lin J. Stattic sensitizes osteosarcoma cells to epidermal growth factor receptor inhibitors via blocking the interleukin 6-induced STAT3 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1670-1680. [PMID: 34693451 DOI: 10.1093/abbs/gmab146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/14/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant bone tumor with high metastatic potential, frequently affects children and adolescents. Epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors exhibit encouraging anti-tumor activity for patients with solid tumors, whereas their effects on OS remain controversial. In the present study, we aimed to elucidate the anti-tumor activity of gefitinib for OS, as well as to explore the underlying mechanisms. Gefitinib inhibits cell viability, tumor growth, cell migration, and invasion and promotes cell apoptosis and G1 cycle arrest in OS at a relatively high concentration via suppressing the PI3K/Akt and ERK pathways. However, gefitinib treatment results in the feedback activation of signal transducer and activator of transcription 3 (STAT3) induced by interleukin 6 (IL-6) secretion. Combined treatment with gefitinib and stattic, an inhibitor for STAT3 phosphorylation, engenders more evident inhibitory effects on cell proliferation, migration, and invasion and promotive effects on cell apoptosis and G1 phase arrest in OS, compared with the single exposure to gefitinib or stattic. Western blot analysis demonstrates that stattic treatment in gefitinib-treated OS abrogates the IL-6-induced STAT3 activation and subsequently further restrains the activities of EGFR, Akt, and ERK pathways in tumor cells. This study confirms that the EGFR inhibitor of gefitinib has moderate anti-tumor effects on OS through IL-6 secretion-mediated STAT3 activation. Additional administration of stattic in EGFR-targeted therapies may contribute to improve the efficacy for OS.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yunqing Wang
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhen Huang
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hongxiang Wei
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinwen Wang
- Department of Orthopedics, The People's Hospital of Jiangmen City, Jiangmen 529051, China
| | - Rongkai Shen
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Wenbin Lan
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Guangxian Zhong
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jianhua Lin
- Department of Orthopedics, Fujian Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
12
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
13
|
Qiao Y, Liu C, Zhang X, Zhou Q, Li Y, Xu Y, Gao Z, Xu Y, Kong L, Yang A, Mei M, Ren Y, Wang X, Zhou X. PD-L2 based immune signature confers poor prognosis in HNSCC. Oncoimmunology 2021; 10:1947569. [PMID: 34377590 PMCID: PMC8344752 DOI: 10.1080/2162402x.2021.1947569] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PD-L2 expression is an important predictor of anti-PD-1 therapy efficacy in patients with head and neck squamous cell carcinoma (HNSCC). However, whether the PD-L2-based immune signature can serve as a prognostic biomarker for patients with HNSCC remains unclear. Here, we reported that PD-L2 was positively stained in 62.7% of tumors, which was more than twice as that of PD-L1, and in 61.4% of patients with PD-L1-negative tumors. Survival tree analysis (STA) revealed that PD-L2high was an independent predictor of poor overall survival (OS). Six patterns were generated from STA, demonstrating that patients with PD-L2lowCD3high were associated with an improved median OS of 72 months and prognostic index (PI) of -3.95 (95% CI, -5.14 to -2.76), whereas patients with PD-L2highCD3lowCD8low to a median OS of 10 months and PI of 1.43 (95% CI, 0.56 to 2.30). Analysis of single-cell RNA sequencing showed that PD-L2 expression was associated with IL-6 expression. We confirmed that IL-6 augments PD-L2 expression in HNSCC cell lines. The PD-L2-based immune signature can serve as an effective biomarker for anti-PD-1 therapy. In addition, PD-L2 may serve as a potential immunotherapeutic target, and we propose anti-IL6 therapy in the adjuvant setting for patients with HNSCC with high PD-L2 expression.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaoyue Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yini Xu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiqi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingping Kong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Aifeng Yang
- Department of Second General Surgery, Shuangyashan People's Hospital, Heilongjiang, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
14
|
Uz U, Eskiizmir G. Association Between Interleukin-6 and Head and Neck Squamous Cell Carcinoma: A Systematic Review. Clin Exp Otorhinolaryngol 2021; 14:50-60. [PMID: 33587847 PMCID: PMC7904429 DOI: 10.21053/ceo.2019.00906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine which plays an important role in several regulatory mechanisms of cancer. Moreover, experimental and clinical studies have reported that IL-6 targeted therapies might provide significant benefits for cancer treatment. The purpose of this systematic review is to evaluate IL-6 activity in patients with head and neck squamous cell carcinoma (HNSCC). A systematic review of the association between serum, saliva and tumor IL-6 and HNSCC was developed on PubMed/Medline in the publication range from January 1995 to January 2019. Our literature analysis demonstrated that overexpression and elevated serum and/or saliva IL-6 concentrations in patients with HNSCC are related to poor survival and oncological outcomes. Although there is a correlation between IL-6 concentrations and tumorigenicity, it is noteworthy that IL-6 targeted therapies are generally performed in vitro and in experimental studies. Therefore, prospective, randomized clinical trials are required that focus on IL-6 targeted therapies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Uzdan Uz
- Department of Otolaryngology-Head and Neck Surgery, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Görkem Eskiizmir
- Department of Otolaryngology-Head and Neck Surgery, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
15
|
Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas. J Formos Med Assoc 2021; 121:51-57. [DOI: 10.1016/j.jfma.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
|
16
|
Lee J, Choi A, Cho SY, Jun Y, Na D, Lee A, Jang G, Kwon JY, Kim J, Lee S, Lee C. Genome-scale CRISPR screening identifies cell cycle and protein ubiquitination processes as druggable targets for erlotinib-resistant lung cancer. Mol Oncol 2020; 15:487-502. [PMID: 33188726 PMCID: PMC7858278 DOI: 10.1002/1878-0261.12853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Erlotinib is highly effective in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. However, despite initial favorable responses, most patients rapidly develop resistance to erlotinib soon after the initial treatment. This study aims to identify new genes and pathways associated with erlotinib resistance mechanisms in order to develop novel therapeutic strategies. Here, we induced knockout (KO) mutations in erlotinib‐resistant human lung cancer cells (NCI‐H820) using a genome‐scale CRISPR‐Cas9 sgRNA library to screen for genes involved in erlotinib susceptibility. The spectrum of sgRNAs incorporated among erlotinib‐treated cells was substantially different to that of the untreated cells. Gene set analyses showed a significant depletion of ‘cell cycle process’ and ‘protein ubiquitination pathway’ genes among erlotinib‐treated cells. Chemical inhibitors targeting genes in these two pathways, such as nutlin‐3 and carfilzomib, increased cancer cell death when combined with erlotinib in both in vitro cell line and in vivo patient‐derived xenograft experiments. Therefore, we propose that targeting cell cycle processes or protein ubiquitination pathways are promising treatment strategies for overcoming resistance to EGFR inhibitors in lung cancer.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Ahyoung Choi
- Department of Bio-Information Science, Ewha Womans University, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Korea
| | - Yukyung Jun
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Deukchae Na
- Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Ahra Lee
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Jee Young Kwon
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, Korea
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Abstract
Inflammation is essential for our innate and adaptive immunity, but chronic inflammation can also be detrimental, playing a role in tumor development and subversion of host immunity. A multitude of proteins and cytokines are involved in chronic inflammation; interleukin-1β, in particular, has been recognized as a critical pro-inflammatory cytokine that can trigger a cascade of inflammatory mediators, promoting angiogenesis, tumor invasiveness, and metastasis. The inhibition of interleukin-1β with the antibody canakinumab was recently highlighted in a large-scale trial studying the effects of the inflammatory modulating antibody in heart disease. In this study, a marked decrease in the incidence of lung cancer (a 67% relative risk reduction) was observed in a high-risk population. Although a number of preclinical studies have demonstrated that canakinumab inhibits interleukin-1β and reduces inflammation, the question remains whether these actions positively affect both cancer incidence and recurrence. This review will summarize the role of inflammation in cancer propagation and development, discuss the biological rationale for targeting interleukin-1β in lung cancer, advocate for further investigation of the anti-inflammatory antibody canakinumab as a new attractive mechanism for future lung cancer therapy, and discuss future and ongoing trials.
Collapse
|
18
|
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochem Res 2020; 45:1268-1286. [DOI: 10.1007/s11064-019-02934-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
19
|
O’Keefe RA, Bhola NE, Lee DS, Johnson DE, Grandis JR. Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance. PLoS One 2020; 15:e0227261. [PMID: 31914141 PMCID: PMC6948745 DOI: 10.1371/journal.pone.0227261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023] Open
Abstract
The epidermal growth factor receptor inhibitor cetuximab is the only oncogene-targeted agent that has been FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC). Currently, there are no biomarkers used in the clinic to predict which HNSCC tumors will respond to cetuximab, and even in tumors that regress with treatment, acquired resistance occurs in the majority of cases. Though a number of mechanisms of acquired resistance to cetuximab have been identified in preclinical studies, no therapies targeting these resistance pathways have yet been effectively translated into the clinic. To address this unmet need, we examined the role of the cytokine interleukin 6 (IL-6) in acquired cetuximab resistance in preclinical models of HNSCC. We found that IL-6 secretion was increased in PE/CA-PJ49 cells that had acquired resistance to cetuximab compared to the parental cells from which they were derived. However, addition of exogenous IL-6 to parental cells did not promote cetuximab resistance, and inhibition of the IL-6 pathway did not restore cetuximab sensitivity in the cetuximab-resistant cells. Further examination of the IL-6 pathway revealed that expression of IL6R, which encodes a component of the IL-6 receptor, was decreased in cetuximab-resistant cells compared to parental cells, and that treatment of the cetuximab-resistant cells with exogenous IL-6 did not induce phosphorylation of signal transducer and activator of transcription 3, suggesting that the IL-6 pathway was functionally impaired in the cetuximab-resistant cells. These findings demonstrate that, even if IL-6 is increased in the context of cetuximab resistance, it is not necessarily required for maintenance of the resistant phenotype, and that targeting the IL-6 pathway may not restore sensitivity to cetuximab in cetuximab-refractory HNSCC.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carbazoles
- Cell Line, Tumor
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/immunology
- Drug Screening Assays, Antitumor
- ErbB Receptors/antagonists & inhibitors
- Gene Knockdown Techniques
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/pathology
- Humans
- Interleukin-6/genetics
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Phosphorylation
- RNA, Small Interfering/metabolism
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/immunology
- Receptors, Interleukin-6/metabolism
- Recombinant Proteins/immunology
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Squamous Cell Carcinoma of Head and Neck/drug therapy
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/pathology
Collapse
Affiliation(s)
- Rachel A. O’Keefe
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Neil E. Bhola
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - David S. Lee
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Daniel E. Johnson
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Jennifer R. Grandis
- Department of Otolaryngology–Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. PLoS Pathog 2019; 15:e1007835. [PMID: 31226168 PMCID: PMC6608985 DOI: 10.1371/journal.ppat.1007835] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/03/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection is the leading cause of cervical cancer. Although the fundamental link between HPV infection and oncogenesis is established, the specific mechanisms of virus-mediated transformation are not fully understood. We previously demonstrated that the HPV encoded E6 protein increases the activity of the proto-oncogenic transcription factor STAT3 in primary human keratinocytes; however, the molecular basis for STAT3 activation in cervical cancer remains unclear. Here, we show that STAT3 phosphorylation in HPV positive cervical cancer cells is mediated primarily via autocrine activation by the pro-inflammatory cytokine Interleukin 6 (IL-6). Antibody-mediated blockade of IL-6 signalling in HPV positive cells inhibits STAT3 phosphorylation, whereas both recombinant IL-6 and conditioned media from HPV positive cells leads to increased STAT3 phosphorylation within HPV negative cervical cancer cells. Interestingly, we demonstrate that activation of the transcription factor NFκB, involving the small GTPase Rac1, is required for IL-6 production and subsequent STAT3 activation. Our data provides new insights into the molecular re-wiring of cancer cells by HPV E6. We reveal that activation of an IL-6 signalling axis drives the autocrine and paracrine phosphorylation of STAT3 within HPV positive cervical cancers cells and that activation of this pathway is essential for cervical cancer cell proliferation and survival. Greater understanding of this pathway provides a potential opportunity for the use of existing clinically approved drugs for the treatment of HPV-mediated cervical cancer.
Collapse
|
21
|
Kim YR, Kim YW, Lee SE, Yang HW, Kim SY. Personalized Prediction of Acquired Resistance to EGFR-Targeted Inhibitors Using a Pathway-Based Machine Learning Approach. Cancers (Basel) 2019; 11:cancers11010045. [PMID: 30621238 PMCID: PMC6357167 DOI: 10.3390/cancers11010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitors have benefitted cancer patients worldwide, but resistance inevitably develops over time, resulting in treatment failures. An accurate prediction model for acquired resistance (AR) to EGFR inhibitors is critical for early diagnosis and according intervention, but is not yet available due to personal variations and the complex mechanisms of AR. Here, we have developed a novel pipeline to build a meta-analysis-based, multivariate model for personalized pathways in AR to EGFR inhibitors, using sophisticated machine learning algorithms. Surprisingly, the model achieved excellent predictive performance, with a cross-study validation area under curve (AUC) of over 0.9, and generalization performance on independent cohorts of samples, with a perfect AUC score of 1. Furthermore, the model showed excellent transferability across different cancer cell lines and EGFR inhibitors, including gefitinib, erlotinib, afatinib, and cetuximab. In conclusion, our model achieved high predictive accuracy through robust cross study validation, and enabled individualized prediction on newly introduced data. We also discovered common pathway alteration signatures for AR to EGFR inhibitors, which can provide directions for other follow-up studies.
Collapse
Affiliation(s)
- Young Rae Kim
- Department of Biochemistry, School of Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Yong Wan Kim
- Department of Biochemistry, School of Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Suh Eun Lee
- Department of Biochemistry, School of Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Won Yang
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland.
| | - Sung Young Kim
- Department of Biochemistry, School of Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
22
|
Ponatinib Inhibits Multiple Signaling Pathways Involved in STAT3 Signaling and Attenuates Colorectal Tumor Growth. Cancers (Basel) 2018; 10:cancers10120526. [PMID: 30572654 PMCID: PMC6316865 DOI: 10.3390/cancers10120526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway, have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks. However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months. Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a potential therapeutic strategy for CRC.
Collapse
|
23
|
Jia Y, Li X, Zhao C, Jiang T, Zhao S, Zhang L, Liu X, Shi J, Qiao M, Luo J, Liu S, Han R, Chen X, Zhou C. Impact of serum vascular endothelial growth factor and interleukin-6 on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small-cell lung cancer. Lung Cancer 2018; 125:22-28. [DOI: 10.1016/j.lungcan.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|
24
|
Chang MT, Lee SP, Fang CY, Hsieh PL, Liao YW, Lu MY, Tsai LL, Yu CC, Liu CM. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/Stat3 signaling. ENVIRONMENTAL TOXICOLOGY 2018; 33:1105-1112. [PMID: 30076764 DOI: 10.1002/tox.22587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide with poor prognosis. Numerous studies have attempted to explore alternative regimens aimed at reducing cancer stem cells (CSCs) without compromising the efficacy of conventional chemoradiotherapy. The present study sought to assess the effect of a natural compound honokiol on the reduction of elevated cancer stemness, metastatic capacity, and chemoresistance of oral carcinoma stem cells (OCSCs). Our results demonstrated that honokiol attenuated the cell survival and self-renewal of OCSCs in a dose-dependent manner. Moreover, honokiol downregulated the expression of 2 selective markers of OCSCs, ALDH1, and CD44, as well as the migration and invasion abilities, indicating its potential to suppress cancer stemness. We showed that honokiol reduced the secretion of IL-6 and phosphorylation of STAT3, and the honokiol-inhibited self-renewal, invasion and colony formation were reversed by administration of IL-6. Most importantly, our data demonstrated that honokiol was able to potentiate the effect of Cisplatin, leading to a lower proportion of OCSCs and the decreased cancer stemness features. Taken together, this study demonstrated the benefits of utilizing honokiol as an adjunct therapy for OSCC treatment.
Collapse
Affiliation(s)
- Min-Te Chang
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Shiao-Pieng Lee
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
- Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Lesinski GB, Nannapaneni S, Griffith CC, Patel M, Chen W, Chen Z, Ahmed R, Wieland A, Shin DM, Chen ZG, Saba NF. Interleukin-6/STAT3 Signaling is Prominent and Associated with Reduced Overall Survival in p16 Negative Oropharyngeal Squamous Cell Carcinoma. Head Neck Pathol 2018; 13:304-312. [PMID: 30191505 PMCID: PMC6684688 DOI: 10.1007/s12105-018-0962-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
This study addresses the hypothesis that IL-6/STAT3 signaling is of clinical relevance in oropharyngeal squamous cell carcinoma (OPSCC). We evaluated relationships between key components of this pathway in tumors from a unique cohort of n = 59 fully annotated, treatment-naïve patients with OPSCC. The multiplex Opal platform was utilized for immunofluorescence (IF) analysis of tissues to detect IL-6 and phosphorylated STAT3 (pSTAT3), taking into consideration its nuclear versus cytoplasmic localization. Abundant staining for both IL-6 and pSTAT3 was evident in tumor-rich regions of each specimen. IL-6 correlated with cytoplasmic pSTAT3 but not nuclear or total pSTAT3 in this cohort of OPSCC tumors, regardless of p16 status (r = 0.682, p < 0.0001). There was a significant association between increased total pSTAT3, nuclear pSTAT3, cytoplasmic pSTAT3 and IL-6 in p16 negative tumors. Our data indicate STAT3 phosphorylation was a key feature in p16-negative OPSCC tumors. When IL-6 data was stratified by median expression in tumors, there was no association with overall survival. In contrast, both total and nuclear pSTAT3 were significant predictors of poor overall and disease free survival. This strong inverse relationship with overall survival was present in p16 negative tumors for both total and nuclear pSTAT3, but not in p16 positive OPSCC tumors. Together these data indicate that activation of the STAT3 signaling pathway is a marker of p16 negative tumors and relevant to OPSCC prognosis and a potential target for treatment of this more aggressive OPSCC sub-population.
Collapse
Affiliation(s)
- Gregory B. Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | | | - Mihir Patel
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, USA
| | - Wanqi Chen
- Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Zhengjia Chen
- Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, USA
| | | | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | - Zhuo G. Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd., NE, Atlanta, GA 30322 USA
| |
Collapse
|
26
|
Kim YR, Kim SY. Machine learning identifies a core gene set predictive of acquired resistance to EGFR tyrosine kinase inhibitor. J Cancer Res Clin Oncol 2018; 144:1435-1444. [PMID: 29802456 DOI: 10.1007/s00432-018-2676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/21/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Acquired resistance (AR) to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a major issue worldwide, for both patients and healthcare providers. However, precise prediction is currently infeasible due to the lack of an appropriate model. This study was conducted to develop and validate an individualized prediction model for automated detection of acquired EGFR-TKI resistance. METHODS Penalized regression was applied to construct a predictive model using publically available genomic cohorts of acquired EGFR-TKI resistance. To develop a model with enhanced generalizability, we merged multiple cohorts then updated the learning parameter via robust cross-study validation. Model performance was evaluated mainly using the area under the receiver operating characteristic curve. RESULTS Using a multi-study-derived machine learning method, we developed an extremely parsimonious model with generalized predictors (DDK3, CPS1, MOB3B, KRT6A), which has excellent prediction performance on blind cohorts for AR to EGFR-TKIs (gefitinib, erlotinib and afatinib) and monoclonal antibody against EGFR (cetuximab). In addition, our model also showed high performance for predicting intrinsic resistance (IR) to EGFR-TKIs from two large-scale pharmacogenomic resources, the Cancer Genome Project and the Cancer Cell Line Encyclopedia, suggesting that these general predictive features may work across AR and IR. CONCLUSIONS We successfully constructed a multi-study-derived prediction model for acquired EGFR-TKI resistance with excellent accuracy, generalizability and transferability.
Collapse
Affiliation(s)
- Young Rae Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, 143-701, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
27
|
Dalal V, Kumar R, Kumar S, Sharma A, Kumar L, Sharma JB, Roy KK, Singh N, Vanamail P. Biomarker potential of IL-6 and VEGF-A in ascitic fluid of epithelial ovarian cancer patients. Clin Chim Acta 2018; 482:27-32. [PMID: 29572186 DOI: 10.1016/j.cca.2018.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ovarian cancer is represented with significantly higher mortality rate predominately due to asymptomatic behaviour during initial disease course and at diagnosis majority patients already progressed to advanced stage. Acellular fraction of ascites in epithelial ovarian cancer (EOC) has been suggested to promote growth of tumor cells by providing ambient micro-environment for their proliferation. This acellular fraction contains multiple growth factors including IL-6 and VEGF-A, which were exploited to establish their bio-marker significance in EOC patients. METHODS IL-6 and VEGF-A levels in ascitic fluid of 30 EOC patients and 15 controls were measured using high sensitivity sandwich enzyme linked immune sorbent (ELISA) assay. Their levels were correlated with clinico-pathological characteristics and bio-marker potential was assessed. RESULTS AND CONCLUSION EOC patients showed significantly higher levels for IL-6 (median-5636 pg/ml) and VEGF-A (median-4556 pg/ml) in ascitic fluid compared to controls. Levels of IL-6 and VEGF-A significantly correlated with clinico-pathological parameters. ROC curves of IL-6 and VEGF-A showed absolute combination of sensitivity and specificity. Kaplan Meier analysis demonstrated that higher levels of IL-6 and VEGF-A were significantly associated with shorter progression free survival. Thus, this study revealed that IL-6 and VEGF-A have great potential to be used as superior bio-markers for progression free survival in future after validation in larger patients' cohort.
Collapse
Affiliation(s)
- Venus Dalal
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Raman Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sunesh Kumar
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kallol Kumar Roy
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Neeta Singh
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Perumal Vanamail
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
28
|
Nazari F, Pearson AT, Nör JE, Jackson TL. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment. PLoS Comput Biol 2018; 14:e1005920. [PMID: 29351275 PMCID: PMC5792033 DOI: 10.1371/journal.pcbi.1005920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/31/2018] [Accepted: 12/10/2017] [Indexed: 12/20/2022] Open
Abstract
Targeting key regulators of the cancer stem cell phenotype to overcome their critical influence on tumor growth is a promising new strategy for cancer treatment. Here we present a modeling framework that operates at both the cellular and molecular levels, for investigating IL-6 mediated, cancer stem cell driven tumor growth and targeted treatment with anti-IL6 antibodies. Our immediate goal is to quantify the influence of IL-6 on cancer stem cell self-renewal and survival, and to characterize the subsequent impact on tumor growth dynamics. By including the molecular details of IL-6 binding, we are able to quantify the temporal changes in fractional occupancies of bound receptors and their influence on tumor volume. There is a strong correlation between the model output and experimental data for primary tumor xenografts. We also used the model to predict tumor response to administration of the humanized IL-6R monoclonal antibody, tocilizumab (TCZ), and we found that as little as 1mg/kg of TCZ administered weekly for 7 weeks is sufficient to result in tumor reduction and a sustained deceleration of tumor growth. A small population of cancer stem cells that share many of the biological characteristics of normal adult stem cells are believed to initiate and sustain tumor growth for a wide variety of malignancies. Growth and survival of these cancer stem cells is highly influenced by tumor micro-environmental factors and molecular signaling initiated by cytokines and growth factors. This work focuses on quantifying the influence of IL-6, a pleiotropic cytokine secreted by a variety of cell types, on cancer stem cell self-renewal and survival. We present a mathematical model for IL-6 mediated, cancer stem cell driven tumor growth that operates at the following levels: (1) the molecular level—capturing cell surface dynamics of receptor-ligand binding and receptor activation that lead to intra-cellular signal transduction cascades; and (2) the cellular level—describing tumor growth, cellular composition, and response to treatments targeted against IL-6.
Collapse
Affiliation(s)
- Fereshteh Nazari
- Simon A. Levin Mathematical, Computational, and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Alexander T. Pearson
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan, United States of America
| | - Jacques Eduardo Nör
- Departments of Cardiology, Restorative Sciences, and Endontics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dominguez C, David JM, Palena C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin Cancer Biol 2017; 47:177-184. [PMID: 28823497 PMCID: PMC5698091 DOI: 10.1016/j.semcancer.2017.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Tumor growth and progression are the products of complex signaling networks between different cell types within the tumor and its surrounding stroma. In particular, established tumors are known to stimulate an inflammatory reaction via the secretion of cytokines, chemokines, and growth factors that favor the recruitment of a range of infiltrating immune cell populations into the tumor microenvironment. While potentially able to exert tumor control, this inflammatory reaction is typically seized upon by the tumor to promote its own growth and progression towards metastasis. This review focuses on recent advances in understanding how an established tumor can initiate an inflammatory response via the release of pro-inflammatory mediators, such as IL-6 and IL-8, and their roles in cancer metastasis. In particular, the role of the epithelial-mesenchymal transition (EMT), a phenotypic switch observed in carcinomas that promotes progression towards metastasis, is discussed here in relation to cancer inflammation.
Collapse
Affiliation(s)
- Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
30
|
Kumar B, Yadav A, Brown NV, Zhao S, Cipolla MJ, Wakely PE, Schmitt AC, Baiocchi RA, Teknos TN, Old M, Kumar P. Nuclear PRMT5, cyclin D1 and IL-6 are associated with poor outcome in oropharyngeal squamous cell carcinoma patients and is inversely associated with p16-status. Oncotarget 2017; 8:14847-14859. [PMID: 28107179 PMCID: PMC5362449 DOI: 10.18632/oncotarget.14682] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferase-5 (PRMT5) plays an important role in cancer progression by repressing the expression of key tumor suppressor genes via the methylation of transcriptional factors and chromatin-associated proteins. However, very little is known about the expression and biological role of PRMT5 in head and neck cancer. In this study, we examined expression profile of PRMT5 at subcellular levels in oropharyngeal squamous cell carcinoma (OPSCC) and assessed its correlation with disease progression and patient outcome. Our results show that nuclear PRMT5 was associated with poor overall survival (p < 0.012) and these patients had 1.732 times higher hazard of death (95% CI: 1.127–2.661) as compared to patients in whom PRMT5 was not present in the nucleus of the tumors. Nuclear PRMT5 expression was inversely correlated with p16-status (p < 0.001) and was significantly higher in tumor samples from patients who smoked > 10 pack-years (p = 0.013). In addition, nuclear PRMT5 was directly correlated with cyclin D1 (p = 0.0101) and IL-6 expression (p < 0.001). In a subgroup survival analysis, nuclear PRMT5-positive/IL-6-positive group had worst survival, whereas nuclear PRMT5-negative/IL-6-negative group had the best survival. Similarly, patients with p16-negative/nuclear PRMT5-positive tumors had worse survival compared to patients with p16-positive/nuclear PRMT5-negative tumors. Our mechanistic results suggest that IL-6 promotes nuclear translocation of PRMT5. Taken together, our results demonstrate for the first time that nuclear PRMT5 expression is associated with poor clinical outcome in OPSCC patients and IL-6 plays a role in the nuclear translocation of PRMT5.
Collapse
Affiliation(s)
- Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Arti Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicole V Brown
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Songzhu Zhao
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Michael J Cipolla
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Paul E Wakely
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Alessandra C Schmitt
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA
| | - Robert A Baiocchi
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 USA
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Yun MR, Choi HM, Kang HN, Lee Y, Joo HS, Kim DH, Kim HR, Hong MH, Yoon SO, Cho BC. ERK-dependent IL-6 autocrine signaling mediates adaptive resistance to pan-PI3K inhibitor BKM120 in head and neck squamous cell carcinoma. Oncogene 2017; 37:377-388. [DOI: 10.1038/onc.2017.339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023]
|
32
|
Zulkifli AA, Tan FH, Putoczki TL, Stylli SS, Luwor RB. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol Cell Endocrinol 2017; 451:15-23. [PMID: 28088467 DOI: 10.1016/j.mce.2017.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/20/2023]
Abstract
Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics.
Collapse
Affiliation(s)
- Ahmad A Zulkifli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Fiona H Tan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Tracy L Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
33
|
Wang TY, Yu CC, Hsieh PL, Liao YW, Yu CH, Chou MY. GMI ablates cancer stemness and cisplatin resistance in oral carcinomas stem cells through IL-6/Stat3 signaling inhibition. Oncotarget 2017; 8:70422-70430. [PMID: 29050290 PMCID: PMC5642565 DOI: 10.18632/oncotarget.19711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified to exert tumor-initiating ability, resulting in the recurrence, metastasis and chemoresistance of oral squamous cell carcinomas. In the present study, we showed that GMI, an immunomodulatory protein from Ganoderma microsporum, induc ed a cytotoxic effect in oral carcinomas stem cells (OCSCs). Treatment of GMI dose-dependently inhibited the expression of CSC markers, including ALDH1 activity and CD44 positivity. Moreover, GMI suppressed the self-renewal property, colony formation, migration, and invasion abilities as well as potentiated chemo-sensitivity in OCSCs. Our results suggested that the tumor suppressive effect of GMI was mediated through inhibition of IL-6/Stat3 signaling pathway. Furthermore, tumor growth was reduced in mice bearing xenograft tumors after oral administration of GMI. Taken together, we demonstrated the anti-CSC effect of GMI in oral cancer and GMI may serve as a natural cisplatin adjuvant to prevent cancer recurrence.
Collapse
Affiliation(s)
- Tung Yuan Wang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
34
|
Lou W, Chen Y, Zhu KY, Deng H, Wu T, Wang J. Polyphyllin I Overcomes EMT-Associated Resistance to Erlotinib in Lung Cancer Cells via IL-6/STAT3 Pathway Inhibition. Biol Pharm Bull 2017; 40:1306-1313. [PMID: 28515374 DOI: 10.1248/bpb.b17-00271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the most important limiting factor for treatment efficiency in EGFR-mutant non-small cell lung cancer (NSCLC). Much work has linked the epithelial-mesenchymal transition (EMT) to the emergence of drug resistance, consequently, ongoing research has been focused on exploring the therapeutic options to reverse EMT for delaying or preventing drug resistance. Polyphyllin I (PPI) is a natural compound isolated from Paris polyphylla rhizomes and displayed anti-cancer properties. In the current work, we aimed to testify whether PPI could reverse EMT and overcome acquired EGFR-TKI resistance. We exposed HCC827 lung adenocarcinoma cells to erlotinib which resulted in acquired resistance with strong features of EMT. PPI effectively restored drug sensitivity of cells that obtained acquired resistance. PPI reversed EMT and decreased interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway activation in erlotinib-resistant cells. Moreover, addition of IL-6 partially abolished the sensitization response of PPI. Furthermore, co-treatment of erlotinib and PPI completed abrogation of tumor growth in xenografts, which was associated with EMT reversal. In conclusion, PPI serves as a novel solution to conquer the EGFR-TKI resistance of NSCLC via reversing EMT by modulating IL-6/STAT3 signaling pathway. Combined PPI and erlotinib treatment provides a promising future for lung cancer patients to strengthen drug response and prolong survival.
Collapse
Affiliation(s)
- Wei Lou
- Department of Pharmacy, The Third Hospital Affiliated to Zhejiang Chinese Medical University
| | - Yan Chen
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University
| | - Ke-Ying Zhu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University
| | - Huizi Deng
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University
| | - Tianhao Wu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University
| |
Collapse
|
35
|
Sen M, Johnston PA, Pollock NI, DeGrave K, Joyce SC, Freilino ML, Hua Y, Camarco DP, Close DA, Huryn DM, Wipf P, Grandis JR. Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. J Chem Biol 2017; 10:129-141. [PMID: 28684999 DOI: 10.1007/s12154-017-0169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Kara DeGrave
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sonali C Joyce
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Daniel P Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David A Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94118 USA.,Clinical and Translational Science Institute, University of California, San Francisco, Box 0558, 550 16th Street, San Francisco, CA 94143 USA
| |
Collapse
|
36
|
Mallery SR, Wang D, Santiago B, Pei P, Schwendeman SP, Nieto K, Spinney R, Tong M, Koutras G, Han B, Holpuch A, Lang J. Benefits of Multifaceted Chemopreventives in the Suppression of the Oral Squamous Cell Carcinoma (OSCC) Tumorigenic Phenotype. Cancer Prev Res (Phila) 2017; 10:76-88. [PMID: 27756753 PMCID: PMC5222683 DOI: 10.1158/1940-6207.capr-16-0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022]
Abstract
Over one third of patients who have undergone oral squamous cell carcinoma (OSCC) surgical resections develop life-threatening and often untreatable recurrences. A variety of drugs, intended for management of recurrent or disseminated cancers, were designed to exploit cancer cells' reliance upon overexpressed receptors and gratuitous signaling. Despite their conceptual promise, clinical trials showed these agents lacked efficacy and were often toxic. These findings are consistent with evasion of pathway-targeted treatments via extensive signaling redundancies and compensatory mechanisms common to cancers. Optimal secondary OSCC chemoprevention requires long-term efficacy with multifaceted, nontoxic agents. Accordingly, this study evaluated the abilities of three complementary chemopreventives, that is, the vitamin A derivative fenretinide (4-HPR, induces apoptosis and differentiation, inhibits signaling proteins, and invasion), the estrogen metabolite 2-methoxyestradiol (2-ME, apoptosis-inducing, antiangiogenic), and the humanized mAb to the IL6R receptor tocilizumab (TOC, reduces IL6 signaling) to suppress OSCC gratuitous signaling and tumorigenesis. Modeling studies demonstrated 4-HPR's high-affinity binding at STAT3's dimerization site and c-Abl and c-Src ATP-binding kinase sites. Although individual agents suppressed cancer-promoting pathways including STAT3 phosphorylation, STAT3-DNA binding, and production of the trans-signaling enabling sIL6R, maximal chemopreventive effects were observed with agent combinations. OSCC tumor xenograft studies showed that locally delivered TOC, TOC+4-HPR, and TOC+4-HPR+2-ME treatments all prevented significant tumor growth. Notably, the TOC+4-HPR+2-ME treatment resulted in the smallest overall increase in tumor volume. The selected agents use diverse mechanisms to disrupt tumorigenesis at multiple venues, that is, intracellular, tumor cell-ECM, and tumor microenvironment; beneficial qualities for secondary chemopreventives. Cancer Prev Res; 10(1); 76-88. ©2016 AACR.
Collapse
MESH Headings
- 2-Methoxyestradiol
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Anticarcinogenic Agents/administration & dosage
- Anticarcinogenic Agents/adverse effects
- Anticarcinogenic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Carcinogenesis/drug effects
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/prevention & control
- Carcinoma, Squamous Cell/surgery
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Estradiol/administration & dosage
- Estradiol/adverse effects
- Estradiol/analogs & derivatives
- Estradiol/therapeutic use
- Fenretinide/administration & dosage
- Fenretinide/adverse effects
- Fenretinide/therapeutic use
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Nude
- Mouth Neoplasms/pathology
- Mouth Neoplasms/prevention & control
- Mouth Neoplasms/surgery
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/prevention & control
- Phenotype
- Phosphorylation
- Receptors, Interleukin-6/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Susan R Mallery
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio.
- The Ohio State University Comprehensive Cancer, Columbus, Ohio
| | - Daren Wang
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Brian Santiago
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Ping Pei
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Steven P Schwendeman
- College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan
| | - Kari Nieto
- College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Meng Tong
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - George Koutras
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Brian Han
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Andrew Holpuch
- Division of Oral Maxillofacial Pathology & Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - James Lang
- The Ohio State University Comprehensive Cancer, Columbus, Ohio
- Department of Otolaryngology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
37
|
Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Lett 2016; 386:87-99. [PMID: 27867017 DOI: 10.1016/j.canlet.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023]
Abstract
Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.
Collapse
|
38
|
Stanam A, Gibson-Corley KN, Love-Homan L, Ihejirika N, Simons AL. Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma. Oncotarget 2016; 7:76087-76100. [PMID: 27738319 PMCID: PMC5342798 DOI: 10.18632/oncotarget.12590] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/24/2016] [Indexed: 12/02/2022] Open
Abstract
Erlotinib has demonstrated poor clinical response rates for head and neck squamous cell carcinoma (HNSCC) to date and the majority of respondents acquire resistance to erlotinib relatively quickly. To elucidate novel pathways involved in erlotinib resistance, we compared the gene expression profiles of erlotinib-resistant (ER) vs. erlotinib-sensitive (ES) HNSCC cell lines. Enrichment analysis of microarray data revealed a deregulation of the IL-1 signaling pathway in ER versus ES-HNSCC cells. Gene expression of interleukin-1 alpha (IL1A) and interleukin-1 beta (IL1B) were significantly upregulated by > 2 fold in ER-SQ20B and ER-CAL 27 cells compared to their respective ES-cells. Secretion of the IL-1 receptor antagonist (IL-1RA) was significantly reduced in ER-cells compared to ES-cells. Blockade of IL-1 signaling using a recombinant IL-1R antagonist (anakinra) was able to inhibit the growth of ER-SQ20B and ER-CAL 27 but not ES-SQ20B and ES-CAL 27 xenografts as a single agent and in combination with erlotinib. ER-SQ20B xenografts treated with anakinra ± erlotinib were found to be less vascularized than ER-SQ20B xenografts treated with water or erlotinib. Mice bearing ER-SQ20B xenografts had significantly lesser circulating levels of G-CSF and IL-1β when treated with anakinra ± erlotinib compared to those treated with water or erlotinib alone. Furthermore, augmented mRNA levels of IL1A or interleukin-1 receptor accessory protein (IL1RAP) were associated with shortened survival in HNSCC patients. Altogether, blockade of the IL-1 pathway using anakinra overcame erlotinib resistance in HNSCC xenografts and may represent a novel strategy to overcome EGFR inhibitor resistance for treatment of HNSCC patients.
Collapse
Affiliation(s)
- Aditya Stanam
- Interdisciplinary Human Toxicology Program, The University of Iowa, Iowa City, IA, USA
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | - Nnamdi Ihejirika
- Lincoln University of the Commonwealth of Pennsylvania, Lincoln, PA, USA
| | - Andrean L. Simons
- Interdisciplinary Human Toxicology Program, The University of Iowa, Iowa City, IA, USA
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
39
|
Ekshyyan O, Khandelwal AR, Rong X, Moore-Medlin T, Ma X, Alexander JS, Nathan CAO. Rapamycin targets Interleukin 6 (IL-6) expression and suppresses endothelial cell invasion stimulated by tumor cells. Am J Transl Res 2016; 8:4822-4830. [PMID: 27904683 PMCID: PMC5126325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
mTOR inhibitors have potent antiangiogenic and anti-lymphangiogenic effects in addition to their growth inhibitory effects in head and neck squamous cell carcinoma (HNSCC). Lymphatogenous spread is much more predominant in HNSCC than hematogenous spread and significantly decreases survival. In this study we evaluated the effects of rapamycin on targeting tumor-stroma crosstalk in HNSCC. HNSCC tumor cells (FaDu) and human lymphatic endothelial cells (HMEC-1A) were co-cultured in various combinations using transwell cell culture inserts to study tumor-stroma crosstalk and the effects of mTOR inhibitor rapamycin. Levels of growth factors and cytokines in cell culture media were measured using Milliplex bead immunoassay (EMD Millipore) and ELISA assay (R&D Systems). We found that conditioned media collected from tumor cells or co-culture with tumor cells significantly increased the invasiveness of lymphatic and blood vascular endothelial cells (P<0.05), while there was no effect of conditioned media collected from endothelial cell cultures or co-culture with endothelial cells on tumor cell invasiveness. There was a significant effect of rapamycin on both baseline and tumor cell stimulated invasiveness of endothelial cells (P<0.05). Importantly the level of IL-6 secreted in media increased significantly in tumor-endothelial cell co-culture compared to monocultures. Rapamycin significantly suppressed secretion of IL-6 by tumor cells (P<0.05). Thus, HNSCC cells produce chemotactic stimuli that promote endothelial cell invasion toward tumor cells that can stimulate lymphangiogenesis. Rapamycin effectively reverted the stimulatory effect of IL-6 secreted by tumor cells on endothelial cell invasiveness.
Collapse
Affiliation(s)
- Oleksandr Ekshyyan
- Department of Otolaryngology/Head and Neck Surgery, LSUHSCShreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSCShreveport, LA, USA
| | - Alok R Khandelwal
- Department of Otolaryngology/Head and Neck Surgery, LSUHSCShreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSCShreveport, LA, USA
| | - Xiaohua Rong
- Department of Otolaryngology/Head and Neck Surgery, LSUHSCShreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSCShreveport, LA, USA
| | - Tara Moore-Medlin
- Department of Otolaryngology/Head and Neck Surgery, LSUHSCShreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSCShreveport, LA, USA
| | - Xiaohui Ma
- Department of Otolaryngology/Head and Neck Surgery, LSUHSCShreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSCShreveport, LA, USA
| | | | - Cherie-Ann O Nathan
- Department of Otolaryngology/Head and Neck Surgery, LSUHSCShreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSCShreveport, LA, USA
| |
Collapse
|
40
|
High serum levels of interleukin-6 in patients with advanced or metastatic colorectal cancer: the effect on the outcome and the response to chemotherapy plus bevacizumab. Surg Today 2016; 47:483-489. [PMID: 27549777 DOI: 10.1007/s00595-016-1404-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE We evaluated the relationship of the pretreatment serum IL-6 levels with the outcome and treatment response in patients with advanced or metastatic colorectal cancer (CRC) who underwent bevacizumab-containing chemotherapy. METHODS In this retrospective study, the pretreatment serum IL-6 and plasma vascular endothelial growth factor (VEGF) levels were measured in 113 patients with metastatic CRC. The cut-off values for these measurements, as determined by a receiver operating characteristic curve analysis, were 4.3 and 66 pg/mL, respectively. The median follow-up period was 19 months (range 1-40 months). Sixty-three patients had primary cancer, and 38 had a metachronous recurrence. Thirty patients underwent curative resection, and 71 underwent chemotherapy, 53 of whom received bevacizumab-containing chemotherapy. Overall survival (OS) and progression-free survival (PFS) were estimated using Kaplan-Meier and multivariate Cox proportional hazards regression analyses. RESULTS The plasma VEGF levels and positive KRAS mutation status were not associated with the outcomes. However, high serum IL-6 levels were significantly associated with poorer OS and PFS in comparison to low serum IL-6 levels. A Cox proportional hazards regression analysis showed that high serum IL-6 levels were an independent risk factor for a poor outcome. CONCLUSION In patients with metastatic CRC, high pretreatment serum IL-6 levels were associated with a poor outcome and bevacizumab resistance.
Collapse
|
41
|
Choudhary MM, France TJ, Teknos TN, Kumar P. Interleukin-6 role in head and neck squamous cell carcinoma progression. World J Otorhinolaryngol Head Neck Surg 2016; 2:90-97. [PMID: 29204553 PMCID: PMC5698512 DOI: 10.1016/j.wjorl.2016.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 11/04/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine which plays an important role in a number of cellular processes including proliferation, survival, differentiation, migration and invasion. IL-6 mediates its downstream effects by activating a number of signaling cascades including JAK/STAT, PI3K/AKT and MAPK pathways. In addition to its effects on tumor cells, IL-6 also regulates tumor progression and tumor metastasis by modulating tumor angiogenesis and tumor lymphangiogenesis. A number of studies have shown that IL-6 levels are markedly upregulated in cancer patients. We and others have shown that high IL-6 expression independently predicts tumor recurrence, tumor metastasis and poor survival in head and neck cancer patients. Therefore targeting IL-6 signaling is a potential therapeutic strategy for the treatment of head and neck squamous cell carcinoma (HNSCC). In this review, we discuss the current understanding of the role of IL-6 in HNSCC progression and potential therapeutic strategies to target IL-6 signaling for the treatment of head and neck cancer patients.
Collapse
Affiliation(s)
- Moaz M Choudhary
- Department of Otolaryngology-Head and Neck Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J France
- Department of Otolaryngology-Head and Neck Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Kaddi CD, Coulter WH, Wang MD. Developing Robust Predictive Models for Head and Neck Cancer across Microarray and RNA-seq Data. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2015; 2015:393-402. [PMID: 29568818 PMCID: PMC5859557 DOI: 10.1145/2808719.2808760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Increased understanding of the transcriptomic patterns underlying head and neck squamous cell carcinoma (HNSCC) can facilitate earlier diagnosis and better treatment outcomes. Integrating knowledge from multiple studies is necessary to identify fundamental, consistent gene expression signatures that distinguish HNSCC patient samples from disease-free samples, and particularly for detecting HNSCC at an early pathological stage. This study utilizes feature integration and heterogeneous ensemble modeling techniques to develop robust models for predicting HNSCC disease status in both microarray and RNAseq datasets. Several alternative models demonstrated good performance, with MCC and AUC values exceeding 0.8. These models were also applied to discriminate between early pathological stage HNSCC and normal RNA-seq samples, showing encouraging results. The predictive modeling workflow was integrated into a software tool with a graphical user interface. This tool enables HNSCC researchers to harness frequently observed transcriptomic features and ensembles of previously developed models when investigating new HNSCC gene expression datasets.
Collapse
Affiliation(s)
- Chanchala D Kaddi
- Department of Biomedical Engineering Georgia Institute of Technology Atlanta, GA 1-404-385-5059
| | - Wallace H Coulter
- Department of Biomedical Engineering Georgia Institute of Technology Atlanta, GA 1-404-385-5059
| | - May D Wang
- Department of Biomedical Engineering Georgia Institute of Technology Atlanta, GA 1-404-385-5059
| |
Collapse
|
43
|
Stanam A, Love-Homan L, Joseph TS, Espinosa-Cotton M, Simons AL. Upregulated interleukin-6 expression contributes to erlotinib resistance in head and neck squamous cell carcinoma. Mol Oncol 2015; 9:1371-83. [PMID: 25888065 DOI: 10.1016/j.molonc.2015.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/05/2023] Open
Abstract
Despite the role of epidermal growth factor receptor (EGFR) signaling in head and neck squamous cell carcinoma (HNSCC) development and progression, clinical trials involving EGFR tyrosine kinase inhibitors (TKIs) have yielded poor results in HNSCC patients. Mechanisms of acquired resistance to the EGFR TKI erlotinib was investigated by developing erlotinib-resistant HNSCC cell lines and comparing their gene expression profiles with their parental erlotinib-sensitive HNSCC cell lines using microarray analyses and subsequent pathway and network analyses. Erlotinib-resistant HNSCC cells displayed a significant upregulation in immune response and inflammatory pathways compared to parental cells. Interleukin-6 (IL-6) was one of thirteen genes that was significantly differentially expressed in all erlotinib-resistant HNSCC cell lines, which was validated using RT-PCR and ELISA. Blockade of IL-6 signaling using the IL-6 receptor antagonist tocilizumab, was able to overcome erlotinib-resistance in erlotinib-resistant SQ20B tumors in vivo. Overall, erlotinib-resistant HNSCC cells display elevated IL-6 expression levels compared to erlotinib-sensitive HNSCC cells and blockade of the IL-6 signaling pathway may be an effective strategy to overcome resistance to erlotinib and possibly other EGFR TKIs for HNSCC therapy.
Collapse
Affiliation(s)
- Aditya Stanam
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| | - Laurie Love-Homan
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| | - Tisha S Joseph
- Lincoln University of the Commonwealth of Pennsylvania, Lincoln, PA, USA.
| | - Madelyn Espinosa-Cotton
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| | - Andrean L Simons
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, USA; Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|