1
|
Wang Y, Jiang Z, Qin A, Wang F, Chang E, Liu Y, Nie W, Tan C, Yuan Y, Dong Y, Huang R, Jia Z, Wang J. Population Structure, Genetic Diversity and Candidate Genes for the Adaptation to Environmental Stress in Picea koraiensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1266. [PMID: 36986954 PMCID: PMC10055018 DOI: 10.3390/plants12061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Aili Qin
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Fude Wang
- Forestry Research Institute in Heilongjiang Province, Harbin 150081, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruizhi Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
2
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Nemati I, Sedghi M, Hosseini Salekdeh G, Tavakkol Afshari R, Naghavi MR, Gholizadeh S. DELAY OF GERMINATION 1 ( DOG1) regulates dormancy in dimorphic seeds of Xanthium strumarium. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:742-758. [PMID: 35569923 DOI: 10.1071/fp21315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy ensures plant survival but many mechanisms remain unclear. A high-throughput RNA-seq analysis investigated the mechanisms involved in the establishment of dormancy in dimorphic seeds of Xanthium strumarium (L.) developing in one single burr. Results showed that DOG1 , the main dormancy gene in Arabidopsis thaliana L., was over-represented in the dormant seed leading to the formation of two seeds with different cell wall properties. Less expression of DME /EMB1649 , UBP26 , EMF2, MOM, SNL2, and AGO4 in the non-dormant seed was observed, which function in the chromatin remodelling of dormancy-associated genes through DNA methylation. However, higher levels of ATXR7 /SDG25, ELF6 , and JMJ16/PKDM7D in the non-dormant seed that act at the level of histone demethylation and activate germination were found. Dramatically lower expression in the splicing factors SUA, PWI , and FY in non-dormant seed may indicate that variation in RNA splicing for ABA sensitivity and transcriptional elongation control of DOG1 is of importance for inducing seed dormancy. Seed size and germination may be influenced by respiratory factors, and alterations in ABA content and auxin distribution and responses. TOR (a serine/threonine-protein kinase) is likely at the centre of a regulatory hub controlling seed metabolism, maturation, and germination. Over-representation of the respiration-associated genes (ACO3 , PEPC3 , and D2HGDH ) was detected in non-dormant seed, suggesting differential energy supplies in the two seeds. Degradation of ABA biosynthesis and/or proper auxin signalling in the large seed may control germinability, and suppression of endoreduplication in the small seed may be a mechanism for cell differentiation and cell size determination.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; and Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Reza Tavakkol Afshari
- Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Somayeh Gholizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Lee BD, Yim Y, Cañibano E, Kim SH, García-León M, Rubio V, Fonseca S, Paek NC. CONSTITUTIVE PHOTOMORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1662-1676. [PMID: 35166830 PMCID: PMC9237706 DOI: 10.1093/plphys/kiac060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Under favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacted directly with RGL2, and in vivo this interaction was strongly enhanced by SUPPRESSOR OF PHYA-105 1. COP1 directly ubiquitinated RGL2 to promote its degradation. Moreover, GA stabilized COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.
Collapse
Affiliation(s)
| | | | | | - Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Marta García-León
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Vicente Rubio
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | | |
Collapse
|
5
|
Linster E, Forero Ruiz FL, Miklankova P, Ruppert T, Mueller J, Armbruster L, Gong X, Serino G, Mann M, Hell R, Wirtz M. Cotranslational N-degron masking by acetylation promotes proteome stability in plants. Nat Commun 2022; 13:810. [PMID: 35145090 PMCID: PMC8831508 DOI: 10.1038/s41467-022-28414-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability. N-terminal protein acetylation is required for plant viability. Here the authors show that reducing N-terminal acetylation by NatA leads to an increase in global protein turnover that is facilitated by absent masking of a novel N-degron
Collapse
Affiliation(s)
- Eric Linster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Francy L Forero Ruiz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pavlina Miklankova
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Center for Molecular Biology Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Xiaodi Gong
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Università di Roma, Rome, Italy
| | - Matthias Mann
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Escandón M, Bigatton ED, Guerrero-Sánchez VM, Hernández-Lao T, Rey MD, Jorrín-Novo JV, Castillejo MA. Identification of Proteases and Protease Inhibitors in Seeds of the Recalcitrant Forest Tree Species Quercus ilex. FRONTIERS IN PLANT SCIENCE 2022; 13:907042. [PMID: 35832232 PMCID: PMC9271950 DOI: 10.3389/fpls.2022.907042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 05/09/2023]
Abstract
Proteases and protease inhibitors have been identified in the recalcitrant species Quercus ilex using in silico and wet methods, with focus on those present in seeds during germination. In silico analyses showed that the Q. ilex transcriptome database contained 2,240 and 97 transcripts annotated as proteases and protease inhibitors, respectively. They belonged to the different families according to MEROPS, being the serine and metallo ones the most represented. The data were compared with those previously reported for other Quercus species, including Q. suber, Q. lobata, and Q. robur. Changes in proteases and protease inhibitors alongside seed germination in cotyledon and embryo axis tissues were assessed using proteomics and in vitro and in gel activity assays. Shotgun (LC-MSMS) analysis of embryo axes and cotyledons in nonviable (NV), mature (T1) and germinated (T3) seeds allowed the identification of 177 proteases and 12 protease inhibitors, mostly represented by serine and metallo types. Total protease activity, as determined by in vitro assays using azocasein as substrate, was higher in cotyledons than in embryo axes. There were not differences in activity among cotyledon samples, while embryo axis peaked at germinated T4 stage. Gel assays revealed the presence of protease activities in at least 10 resolved bands, in the Mr range of 60-260 kDa, being some of them common to cotyledons and embryo axes in either nonviable, mature, and germinated seeds. Bands showing quantitative or qualitative changes upon germination were observed in embryo axes but not in cotyledons at Mr values of 60-140 kDa. Proteomics shotgun analysis of the 10 bands with protease activity supported the results obtained in the overall proteome analysis, with 227 proteases and 3 protease inhibitors identified mostly represented by the serine, cysteine, and metallo families. The combined use of shotgun proteomics and protease activity measurements allowed the identification of tissue-specific (e.g., cysteine protease inhibitors in embryo axes of mature acorns) and stage-specific proteins (e.g., those associated with mobilization of storage proteins accumulated in T3 stage). Those proteins showing differences between nonviable and viable seeds could be related to viability, and those variables between mature and germinated could be associated with the germination process. These differences are observed mostly in embryo axes but not in cotyledons. Among them, those implicated in mobilization of reserve proteins, such as the cathepsin H cysteine protease and Clp proteases, and also the large number of subunits of the CNS and 26S proteasome complex differentially identified in embryos of the several stages suggests that protein degradation via CNS/26S plays a major role early in germination. Conversely, aspartic proteases such as nepenthesins were exclusively identified in NV seeds, so their presence could be used as indicator of nonviability.
Collapse
Affiliation(s)
- Monica Escandón
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Ezequiel D. Bigatton
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Agricultural Microbiology, Faculty of Agricultural Science, National University of Córdoba, CONICET, Córdoba, Argentina
| | - Victor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Maria-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Jesus V. Jorrín-Novo,
| | - Maria Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- *Correspondence: Maria Angeles Castillejo,
| |
Collapse
|
7
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
8
|
Marzi D, Brunetti P, Mele G, Napoli N, Calò L, Spaziani E, Matsui M, De Panfilis S, Costantino P, Serino G, Cardarelli M. Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:379-394. [PMID: 32142184 DOI: 10.1111/tpj.14736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 - oppositely to ARF8 - directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far-red light receptors PHYA/PHYB. In conclusion, different light qualities - sequentially perceived by specific photoreceptors - and the downstream COP1-HY5/HYH module finely tune auxin-induced stamen elongation and thus male fertility.
Collapse
Affiliation(s)
- Davide Marzi
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | | | | - Nadia Napoli
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Lorenzo Calò
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Erica Spaziani
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Simone De Panfilis
- Centre for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Roma, I-00161, Italy
| | - Paolo Costantino
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | |
Collapse
|
9
|
Qin N, Xu D, Li J, Deng XW. COP9 signalosome: Discovery, conservation, activity, and function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:90-103. [PMID: 31894894 DOI: 10.1111/jipb.12903] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/26/2019] [Indexed: 05/22/2023]
Abstract
The COP9 signalosome (CSN) is a conserved protein complex, typically composed of eight subunits (designated as CSN1 to CSN8) in higher eukaryotes such as plants and animals, but of fewer subunits in some lower eukaryotes such as yeasts. The CSN complex is originally identified in plants from a genetic screen for mutants that mimic light-induced photomorphogenic development when grown in the dark. The CSN complex regulates the activity of cullin-RING ligase (CRL) families of E3 ubiquitin ligase complexes, and play critical roles in regulating gene expression, cell proliferation, and cell cycle. This review aims to summarize the discovery, composition, structure, and function of CSN in the regulation of plant development in response to external (light and temperature) and internal cues (phytohormones).
Collapse
Affiliation(s)
- Nanxun Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Williams C, Fernández-Calvo P, Colinas M, Pauwels L, Goossens A. Jasmonate and auxin perception: how plants keep F-boxes in check. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3401-3414. [PMID: 31173086 DOI: 10.1093/jxb/erz272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 05/24/2023]
Abstract
Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.
Collapse
Affiliation(s)
- Clara Williams
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Centre for Plant Biotechnology and Genomics, Parque Cientifico y Tecnologico, UPM Campus de Montegancedo, Madrid, Spain
| | - Maite Colinas
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
11
|
O'Neill JP, Colon KT, Jenik PD. The onset of embryo maturation in Arabidopsis is determined by its developmental stage and does not depend on endosperm cellularization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:286-301. [PMID: 30900325 PMCID: PMC6635039 DOI: 10.1111/tpj.14324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 05/06/2023]
Abstract
Seeds are dormant and desiccated structures, filled with storage products to be used after germination. These properties are determined by the maturation program, which starts, in Arabidopsis thaliana, mid-embryogenesis, at about the same time and developmental stage in all the seeds in a fruit. The two factors, chronological and developmental time, are closely entangled during seed development, so their relative contribution to the transition to maturation is not well understood. It is also unclear whether that transition is determined autonomously by each seed or whether it depends on signals from the fruit. The onset of maturation follows the cellularization of the endosperm, and it has been proposed that there exists a causal relationship between both processes. We explored all these issues by analyzing markers for maturation in Arabidopsis mutant seeds that develop at a slower pace, or where endosperm cellularization happens too early, too late, or not at all. Our data show that the developmental stage of the embryo is the key determinant of the initiation of maturation, and that each seed makes that transition autonomously. We also found that, in contrast with previous models, endosperm cellularization is not required for the onset of maturation, suggesting that this transition is independent of the hexose/sucrose ratio in the seed. Our observations indicate that the mechanisms that control endosperm cellularization, embryo growth, and embryo maturation act independently of each other.
Collapse
Affiliation(s)
- John P O'Neill
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| | - Kristen T Colon
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| | - Pablo D Jenik
- Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA, 17604-3003, USA
| |
Collapse
|
12
|
Betsch L, Boltz V, Brioudes F, Pontier G, Girard V, Savarin J, Wipperman B, Chambrier P, Tissot N, Benhamed M, Mollereau B, Raynaud C, Bendahmane M, Szécsi J. TCTP and CSN4 control cell cycle progression and development by regulating CULLIN1 neddylation in plants and animals. PLoS Genet 2019; 15:e1007899. [PMID: 30695029 PMCID: PMC6368322 DOI: 10.1371/journal.pgen.1007899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 02/08/2019] [Accepted: 12/15/2018] [Indexed: 11/30/2022] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated. Loss-of-function of AtTCTP leads to increased fraction of deneddylated CUL1, suggesting that AtTCTP interferes negatively with COP9 function. Similar defects in cell proliferation and CUL1 neddylation status were observed in Drosophila knockdown for dCSN4 or dTCTP, respectively, demonstrating a conserved mechanism between plants and animals. Together, our data show that CSN4 is the missing factor linking TCTP to the control of cell cycle progression and cell proliferation during organ development and open perspectives towards understanding TCTP's role in organ development and disorders associated with TCTP miss-expression.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Véronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Florian Brioudes
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Garance Pontier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Univ Lyon, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Barbara Wipperman
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Nicolas Tissot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Univ Lyon, Lyon, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Judit Szécsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| |
Collapse
|
13
|
Jin D, Wu M, Li B, Bücker B, Keil P, Zhang S, Li J, Kang D, Liu J, Dong J, Deng XW, Irish V, Wei N. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5. PLoS Genet 2018; 14:e1007237. [PMID: 29462139 PMCID: PMC5834205 DOI: 10.1371/journal.pgen.1007237] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/02/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA) and abscisic acid (ABA), and is influenced by environmental factors. The COP9 Signalosome (CSN) is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs). Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1) ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway. The control of seed germination and seed dormancy are critical for successful propagation of plant species, and manipulation of these processes is important for agriculture. The COP9 Signalosome (CSN) is a multi-subunit protein complex that regulates proteasome-mediated protein degradation in part as a regulator of SCF ubiquitin E3 ligases. The CSN is important for timely germination of seeds, but its molecular targets in this process is unclear. In this study, we demonstrate that the CSN regulates protein stabilities of two different targets from two antagonistic hormonal pathways, RGL2 of the GA pathway and ABI5 of the ABA pathway. Our genetic and transcriptome analyses showed that, although csn1-10 and csn5a-1 exhibit similar defects in timely germination, the mechanisms of how the mutations affect seed germination differ. Since RGL2 is known to be targeted by SCF during germination, the defect in the timely degradation of RGL2 in csn1-10 and csn5a-1 is consistent with the role of CSN as a regulator of the SCF. In addition, we show that CSN5A, but not CSN1, has an additional function in regulating ABI5, a downstream inhibitor of germination.
Collapse
Affiliation(s)
- Dan Jin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ming Wu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Bosheng Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Birte Bücker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philipp Keil
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Shaoman Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jie Dong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivian Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ning Wei
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zhang HY, Lei G, Zhou HW, He C, Liao JL, Huang YJ. Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. Proteomics 2017; 17. [PMID: 28101936 PMCID: PMC5811895 DOI: 10.1002/pmic.201600365] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/23/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
Rice yield and quality are adversely affected by increasing global surface temperature, and are strongly attributed to high night temperature (HNT) than high daytime temperature. However, the molecular mechanism underlying the heat‐tolerant characteristics of rice remains unclear. In the present study, we compared the proteomes of heat‐tolerant and ‐sensitive lines of rice at early milky stage using an iTRAQ method. We have identified 38 differentially expressed proteins between the two lines, of which 32 proteins have been functionally annotated in NCBI and/or the UniProt database. These proteins were then classified into seven functional subgroups, which include signal transduction, transcript regulation, oxidation, defense response, transport, energy metabolism, and biosynthesis. Further analysis indicated that HNT stress could disrupt the redox equilibrium of plant cells, which in turn triggers the calcium‐dependent protein kinase and COP9 signalosome, thereby regulating downstream genes/proteins that are involved in the HNT response. The candidate proteins may provide genetic resources for the improvement of heat‐tolerant characteristics in rice, and the proposed model for signal transduction and transcriptional regulation may facilitate in the elucidation of the molecular mechanism underlying the response to HNT stress in rice.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Gang Lei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Hui-Wen Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Chao He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province, P. R. China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Province, P. R. China
| |
Collapse
|
15
|
Barth E, Hübler R, Baniahmad A, Marz M. The Evolution of COP9 Signalosome in Unicellular and Multicellular Organisms. Genome Biol Evol 2016; 8:1279-89. [PMID: 27044515 PMCID: PMC4860701 DOI: 10.1093/gbe/evw073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex, recently being crystallized for human. In mammals and plants the COP9 complex consists of nine subunits, CSN 1–8 and CSNAP. The CSN regulates the activity of culling ring E3 ubiquitin and plays central roles in pleiotropy, cell cycle, and defense of pathogens. Despite the interesting and essential functions, a thorough analysis of the CSN subunits in evolutionary comparative perspective is missing. Here we compared 61 eukaryotic genomes including plants, animals, and yeasts genomes and show that the most conserved subunits of eukaryotes among the nine subunits are CSN2 and CSN5. This may indicate a strong evolutionary selection for these two subunits. Despite the strong conservation of the protein sequence, the genomic structures of the intron/exon boundaries indicate no conservation at genomic level. This suggests that the gene structure is exposed to a much less selection compared with the protein sequence. We also show the conservation of important active domains, such as PCI (proteasome lid-CSN-initiation factor) and MPN (MPR1/PAD1 amino-terminal). We identified novel exons and alternative splicing variants for all CSN subunits. This indicates another level of complexity of the CSN. Notably, most COP9-subunits were identified in all multicellular and unicellular eukaryotic organisms analyzed, but not in prokaryotes or archaeas. Thus, genes encoding CSN subunits present in all analyzed eukaryotes indicate the invention of the signalosome at the root of eukaryotes. The identification of alternative splice variants indicates possible “mini-complexes” or COP9 complexes with independent subunits containing potentially novel and not yet identified functions.
Collapse
Affiliation(s)
- Emanuel Barth
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University, Jena, Germany FLI Leibniz Institute for Age Research, Jena, Germany
| | - Ron Hübler
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University, Jena, Germany Institute of Human Genetics, Jena University Hospital, Jena, Germany Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University, Jena, Germany FLI Leibniz Institute for Age Research, Jena, Germany
| |
Collapse
|