1
|
Wang J, Wang Z, Wang P, Wu J, Kong L, Ma L, Jiang S, Ren W, Liu W, Guo Y, Ma W, Liu X. Genome-wide identification of YABBY gene family and its expression pattern analysis in Astragalus mongholicus. PLANT SIGNALING & BEHAVIOR 2024; 19:2355740. [PMID: 38776425 PMCID: PMC11123558 DOI: 10.1080/15592324.2024.2355740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
During plant growth and development, the YABBY gene plays a crucial role in the morphological structure, hormone signaling, stress resistance, crop breeding, and agricultural production of plant lateral organs, leaves, flowers, and fruits. Astragalus mongholicus is a perennial herbaceous plant in the legume family, widely used worldwide due to its high medicinal and edible value. However, there have been no reports of the YABBY gene family in A. mongholicus. This study used bioinformatics methods, combined with databases and analysis websites, to systematically analyze the AmYABBY gene family in the entire genome of A. mongholicus and verified its expression patterns in different tissues of A. mongholicus through transcriptome data and qRT-PCR experiments. A total of seven AmYABBY genes were identified, which can be divided into five subfamilies and distributed on three chromosomes. Two pairs of AmYABBY genes may be involved in fragment duplication on three chromosomes. All AmYABBY proteins have a zinc finger YABBY domain, and members of the same group have similar motif composition and intron - exon structure. In the promoter region of the genes, light-responsive and MeJa-response cis-elements are dominant. AmYABBY is highly expressed in stems and leaves, especially AmYABBY1, AmYABBY2, and AmYABBY3, which play important roles in the growth and development of stems and leaves. The AmYABBY gene family regulates the growth and development of A. mongholicus. In summary, this study provides a theoretical basis for in-depth research on the function of the AmYABBY gene and new insights into the molecular response mechanism of the growth and development of the traditional Chinese medicine A. mongholicus.
Collapse
Affiliation(s)
- Jiamei Wang
- Equipment Department, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhao Wu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lengleng Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Jiang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weili Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanli Guo
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
2
|
Yuan JJ, Zhao YN, Yu SH, Sun Y, Li GX, Yan JY, Xu JM, Ding WN, Benhamed M, Qiu RL, Jin CW, Zheng SJ, Ding ZJ. The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter. Nat Commun 2024; 15:9537. [PMID: 39496660 PMCID: PMC11535502 DOI: 10.1038/s41467-024-53898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Cadmium (Cd) is a detrimental heavy metal propagated from soil to the food chain via plants, posing a great risk to human health upon consumption. Despite the understanding of Cd tolerance mechanisms in plants, whether and how plants actively respond to Cd and in turn restrict its uptake and accumulation remain elusive. Here, we identify a cell wall-associated receptor-like kinase 4 (WAKL4) involved in specific tolerance to Cd stress. We show that Cd rapidly and exclusively induces WAKL4 accumulation by promoting WAKL4 transcription and blocking its vacuole-dependent proteolysis in roots. The accumulated WAKL4 next interacts with and phosphorylates the Cd transporter NRAMP1 at Tyr488, leading to the enhanced ubiquitination and vacuole-dependent degradation of NRAMP1, and consequently reducing Cd uptake. Our findings therefore uncover a mechanism conferred by the WAKL4-NRAMP1 module that enables plants to actively respond to Cd and limit its uptake, informing the future molecular breeding of low Cd accumulated crops or vegetables.
Collapse
Affiliation(s)
- Jun Jie Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Ya Nan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Hang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Sun
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Rong Liang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Zang J, Yao X, Zhang T, Yang B, Wang Z, Quan S, Zhang Z, Liu J, Chen H, Zhang X, Hou Y. Excess iron accumulation affects maize endosperm development by inhibiting starch synthesis and inducing DNA damage. J Cell Physiol 2024:e31427. [PMID: 39239803 DOI: 10.1002/jcp.31427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Iron (Fe) storage in cereal seeds is the principal source of dietary Fe for humans. In maize (Zea mays), the accumulation of Fe in seeds is known to be negatively correlated with crop yield. Hence, it is essential to understand the underlying mechanism, which is crucial for developing and breeding maize cultivars with high yields and high Fe concentrations in the kernels. Here, through the successful application of in vitro kernel culture, we demonstrated that excess Fe supply in the medium caused the kernel to become collapsed and lighter in color, consistent with those found in yellow strip like 2 (ysl2, a small kernel mutant), implicated a crucial role of Fe concentration in kernel development. Indeed, over-accumulation of Fe in endosperm inhibited the abundance and activity of ADP-glucose pyrophosphorylase (AGPase) and the kernel development defect was alleviated by overexpression of Briittle 2 (Bt2, encoding a small subunit of AGPase) in ysl2 mutant. Imaging and quantitative analyses of reactive oxygen species (ROS) and cell death showed that Fe stress-induced ROS burst and severe DNA damage in endosperm cells. In addition, we have successfully identified candidate genes that are associated with iron homeostasis within the kernel, as well as upstream transcription factors that regulate ZmYSL2 by yeast one-hybrid screening. Collectively, our study will provide insights into the molecular mechanism of Fe accumulation-regulated seed development and promote the future efficient application of Fe element in corn improvement.
Collapse
Affiliation(s)
- Jie Zang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Xueyan Yao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boming Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Shuxuan Quan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yifeng Hou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
4
|
Shi T, Zhou L, Ye Y, Yang X, Wang L, Yue Y. Characterization of YABBY transcription factors in Osmanthus fragrans and functional analysis of OfYABBY12 in floral scent formation and leaf morphology. BMC PLANT BIOLOGY 2024; 24:589. [PMID: 38902627 PMCID: PMC11191298 DOI: 10.1186/s12870-024-05047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased β-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes β-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially β-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.
Collapse
Affiliation(s)
- Tingting Shi
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Ling Zhou
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunfang Ye
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Lianggui Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yuanzheng Yue
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, Xu JM, Wu XD, Mao CZ, Ding WN, Benhamed M, Ding ZJ, Zheng SJ. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat Commun 2024; 15:5107. [PMID: 38877001 PMCID: PMC11178898 DOI: 10.1038/s41467-024-49102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Li Lin Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Chen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Miao Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Dan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, 315300, Ningbo, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China.
| |
Collapse
|
6
|
Zhang H, Sun B, Wu W, Li Y, Yin Z, Lu C, Zhao H, Kong L, Ding X. The MYB transcription factor OsMYBxoc1 regulates resistance to Xoc by directly repressing transcription of the iron transport gene OsNRAMP5 in rice. PLANT COMMUNICATIONS 2024; 5:100859. [PMID: 38444161 PMCID: PMC11211514 DOI: 10.1016/j.xplc.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a continuous threat to rice cultivation, leading to substantial yield losses with socioeconomic implications. Iron ions are essential mineral nutrients for plant growth, but little information is available on how they influence mechanisms of rice immunity against Xoc. Here, we investigated the role of the myeloblastosis-related (MYB) transcriptional repressor OsMYBxoc1 in modulation of rice resistance through control of iron ion transport. Overexpression of OsMYBxoc1 significantly increased rice resistance, whereas OsMYBxoc1 RNA-interference lines and knockout mutants showed the opposite result. Suppression of OsMYBxoc1 expression dampened the immune response induced by pathogen-associated molecular patterns. We demonstrated that OsMYBxoc1 binds specifically to the OsNRAMP5 promoter and represses transcription of OsNRAMP5. OsNRAMP5, a negative regulator of rice resistance to bacterial leaf streak, possesses metal ion transport activity, and inhibition of OsMYBxoc1 expression increased the iron ion content in rice. Activity of the ion-dependent H2O2 scavenging enzyme catalase was increased in plants with suppressed expression of OsMYBxoc1 or overexpression of OsNRAMP5. We found that iron ions promoted Xoc infection and interfered with the production of reactive oxygen species induced by Xoc. The type III effector XopAK directly inhibited OsMYBxoc1 transcription, indicating that the pathogen may promote its own proliferation by relieving restriction of iron ion transport in plants. In addition, iron complemented the pathogenicity defects of the RS105_ΔXopAK mutant strain, further confirming that iron utilization by Xoc may be dependent upon XopAK. In conclusion, our study reveals a novel mechanism by which OsMYBxoc1 modulates rice resistance by regulating iron accumulation and demonstrates that Xoc can accumulate iron ions by secreting the effector XopAK to promote its own infection.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
7
|
Han K, Lai M, Zhao T, Yang X, An X, Chen Z. Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. Crit Rev Biotechnol 2024:1-22. [PMID: 38830825 DOI: 10.1080/07388551.2024.2344576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/08/2023] [Indexed: 06/05/2024]
Abstract
Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.
Collapse
Affiliation(s)
- Kaiyuan Han
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Lai
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Tianyun Zhao
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiong Yang
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xinmin An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Zhang S, Yu Z, Sun L, Liang S, Xu F, Li S, Zheng X, Yan L, Huang Y, Qi X, Ren H. T2T reference genome assembly and genome-wide association study reveal the genetic basis of Chinese bayberry fruit quality. HORTICULTURE RESEARCH 2024; 11:uhae033. [PMID: 38495030 PMCID: PMC10940123 DOI: 10.1093/hr/uhae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Chinese bayberry (Myrica rubra or Morella rubra; 2n = 16) produces fruit with a distinctive flavor, high nutritional, and economic value. However, previous versions of the bayberry genome lack sequence continuity. Moreover, to date, no large-scale germplasm resource association analysis has examined the allelic and genetic variations determining fruit quality traits. Therefore, in this study, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar 'Zaojia' using PacBio HiFi long reads. The resulting 292.60 Mb T2T genome, revealed 8 centromeric regions, 15 telomeres, and 28 345 genes. This represents a substantial improvement in the genome continuity and integrity of Chinese bayberry. Subsequently, we re-sequenced 173 accessions, identifying 6 649 674 single nucleotide polymorphisms (SNPs). Further, the phenotypic analyses of 29 fruit quality-related traits enabled a genome-wide association study (GWAS), which identified 1937 SNPs and 1039 genes significantly associated with 28 traits. An SNP cluster pertinent to fruit color was identified on Chr6: 3407532 to 5 153 151 bp region, harboring two MYB genes (MrChr6G07650 and MrChr6G07660), exhibiting differential expression in extreme phenotype transcriptomes, linked to anthocyanin synthesis. An adjacent, closely linked gene, MrChr6G07670 (MLP-like protein), harbored an exonic missense variant and was shown to increase anthocyanin production in tobacco leaves tenfold. This SNP cluster, potentially a quantitative trait locus (QTL), collectively regulates bayberry fruit color. In conclusion, our study presented a complete reference genome, uncovered a suite of allelic variations related to fruit-quality traits, and identified functional genes that could be harnessed to enhance fruit quality and breeding efficiency of bayberries.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Senmiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Sujuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Xiliang Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Lijv Yan
- Linhai Specialty and Technology Extension Station, 219 Dongfang Avenue, Linhai 317000, Zhejiang, China
| | - Yinghong Huang
- Jiangsu Taihu Evergreen Fruit Tree Technology Promotion Center, Dongshan Town, Wuzhong District, Suzhou 215107, Jiangsu, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
- Xianghu Laboratory, 168 Gengwen Road, Xiaoshan District, Hangzhou 311231, Zhejiang, China
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| |
Collapse
|
9
|
Shen L, Liu Y, Zhang L, Sun Z, Wang Z, Jiao Y, Shen K, Guo Z. A transcriptional atlas identifies key regulators and networks for the development of spike tissues in barley. Cell Rep 2023; 42:113441. [PMID: 37971941 DOI: 10.1016/j.celrep.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Grain number and size determine grain yield in crops and are closely associated with spikelet fertility and grain filling in barley (Hordeum vulgare). Abortion of spikelet primordia within individual barley spikes causes a 30%-50% loss in the potential number of grains during development from the awn primordium stage to the tipping stage, after that grain filling is the primary factor regulating grain size. To identify transcriptional signatures associated with spike development, we use a six-rowed barley cultivar (Morex) to develop a spatiotemporal transcriptome atlas containing 255 samples covering 17 stages and 5 positions along the spike. We identify several fundamental regulatory networks, in addition to key regulators of spike development and morphology. Specifically, we show HvGELP96, encoding a GDSL domain-containing protein, as a regulator of spikelet fertility and grain number. Our transcriptional atlas offers a powerful resource to answer fundamental questions in spikelet development and degeneration in barley.
Collapse
Affiliation(s)
- Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuannian Jiao
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
10
|
Liu Y, Shu X, Chen L, Zhang H, Feng H, Sun X, Xiong Q, Li G, Xun W, Xu Z, Zhang N, Pieterse CMJ, Shen Q, Zhang R. Plant commensal type VII secretion system causes iron leakage from roots to promote colonization. Nat Microbiol 2023; 8:1434-1449. [PMID: 37248429 DOI: 10.1038/s41564-023-01402-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Competition for iron is an important factor for microbial niche establishment in the rhizosphere. Pathogenic and beneficial symbiotic bacteria use various secretion systems to interact with their hosts and acquire limited resources from the environment. Bacillus spp. are important plant commensals that encode a type VII secretion system (T7SS). However, the function of this secretion system in rhizobacteria-plant interactions is unclear. Here we use the beneficial rhizobacterium Bacillus velezensis SQR9 to show that the T7SS and the major secreted protein YukE are critical for root colonization. In planta experiments and liposome-based experiments demonstrate that secreted YukE inserts into the plant plasma membrane and causes root iron leakage in the early stage of inoculation. The increased availability of iron promotes root colonization by SQR9. Overall, our work reveals a previously undescribed role of the T7SS in a beneficial rhizobacterium to promote colonization and thus plant-microbe interactions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, P. R. China
| | - Huihui Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiting Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qin Xiong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangqi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, P.R. China.
| |
Collapse
|
11
|
Li RT, Yang YJ, Liu WJ, Liang WW, Zhang M, Dong SC, Shu YJ, Guo DL, Guo CH, Bi YD. MsNRAMP2 Enhances Tolerance to Iron Excess Stress in Nicotiana tabacum and MsMYB Binds to Its Promoter. Int J Mol Sci 2023; 24:11278. [PMID: 37511038 PMCID: PMC10379929 DOI: 10.3390/ijms241411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Iron(Fe) is a trace metal element necessary for plant growth, but excess iron is harmful to plants. Natural resistance-associated macrophage proteins (NRAMPs) are important for divalent metal transport in plants. In this study, we isolated the MsNRAMP2 (MN_547960) gene from alfalfa, the perennial legume forage. The expression of MsNRAMP2 is specifically induced by iron excess. Overexpression of MsNRAMP2 conferred transgenic tobacco tolerance to iron excess, while it conferred yeast sensitivity to excess iron. Together with the MsNRAMP2 gene, MsMYB (MN_547959) expression is induced by excess iron. Y1H indicated that the MsMYB protein could bind to the "CTGTTG" cis element of the MsNRAMP2 promoter. The results indicated that MsNRAMP2 has a function in iron transport and its expression might be regulated by MsMYB. The excess iron tolerance ability enhancement of MsNRAMP2 may be involved in iron transport, sequestration, or redistribution.
Collapse
Affiliation(s)
- Run-Tian Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yun-Jiao Yang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Wen-Jun Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Wen-Wei Liang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Miao Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Shi-Chen Dong
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yong-Jun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Dong-Lin Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang-Hong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying-Dong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
12
|
Ning X, Lin M, Huang G, Mao J, Gao Z, Wang X. Research progress on iron absorption, transport, and molecular regulation strategy in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1190768. [PMID: 37465388 PMCID: PMC10351017 DOI: 10.3389/fpls.2023.1190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023]
Abstract
Iron is a trace element essential for normal plant life activities and is involved in various metabolic pathways such as chlorophyll synthesis, photosynthesis, and respiration. Although iron is highly abundant in the earth's crust, the amount that can be absorbed and utilized by plants is very low. Therefore, plants have developed a series of systems for absorption, transport, and utilization in the course of long-term evolution. This review focuses on the findings of current studies of the Fe2+ absorption mechanism I, Fe3+ chelate absorption mechanism II and plant-microbial interaction iron absorption mechanism, particularly effective measures for artificially regulating plant iron absorption and transportation to promote plant growth and development. According to the available literature, the beneficial effects of using microbial fertilizers as iron fertilizers are promising but further evidence of the interaction mechanism between microorganisms and plants is required.
Collapse
Affiliation(s)
- Xinyi Ning
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Environmental And Chemical Engineering, Nanchang Hangkong University, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Guohua Huang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Environmental And Chemical Engineering, Nanchang Hangkong University, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
- JInstitute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Kiwifruit Engineering Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
13
|
Ma X, Yang H, Bu Y, Zhang Y, Sun N, Wu X, Jing Y. Genome-wide identification of the NRAMP gene family in Populus trichocarpa and their function as heavy metal transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115110. [PMID: 37300917 DOI: 10.1016/j.ecoenv.2023.115110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
The natural resistance-associated macrophage protein (NRAMP) gene family plays a key role in essential mineral nutrient homeostasis, as well as toxic metal accumulation, translocation, and detoxification. Although the NRAMP family genes have been widely identified in various species, they still require to be analyzed comprehensively in tree species. In this study, a total of 11 NRAMP members (PtNRAMP1-11) were identified in Populus trichocarpa, a woody model plant, and further subdivided into three groups based on phylogenetic analysis. Chromosomal location analysis indicated that the PtNRAMP genes were unevenly distributed on six of the 19 Populus chromosomes. Gene expression analysis indicated that the PtNRAMP genes were differentially responsive to metal stress, including iron (Fe) and manganese (Mn) deficiency, as well as Fe, Mn, zinc (Zn), and cadmium (Cd) toxicity. Furthermore, the PtNRAMP gene functions were characterized using a heterologous yeast expression system. The results showed that PtNRAMP1, PtNRAMP2, PtNRAMP4, PtNRAMP9, PtNRAMP10, and PtNRAMP11 displayed the ability to transport Cd into yeast cells. In addition, PtNRAMP1, PtNRAMP6, and PtNRAMP7 complemented the Mn uptake mutant, while PtNRAMP1, PtNRAMP6, PtNRAMP7, and PtNRAMP9 complemented the Fe uptake mutant. In conclusion, our findings revealed the respective functions of PtNRAMPs during metal transport as well as their potential role in micronutrient biofortification and phytoremediation.
Collapse
Affiliation(s)
- Xiaocen Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China
| | - Na Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083,China.
| |
Collapse
|
14
|
Murgia I, Midali A, Cimini S, De Gara L, Manasherova E, Cohen H, Paucelle A, Morandini P. The Arabidopsis thaliana Gulono-1,4 γ-lactone oxidase 2 (GULLO2) facilitates iron transport from endosperm into developing embryos and affects seed coat suberization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:712-723. [PMID: 36809732 DOI: 10.1016/j.plaphy.2023.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plants synthesize ascorbate (ASC) via the D-mannose/L-galactose pathway whereas animals produce ASC and H2O2via the UDP-glucose pathway, with Gulono-1,4 γ-lactone oxidases (GULLO) as the last step. A. thaliana has seven isoforms, GULLO1-7; previous in silico analysis suggested that GULLO2, mostly expressed in developing seeds, might be involved in iron (Fe) nutrition. We isolated atgullo2-1 and atgullo2-2 mutants, quantified ASC and H2O2 in developing siliques, Fe(III) reduction in immature embryos and seed coats. Surfaces of mature seed coats were analysed via atomic force and electron microscopies; suberin monomer and elemental compositions of mature seeds, including Fe, were profiled via chromatography and inductively coupled plasma-mass spectrometry. Lower levels of ASC and H2O2 in atgullo2 immature siliques are accompanied by an impaired Fe(III) reduction in seed coats and lower Fe content in embryos and seeds; atgullo2 seeds displayed reduced permeability and higher levels of C18:2 and C18:3 ω-hydroxyacids, the two predominant suberin monomers in A. thaliana seeds. We propose that GULLO2 contributes to ASC synthesis, for Fe(III) reduction into Fe(II). This step is critical for Fe transport from endosperm into developing embryos. We also show that alterations in GULLO2 activity affect suberin biosynthesis and accumulation in the seed coat.
Collapse
Affiliation(s)
- Irene Murgia
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy.
| | - Alessia Midali
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Alexis Paucelle
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026, Versailles, Route de Saint-Cyr Cedex, France
| | - Piero Morandini
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
15
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
16
|
Zhang T, Wu A, Hu X, Deng Q, Ma Z, Su L. Comprehensive study of rice YABBY gene family: evolution, expression and interacting proteins analysis. PeerJ 2023; 11:e14783. [PMID: 36860761 PMCID: PMC9969854 DOI: 10.7717/peerj.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2023] [Indexed: 02/26/2023] Open
Abstract
As plant-specific transcription regulators, YABBYs are involved in plant growth, development and stress responses. However, little information is available about genome-wide screening and identification of OsYABBY-interacting proteins. In this study, phylogenetic relationship, gene structure, protein structure and gene expression profile of eight OsYABBYs were carried out, all of which indicated that OsYABBYs were involved in different developmental processes and had functional differentiation. More importantly, PPI (protein-protein interaction) analysis and molecular docking simulation predicted that WUSCHEL-related homeobox (WOX) proteins might be interacting proteins of OsYABBYs. Yeast two-hybrid (Y2H) and luciferase complementation imaging assays (LCI) further confirmed that OsYABBYs (except for OsYABBY7) could interact with OsWOX3A in vitro and in vivo. In addition, OsYABBY3 and OsYABBY5 also could interact with OsWUS. Taken together, our results provided valuable information for further elucidating OsYABBYs regulation mechanism in improving rice performance.
Collapse
Affiliation(s)
- Ting Zhang
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China,Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| | - Anqi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaosong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ziyi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lina Su
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Zhao Y, Wang Y, Yan M, Liu C, Yuan Z. BELL1 interacts with CRABS CLAW and INNER NO OUTER to regulate ovule and seed development in pomegranate. PLANT PHYSIOLOGY 2023; 191:1066-1083. [PMID: 36477345 PMCID: PMC9922403 DOI: 10.1093/plphys/kiac554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Pomegranate (Punica granatum) flowers are classified as bisexual flowers and functional male flowers. Functional male flowers have sterile pistils that show abnormal ovule development. In previous studies, we identified INNER NO OUTER (INO), CRABS CLAW (CRC), and BELL1 (BEL1), which were specifically expressed in bisexual and functional male flowers. However, the functions of ovule identity genes and the mechanism underlying ovule sterility in pomegranate remain unknown. Here, we found that the integument primordia formed and then ceased developing in the ovules of functional male flowers with a vertical diameter of 8.1-13.0 mm. Megaspore mother cells were observed in bisexual flowers when the vertical diameters of flowers were 10.1-13.0 mm, but not in functional male flowers. We analyzed the expression patterns of ovule-related genes in pomegranate ovule sterility and found that PgCRC mRNA was highly expressed at a critical stage of ovule development in bisexual flowers. Ectopic expression of PgCRC and PgINO was sufficient to increase seed number in transgenic lines. PgCRC partially complemented the Arabidopsis (Arabidopsis thaliana) crc mutant, and PgINO successfully rescued the seeds set in the Arabidopsis ino mutant. The results of yeast two-hybrid assays, bimolecular fluorescence complementation assays, and genetic data analyses showed that PgCRC and PgINO directly interact with PgBEL1. Our results also showed that PgCRC and PgINO could not interact directly with MADS-box proteins and that PgBEL1 interacted with SEPALLATA proteins. We report the function of PgCRC and PgINO in ovule and seed development and show that PgCRC and PgINO interact with PgBEL1. Thus, our results provide understanding of the genetic regulatory networks underlying ovule development in pomegranate.
Collapse
Affiliation(s)
- Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Cuiyu Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
18
|
Wu X, Wang T, Song H, Jia Y, Ma Q, Tao M, Zhu X, Cao S. The transcription factor WRKY12 negatively regulates iron entry into seeds in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:415-426. [PMID: 36223275 DOI: 10.1093/jxb/erac404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Yellow Stripe 1-Like 1 (YSL1) and Yellow Stripe 1-Like 3 (YSL3) transport metal-nicotianamine (NA) complexes to leaves, pollen, and developing seeds and play an important role in regulating iron (Fe) accumulation during the seed development and maturation stages; however, how their gene transcript levels are regulated remains unknown. In this study, we used yeast one-hybrid screening to identify a transcription factor, WRKY12, in Arabidopsis that directly regulates the transcription levels of YSL1 and YSL3 genes. WRKY12 has opposite expression patterns to YSL1 and YSL3. wrky12 mutants are tolerant to Fe deficiency, whereas WRKY12 overexpression lines are sensitive to Fe deficiency. During the development and maturation of seeds, WRKY12 can directly bind to the promoters of YSL1 and YSL3 and inhibit their expression. Genetic analysis showed that WRKY12 functions upstream of YSL1 and YSL3 in Fe intake during the seed development and maturation stages. Together, our results suggest that WRKY12 negatively regulates the iron intake in plant seeds by inhibiting the expression of YSL1 and YSL3.
Collapse
Affiliation(s)
- Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yafeng Jia
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qian Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Manzhi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
19
|
Ca 2+-dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2204574119. [PMID: 36161952 DOI: 10.1073/pnas.2204574119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Collapse
|
20
|
Luo C, Yan J, Liu W, Xu Y, Sun P, Wang M, Xie D, Jiang B. Genetic mapping and genome-wide association study identify BhYAB4 as the candidate gene regulating seed shape in wax gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2022; 13:961864. [PMID: 36161030 PMCID: PMC9493316 DOI: 10.3389/fpls.2022.961864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Wax gourd is an important vegetable crop of the Cucurbitaceae family. According to the shape and structure of the seed coat, the seeds of the wax gourd can be divided into bilateral and unilateral. Bilateral seeds usually germinate quickly and have a high germination rate than unilateral seeds. Thereby, wax gourd varieties with bilateral seeds are more welcomed by seed companies and growers. However, the genetic basis and molecular mechanism regulating seed shape remain unclear in the wax gourd. In this study, the genetic analysis demonstrated that the seed shape of wax gourd was controlled by a single gene, with bilateral dominant to unilateral. Combined with genetic mapping and genome-wide association study, Bhi04G000544 (BhYAB4), encoding a YABBY transcription factor, was identified as the candidate gene for seed shape determination in the wax gourd. A G/A single nucleotide polymorphism variation of BhYAB4 was detected among different germplasm resources, with BhYAB4G specifically enriched in bilateral seeds and BhYAB4A in unilateral seeds. The G to A mutation caused intron retention and premature stop codon of BhYAB4. Expression analysis showed that both BhYAB4G and BhYAB4A were highly expressed in seeds, while the nuclear localization of BhYAB4A protein was disturbed compared with that of BhYAB4G protein. Finally, a derived cleaved amplified polymorphic sequence marker that could efficiently distinguish between bilateral and unilateral seeds was developed, thereby facilitating the molecular marker-assisted breeding of wax gourd cultivars.
Collapse
Affiliation(s)
- Chen Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yuanchao Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Piaoyun Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| |
Collapse
|
21
|
Du Q, Lv W, Guo Y, Yang J, Wang S, Li WX. MIR164b represses iron uptake by regulating the NAC domain transcription factor5-Nuclear Factor Y, Subunit A8 module in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1095-1109. [PMID: 35285505 PMCID: PMC9157116 DOI: 10.1093/plphys/kiac114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Recent findings have revealed the important roles of microRNAs (miRNAs) in the secondary responses to oxidative damage caused by iron (Fe) excess. However, the functional importance of miRNAs in plant responses to Fe deficiency remains to be explored. Here, we show that the expression level of miR164 in Arabidopsis (Arabidopsis thaliana) roots was repressed by Fe deficiency. Primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRON-REGULATED TRANSPORTER1 (IRT1) and FERRIC REDUCTION OXIDASE2 (FRO2) were higher in the mir164b mutant than in the wild-type (WT) under Fe-deficient conditions. Analysis of the Fe concentrations and ferric reductase activities in the roots of miR164 knockdown transgenic plants showed that members of the miR164 family had different functions in Fe-deficiency responses. Promoter::GUS analysis showed that NAM/ATAF/CUC (NAC) domain transcription factor5 (NAC5) is regulated at both transcriptional and posttranscriptional levels under Fe-deficient conditions. Transgenic Arabidopsis plants overexpressing NAC5 were more tolerant of Fe deficiency than the WT. NAC5 has transactivation activity and directly transactivates the expression of Nuclear Factor Y, Subunit A8 (NFYA8), as demonstrated by chromatin immunoprecipitation followed by quantitative polymerase chain reaction, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay. Like overexpression of NAC5, overexpression of NFYA8 increases primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRT1 and FRO2 under Fe-deficient conditions. Thus, MIR164b is important for Fe-deficiency responses by its regulation of the NAC5-NFYA8 module.
Collapse
Affiliation(s)
- Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenshuai Lv
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanhong Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
22
|
Grant-Grant S, Schaffhauser M, Baeza-Gonzalez P, Gao F, Conéjéro G, Vidal EA, Gaymard F, Dubos C, Curie C, Roschzttardtz H. B3 Transcription Factors Determine Iron Distribution and FERRITIN Gene Expression in Embryo but Do Not Control Total Seed Iron Content. FRONTIERS IN PLANT SCIENCE 2022; 13:870078. [PMID: 35599858 PMCID: PMC9120844 DOI: 10.3389/fpls.2022.870078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 05/26/2023]
Abstract
Iron is an essential micronutrient for humans and other organisms. Its deficiency is one of the leading causes of anemia worldwide. The world health organization has proposed that an alternative to increasing iron content in food is through crop biofortification. One of the most consumed part of crops is the seed, however, little is known about how iron accumulation in seed occurs and how it is regulated. B3 transcription factors play a critical role in the accumulation of storage compounds such as proteins and lipids. Their role in seed maturation has been well characterized. However, their relevance in accumulation and distribution of micronutrients like iron remains unknown. In Arabidopsis thaliana and other plant models, three master regulators belonging to the B3 transcription factors family have been identified: FUSCA3 (FUS3), LEAFY COTYLEDON2 (LEC2), and ABSCISIC ACID INSENSITIVE 3 (ABI3). In this work, we studied how seed iron homeostasis is affected in B3 transcription factors mutants using histological and molecular approaches. We determined that iron distribution is modified in abi3, lec2, and fus3 embryo mutants. For abi3-6 and fus3-3 mutant embryos, iron was less accumulated in vacuoles of cells surrounding provasculature compared with wild type embryos. lec2-1 embryos showed no difference in the pattern of iron distribution in hypocotyl, but a dramatic decrease of iron was observed in cotyledons. Interestingly, for the three mutant genotypes, total iron content in dry mutant seeds showed no difference compared to wild type. At the molecular level, we showed that genes encoding the iron storage ferritins proteins are misregulated in mutant seeds. Altogether our results support a role of the B3 transcription factors ABI3, LEC2, and FUS3 in maintaining iron homeostasis in Arabidopsis embryos.
Collapse
Affiliation(s)
- Susana Grant-Grant
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Schaffhauser
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Baeza-Gonzalez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fei Gao
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conéjéro
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Elena A. Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Frederic Gaymard
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Yao Z, Hao W, Wang Y, Chen Z, Cao S, Jiang L. Loss-of-function mutations in the ERF96 gene enhance iron-deficient tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:1-11. [PMID: 35158317 DOI: 10.1016/j.plaphy.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/23/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Iron is an essential micronutrient for plant growth and development. Here we provide evidence for a role of ERF96 in iron-deficiency response in Arabidopsis thaliana. The ERF96-loss-of-function mutants were found to be more tolerant to iron-deficiency stress than wild type (WT) and to have higher iron and chlorophyll content. Further studies showed that the transcriptional levels of iron-uptake related genes IRT1, FRO2, AHA2, FIT and bHLH38 in mutants were significantly higher than in WT under iron deficiency. Comparative transcriptome analysis suggested that the differentially expressed genes (DEGs) between ERF96-loss-of-function mutant and WT under iron deficiency were mainly enriched in iron uptake and chlorophyll degradation. According to the specific analysis of these two kinds of DEGs, the expression of iron uptake and transport related genes in ERF96-loss-of-function mutant was higher and the expression of chlorophyll degradation related genes was lower under iron deficiency. Furthermore, loss-of-function of ERF96 influenced the plant hormone, especially auxin and ethylene signal transduction. Altogether, our results demonstrate that loss-of-function of ERF96 increased Fe uptake and chlorophyll level through ethylene and auxin signal pathway in the regulation of iron-deficiency response in Arabidopsis.
Collapse
Affiliation(s)
- Zhicheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wanting Hao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yijia Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
24
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|