1
|
Sarkar P, Gopi P, Pandya P, Paria S, Hossain M, Siddiqui MH, Alamri S, Bhadra K. Insights on the comparative affinity of ribonucleic acids with plant-based beta carboline alkaloid, harmine: Spectroscopic, calorimetric and computational evaluation. Heliyon 2024; 10:e34183. [PMID: 39100473 PMCID: PMC11295990 DOI: 10.1016/j.heliyon.2024.e34183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Paromita Sarkar
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Samaresh Paria
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Maidul Hossain
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kakali Bhadra
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| |
Collapse
|
2
|
Computational insight to structural aspects of Crispine-DNA binding. Struct Chem 2022. [DOI: 10.1007/s11224-022-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Fu L, Mou J, Deng Y, Ren X. Structural modifications of berberine and their binding effects towards polymorphic deoxyribonucleic acid structures: A review. Front Pharmacol 2022; 13:940282. [PMID: 36016553 PMCID: PMC9395745 DOI: 10.3389/fphar.2022.940282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Berberine (BBR) is a plant derived quaternary benzylisoquinoline alkaloid, which has been widely used in traditional medicines for a long term. It possesses broad pharmacological effects and is widely applied in clinical. In recent years, the anti-tumor effects of BBR have attracted more and more attention of the researchers. The canonical right-handed double-stranded helical deoxyribonucleic acid (B-DNA) and its polymorphs occur under various environmental conditions and are involved in a plethora of genetic instability-related diseases especially tumor. BBR showed differential binding effects towards various polymorphic DNA structures. But its poor lipophilicity and fast metabolism limited its clinical utility. Structural modification of BBR is an effective approach to improve its DNA binding activity and bioavailability in vivo. A large number of studies dedicated to improving the binding affinities of BBR towards different DNA structures have been carried out and achieved tremendous advancements. In this article, the main achievements of BBR derivatives in polymorphic DNA structures binding researches in recent 20 years were reviewed. The structural modification strategy of BBR, the DNA binding effects of its derivatives, and the structure activity relationship (SAR) analysis have also been discussed.
Collapse
Affiliation(s)
| | - Jiajia Mou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
5
|
Ekeuku SO, Pang KL, Chin KY. Palmatine as an Agent Against Metabolic Syndrome and Its Related Complications: A Review. Drug Des Devel Ther 2020; 14:4963-4974. [PMID: 33235437 PMCID: PMC7680161 DOI: 10.2147/dddt.s280520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Palmatine is a naturally occurring isoquinoline alkaloid with various pharmacological properties. Given its antioxidant and anti-inflammatory properties, palmatine may be able to impede the effects of metabolic syndrome (MetS) and its related diseases triggered by inflammation and oxidative stress. This review summarises the existing literature about the effects of palmatine supplementation on MetS and its complications. The evidence shows that palmatine could protect against MetS, and cardiovascular diseases, osteoporosis and osteoarthritis, which might be associated with MetS. These protective effects are mediated by the antioxidant and anti-inflammatory properties of palmatine. Although preclinical experiments have demonstrated the efficacy of palmatine against MetS and its related diseases, no human clinical trials have been performed to validate these effects. This research gap should be bridged to validate the efficacy and safety of palmatine supplementation in protecting humans against MetS and its related diseases.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Ray B, Mehrotra R. Nucleic acid binding mechanism of flavone derivative, riviciclib: Structural analysis to unveil anticancer potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111990. [PMID: 32858336 DOI: 10.1016/j.jphotobiol.2020.111990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Despite burgeoned knowledge about the origin, growth, tissue interactions, and spread of cancer in recent years, the functional complexity and unique survival ability of cancer cells still make it difficult to target them. Riviciclib is a semi-synthetic derivative of rohitukine and possesses anticancer potential. Inhibition of nucleic acid activity in an uncontrolled dividing cell can form the basis for the development of new-age cancer therapeutics. The present study reports the molecular interaction between riviciclib and nucleic acid (DNA/tRNA) using spectroscopic and molecular docking studies in an attempt to comprehend its cellular toxicity as well as the nature and mode of binding between them. Vibrational spectroscopic results suggest that riviciclib intercalates DNA duplex and primarily binds with guanine, adenine, and thymine nucleobases. While in the case of riviciclib-tRNA complexation, riviciclib interacts mostly with uracil residues of the tRNA molecule. Besides nucleobases, riviciclib interacts with the sugar-phosphate backbone of both biomacromolecules. Conformationally, DNA alters from B-form to C-form, whereas tRNA shows no change in its native A-form. The order (104 M-1) of binding constant for riviciclib-nucleic acid complexation infer moderate to strong affinity of riviciclib with DNA and tRNA, respectively. Molecular docking explorations are further in corroboration with our spectroscopic outcomes.
Collapse
Affiliation(s)
- Bhumika Ray
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ranjana Mehrotra
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
|
8
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Sarkar S, Shmatova OI, Nenajdenko VG, Bhadra K. Trifluoromethylated carboline compounds targeting DNA: Synthesis, binding and anti-proliferative effects on human cancer cell lines. Bioorg Chem 2019; 86:61-79. [DOI: 10.1016/j.bioorg.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 01/26/2023]
|
10
|
Shi WJ, Ren FD. Cooperativity effect of the ππ interaction between drug and DNA on intercalative binding induced by H-bonds: a QM/QTAIM investigation of the curcuminadenineH 2O model system. Phys Chem Chem Phys 2019; 21:11871-11882. [PMID: 31119251 DOI: 10.1039/c9cp01667h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to reveal the nature of intercalative binding of drug to DNA, the cooperativity effect of the ππ interaction was investigated in the curcuminadenineH2O model system by applying a combined QM and QTAIM computational approach. The H-bonds between the electron-donating group of curcumin and adenine induce the formation of the ππ stacking. The introduction of H2O weakens the H-bonding and ππ interactions, leading to an anti-cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that the anti-cooperative effect is the main driving force for the intercalative binding of drug to DNA bases, which is in agreement with many experimental phenomena. Therefore, the designed DNA-targeted intercalating drugs should possess not only hydrophobic moieties, but also strong electron-donating groups bound to the DNA bases with H-bonds, which can slow the variation rates of the strengths of the H-bonding and ππ interactions between drug and DNA bases in the anti-cooperative process, leading to the intercalation formation. The enthalpy change is the major factor driving the positive thermodynamic cooperativity.
Collapse
Affiliation(s)
- Wen-Jing Shi
- The Second Hospital of Shanxi Medical University, Taiyuan 030053, China.
| | | |
Collapse
|
11
|
Pan J, Cao DL, Ren FD, Wang JL, Yang L. Theoretical investigation into the cooperativity effect between the intermolecular π∙π and H-bonding interactions in the curcumin∙cytosine∙H2O system. J Mol Model 2018; 24:298. [DOI: 10.1007/s00894-018-3836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
|
12
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
13
|
Gupta N, Pandya P, Verma S. Computational Predictions for Multi-Target Drug Design. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Bhattacharjee P, Ghosh T, Sarkar S, Pandya P, Bhadra K. Binding affinity and in vitro
cytotoxicity of harmaline targeting different motifs of nucleic acids: An ultimate drug designing approach. J Mol Recognit 2017; 31. [PMID: 29243872 DOI: 10.1002/jmr.2687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | - Tapas Ghosh
- Department of Zoology; University of Kalyani; Kalyani Nadia, West Bengal India
| | - Sarita Sarkar
- Department of Zoology; University of Kalyani; Kalyani Nadia, West Bengal India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences; Amity University; Noida Uttar Pradesh India
| | - Kakali Bhadra
- Department of Zoology; University of Kalyani; Kalyani Nadia, West Bengal India
| |
Collapse
|
15
|
Zhen JP, Wei XC, Shi WJ, Huang ZY, Jin B, Zhou YK. Cooperativity effect involving drug-DNA/RNA intermolecular interaction: A B3LYP-D3 and MP2 theoretical investigation on ketoprofen⋯cytosine⋯H 2O system. J Biomol Struct Dyn 2017; 36:3587-3606. [PMID: 29092677 DOI: 10.1080/07391102.2017.1400469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H2O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H2O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H2O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H2O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.
Collapse
Affiliation(s)
- Jun-Ping Zhen
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Xiao-Chun Wei
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Wen-Jing Shi
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Zhu-Yuan Huang
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Bo Jin
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Yu-Kun Zhou
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| |
Collapse
|
16
|
Khan AY, Suresh Kumar G. Exploring the binding interaction of potent anticancer drug topotecan with human serum albumin: spectroscopic, calorimetric and fibrillation study. J Biomol Struct Dyn 2017; 36:2463-2473. [DOI: 10.1080/07391102.2017.1359671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
17
|
Synthesis, characterization, structure, DNA binding aspects and molecular docking study of a novel Schiff base ligand and its bis(μ-chloro) bridged Cu(II) dimer. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Nazer B, Dehghani MR, Goliaei B. Plasmid DNA affinity partitioning using polyethylene glycol – sodium sulfate aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:112-119. [DOI: 10.1016/j.jchromb.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/27/2016] [Accepted: 01/01/2017] [Indexed: 11/16/2022]
|
19
|
Paul P, Mati SS, Bhattacharya SC, Kumar GS. Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure A and azure B with tRNAPhe: spectroscopic, thermodynamic, voltammetric and molecular modeling approach. Phys Chem Chem Phys 2017; 19:6636-6653. [DOI: 10.1039/c6cp07888e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA targeting by small molecules.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | | | | | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
20
|
Akram M, Anwar S, Bhat IA, Kabir-Ud-Din. Unraveling the interaction of hemoglobin with a biocompatible and cleavable oxy-diester-functionalized gemini surfactant. Int J Biol Macromol 2016; 96:474-484. [PMID: 27986633 DOI: 10.1016/j.ijbiomac.2016.11.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Surfactant-protein mixtures have attracted considerable research interest in recent years at the interface of chemical biology and medicinal chemistry. Herein, the interaction between a green gemini surfactant (C16-E2O-C16) and a redox protein hemoglobin was examined through a series of in vitro experimental techniques with an attempt to provide a comprehensive knowledge of the surfactant-protein binding interactions. Quantitative appraisal of the fluorescence/CV data showed that the binding of C16-E2O-C16 to Hb leads to the formation of thermodynamically favorable non-covalent adduct with 1:1 stoichiometry. UV-vis spectra demonstrated that the effect of C16-E2O-C16 on Hb is highly concentration dependent. Far-UV and near-UV CD spectra together elucidated the formation of molten globule state of Hb upon C16-E2O-C16 addition. Temperature dependent CD explicated the effect of C16-E2O-C16 on the thermal stability of Hb. Furthermore, the structural investigation of Hb via pyrene/synchronous/three-dimensional fluorescence and FT-IR spectroscopy provided the complementary information related to its microenvironmental and conformational changes. Computational studies delineated that C16-E2O-C16 binds in the vicinity of β-37 Trp at the α1β2 interface of Hb. Overall, this study is expected to clarify the binding mechanism between Hb/other congeners and surfactant at the molecular level that are known to have immense potential in biomedical and industrial areas.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Sana Anwar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Kabir-Ud-Din
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
21
|
Agarwal S, Tyagi G, Chadha D, Mehrotra R. Structural-conformational aspects of tRNA complexation with chloroethyl nitrosourea derivatives: A molecular modeling and spectroscopic investigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:1-11. [PMID: 27838504 DOI: 10.1016/j.jphotobiol.2016.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022]
Abstract
Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (Ka) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×102M-1, 4.923×102M-1 and 4.223×102M-1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and efficient RNA targeted chemotherapeutic agents.
Collapse
Affiliation(s)
- Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Gunjan Tyagi
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Deepti Chadha
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.
| |
Collapse
|
22
|
Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:369-379. [DOI: 10.1016/j.jphotobiol.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
23
|
Kabir A, Dutta D, Mandal C, Suresh Kumar G. Molecular Recognition of tRNA with 1-Naphthyl Acetyl Spermine, Spermine, and Spermidine: A Thermodynamic, Biophysical, and Molecular Docking Investigative Approach. J Phys Chem B 2016; 120:10871-10884. [PMID: 27690446 DOI: 10.1021/acs.jpcb.6b05391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of tRNA in protein translational machinery and the influence of polyamines on the interaction of acylated and deacylated tRNA with ribosomes make polyamine-tRNA interaction conspicuous. We studied the interaction of two biogenic polyamines, spermine (SPM) and spermidine (SPD), with tRNAPhe and compared the results to those of the analogue 1-naphthyl acetyl spermine (NASPM). The binding affinity of SPM was comparable to that of NASPM; both were higher than that of SPD. The interactions led to significant thermal stabilization of tRNAPhe and an increase in the enthalpy of transition. All the interactions were exothermic in nature and displayed prominent enthalpy-entropy compensation behavior. The entropy-driven nature of the interaction, the structural perturbations observed, and docking results proved that the polyamines were bound in the groove of the anticodon arm of tRNAPhe. The amine groups of polyamines were involved in extensive electrostatic, H-bonding, and van der Waals interactions with tRNAPhe. The naphthyl group of NASPM showed an additional stacking interaction with G24 and G26 of tRNAPhe, which was absent in others. The results demonstrate that 1-naphthyl acetyl spermine can target the same binding sites as the biogenic polyamines without substituting for the functions played by them, which may lead to exhibition of selective anticancer cytotoxicity.
Collapse
Affiliation(s)
| | | | - Chhabinath Mandal
- National Institute of Pharmaceutical and Educational Research , Kolkata 700032, India
| | | |
Collapse
|
24
|
Khan AY, Kumar GS. Probing the binding of anticancer drug topotecan with human hemoglobin: Structural and thermodynamic studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:185-93. [DOI: 10.1016/j.jphotobiol.2016.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
|
25
|
Lakshmipraba J, Arunachalam S, Gandi DA, Thirunalasundari T, Vignesh S, James RA. Interaction of polyethyleneimine-anchored copper(II) complexes with tRNA studied by spectroscopy methods and biological activities. LUMINESCENCE 2016; 32:309-316. [PMID: 27549924 DOI: 10.1002/bio.3179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022]
Abstract
Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens.
Collapse
Affiliation(s)
| | | | - Devadas A Gandi
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Sivanandham Vignesh
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Rathinam A James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| |
Collapse
|
26
|
Structural and thermodynamic analysis of the binding of tRNAphe by the putative anticancer alkaloid chelerythrine: Spectroscopy, calorimetry and molecular docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:335-44. [DOI: 10.1016/j.jphotobiol.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
|
27
|
Bhattacharjee P, Sarkar S, Pandya P, Bhadra K. Targeting different RNA motifs by beta carboline alkaloid, harmalol: a comparative photophysical, calorimetric, and molecular docking approach. J Biomol Struct Dyn 2016; 34:2722-2740. [DOI: 10.1080/07391102.2015.1126694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Guhathakurta B, Basu P, Kumar GS, Lu L, Zhu M, Bandyopadhyay N, Naskar JP. Synthetic, structural, electrochemical and DNA-binding aspects of a novel oximato bridged copper(II) dimer. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Khan AY, Suresh Kumar G. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:417-425. [PMID: 26241827 DOI: 10.1016/j.saa.2015.07.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/08/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 10(6)M(-1) to poly(A).poly(U), and 10(5)M(-1) to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U)>poly(C).poly(G)>poly(I).poly(C) for both dyes.
Collapse
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
30
|
Callies O, Hernández Daranas A. Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat Prod Rep 2016; 33:881-904. [DOI: 10.1039/c5np00094g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of molecular interactions of natural products by isothermal titration calorimetry (ITC) is a potent tool to get new insights of the underpinning driving forces.
Collapse
Affiliation(s)
- O. Callies
- Institute of Bioorganic Chemistry “Antonio González”
- Center for Biomedical Research of the Canary Islands
- University of La Laguna
- 38206 La Laguna
- Spain
| | - A. Hernández Daranas
- Institute of Bioorganic Chemistry “Antonio González”
- Center for Biomedical Research of the Canary Islands
- University of La Laguna
- 38206 La Laguna
- Spain
| |
Collapse
|
31
|
Ghosh S, Al Masum A, Ganguly A, Alam MA, Islam MM, Guchhait N. Interaction of a synthesized pyrene based fluorescent probe with CT-DNA: spectroscopic, thermodynamic and molecular modeling studies. RSC Adv 2016. [DOI: 10.1039/c6ra20267e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study demonstrates the synthesis of a new pyrene based water soluble fluorescent probe and its interaction with Calf-thymus DNA.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | | | | | | | | | - Nikhil Guchhait
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| |
Collapse
|
32
|
Subastri A, Ramamurthy C, Suyavaran A, Lokeswara Rao P, Preedia Babu E, Hari Krishna K, Suresh Kumar M, Thirunavukkarasu C. Probing the interaction of troxerutin with transfer RNA by spectroscopic and molecular modeling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:137-44. [DOI: 10.1016/j.jphotobiol.2015.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
|
33
|
Kumar GS, Basu A. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures. Biochim Biophys Acta Gen Subj 2015; 1860:930-944. [PMID: 26522497 DOI: 10.1016/j.bbagen.2015.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND RNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule-RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. SCOPE OF THE REVIEW This review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. MAJOR CONCLUSIONS This review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids-RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. GENERAL SIGNIFICANCE It is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | - Anirban Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
34
|
Khilari R, Thakur Y, Pardhi M, Pande R. RNA-Binding Efficacy of N-Phenylbenzohydroxamic Acid: An Invitro and Insilico Approach. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:332-47. [PMID: 25874942 DOI: 10.1080/15257770.2014.1001073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA has attracted recent attention for its key role in gene expression and hence targeting by small molecules for therapeutic intervention. This study is aimed to elucidate the specificity of RNA binding affinity of parent compound of N-arylhydroxamic acids series, N-phenylbenzohydroxamic acid trivially named as PBHA,C6H5NOH.C6H5C˭O. The binding behavior was examined by various biophysical methods such as absorption, fluorescence, and viscosity measurements. Molecular docking was also done. The value of affinity constant and overall binding constant was calculated 5.79±0.03×10(4) M(-1) and K'=1.09±0.03×10(5) M(-1), respectively. The Stern-Volmer constant Ksv obtained was 2.28±0.04×10(4) M(-1). The compound (PBHA) shows a concentration-based enhancement of fluorescence intensity with increasing RNA concentration. Fluorescence quenching of PBHA-RNA complex in presence of K4 [Fe(CN)6] was also observed. Viscometric studies complimented the UV results where a continuous increase in relative viscosity of the RNA solution was observed with added optimal PBHA concentration. All the experimental evidences indicate that PBHA can strongly bind to RNA through an intercalative mode.
Collapse
Affiliation(s)
- Rubi Khilari
- a School of Studies in Chemistry, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | | | | | | |
Collapse
|
35
|
Paul P, Kumar GS. Photophysical and calorimetric investigation on the structural reorganization of poly(A) by phenothiazinium dyes azure A and azure B. Photochem Photobiol Sci 2015; 13:1192-202. [PMID: 24953877 DOI: 10.1039/c4pp00085d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Poly(A) has significant relevance to mRNA stability, protein synthesis and cancer biology. The ability of two phenothiazinium dyes azure A (AA) and azure B (AB) to bind single-stranded poly(A) was studied by spectroscopic and calorimetric techniques. Strong binding of the dyes and the higher affinity of AA over AB were ascertained from absorbance and fluorescence experiments. Significant perturbation of the circular dichroism spectrum of poly(A) in the presence of these molecules with formation of induced CD bands in the 300-700 nm region was observed. Strong emission polarization of the bound dyes and strong energy transfer from the adenine base pairs of poly(A) suggested intercalative binding to poly(A). Intercalative binding was confirmed from fluorescence quenching experiments and was predominantly entropy driven as evidenced from isothermal titration calorimetry data. The negative values of heat capacity indicated involvement of hydrophobic forces and enthalpy-entropy compensation suggested noncovalent interactions in the complexation for both the dyes. Poly(A) formed a self-assembled structure on the binding of both the dyes that was more favored under higher salt conditions. New insights in terms of spectroscopic and thermodynamic aspects into the self-structure formation of poly(A) by two new phenothiazinium dyes that may lead to structural and functional damage of mRNA are revealed from these studies.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory, Chemisry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | | |
Collapse
|
36
|
Chatterjee S, Mallick S, Buzzetti F, Fiorillo G, Syeda TM, Lombardi P, Saha KD, Kumar GS. New 13-pyridinealkyl berberine analogues intercalate to DNA and induce apoptosis in HepG2 and MCF-7 cells through ROS mediated p53 dependent pathway: biophysical, biochemical and molecular modeling studies. RSC Adv 2015. [DOI: 10.1039/c5ra17214d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A new series of 13-pyridinealkyl berberine analogues was synthesized and their DNA binding efficacy studied by employing spectroscopic, calorimetric and molecular modeling techniques.
Collapse
Affiliation(s)
- Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Sumana Mallick
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | | | | | | | | | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
37
|
Cui HM, Zhang QY, Wang JL, Chen JL, Zhang YL, Tong XL. In vitro studies of berberine metabolism and its effect of enzyme induction on HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:388-396. [PMID: 25456436 DOI: 10.1016/j.jep.2014.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 09/23/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BER) and BER-original herbal medicines have a variety of pharmacological functions and have been widely used in clinical. However, its effect of enzyme induction on cytochrome P450 (CYP) in human hepatocytes is unknown. MATERIAL AND METHOD Metabolism of berberine and its effect on main metabolic enzymes in HepG2 cell in vitro was investigated. Cocktail probe drugs, mRNA expression and protein expression were used to evaluate the metabolism potency. Meanwhile, an UPLC-MS/MS method was validated for the analysis of BER and four probe drugs in HepG2 cell. RESULT BER significantly increased the metabolism of midazolam, phenacetin and tolbutamide by inducing the CYP1A2 and 3A4 enzyme in a dose-dependent manner, the mRNA and protein expression of CYP1A2 and 3A4 were increased by berberine at 1000ng·mL(-1). The activity of CYP1A2 and 3A4 could be induced by BER more than 500ng·mL(-1) in HepG2 cell, which was confirmed by the increase of its mRNA and protein expression. CONCLUSION BER increases the metabolism of cocktail drugs such as midazolam, phenacetin and tolbutamide by increasing the mRNA and protein expression of CYP1A2 and 3A4.
Collapse
Affiliation(s)
- Han-Ming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Qiu-Yan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jia-Long Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jian-Long Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yu-Ling Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiao-Lin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
38
|
Effect of hydrophobicity on intercalative binding of some surfactant copper(II) complexes with tRNA. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1267-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Masum AA, Chakraborty M, Pandya P, Halder UC, Islam MM, Mukhopadhyay S. Thermodynamic Study of Rhodamine 123-Calf Thymus DNA Interaction: Determination of Calorimetric Enthalpy by Optical Melting Study. J Phys Chem B 2014; 118:13151-61. [DOI: 10.1021/jp509326r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abdulla Al Masum
- Department
of Chemistry, Aliah University, Sector V, Salt Lake City, Kolkata 700 091, India
| | | | - Prateek Pandya
- Department
of Chemistry, University of Rajasthan, Jaipur 302 004, India
| | | | - Md. Maidul Islam
- Department
of Chemistry, Aliah University, Sector V, Salt Lake City, Kolkata 700 091, India
| | | |
Collapse
|
40
|
Nagaraj K, Velmurugan G, Sakthinathan S, Venuvanalingam P, Arunachalam S. Influence of self-assembly on intercalative DNA binding interaction of double-chain surfactant Co(III) complexes containing imidazo[4,5-f][1,10]phenanthroline and dipyrido[3,2-d:2'-3'-f]quinoxaline ligands: experimental and theoretical study. Dalton Trans 2014; 43:18074-86. [PMID: 25354359 DOI: 10.1039/c4dt02134g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new class of surfactant Co(III) complexes, cis-[Co(ip)2(C12H25NH2)2](ClO4)3 (1) and cis-[Co(dpq)2(C12H25NH2)2](ClO4)3 (2) (ip = imidazo[4,5-f][1,10]phenanthroline, dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline), have been synthesized and characterized by various spectroscopic and physico-chemical techniques. The critical micelle concentration (CMC) values of these complexes in aqueous solution were obtained from conductance measurements. The specific conductivity data (at 303, 308, 313, 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)(m), ΔH(0)(m) and ΔS(0)(m)). The trend in DNA-binding affinities and the spectral properties of a series of complexes, cis-[Co(ip)2(C12H25NH2)2](ClO4)3 (1) and cis-[Co(dpq)2(C12H25NH2)2](ClO4)3 (2), have been experimentally and theoretically investigated. The experimental results indicate that the size and shape of the intercalated ligand and hydrophobicity of the complexes have a marked effect on the binding affinity of the complexes to CT DNA in intercalation mode, and the order of their intrinsic DNA-binding constants Kb is Kb(1) < Kb(2). In addition, the influence of the extended aromatic ring and optical properties of the complexes can be reasonably explained by applying the DFT calculations. The energy gap between HOMO and LUMO indicates that these complexes are prone to interact with CT DNA. Further, molecular docking calculations have also been performed to understand the nature of binding of the complexes and the result confirms that the complexes interact with CT DNA through the alkyl chain. The cytotoxic activity of these complexes on human liver carcinoma cancer cells were determined adopting MTT assay and specific staining techniques, which revealed that the viability of the cells thus treated was significantly decreased and the cells succumbed to apoptosis as seen in the changes in the nuclear morphology and cytoplasmic features.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| | | | | | | | | |
Collapse
|
41
|
Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur J Pharmacol 2014; 740:584-95. [PMID: 24973693 DOI: 10.1016/j.ejphar.2014.06.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common cancer among women worldwide and novel therapeutic agents are needed to treat this disease. The plant-based alkaloid berberine has potential therapeutic applications for breast cancer, although a better understanding of the genes and cellular pathways regulated by this compound is needed to define the mechanism of its action in cancer treatment. In this review, the molecular targets of berberine in various cancers, particularly breast cancer, are discussed. Berberine was shown to be effective in inhibiting cell proliferation and promoting apoptosis in various cancerous cells. Some signaling pathways affected by berberine, including the MAP (mitogen-activated protein) kinase and Wnt/β-catenin pathways, are critical for reducing cellular migration and sensitivity to various growth factors. This review will discuss recent studies and consider the application of new prospective approaches based on microRNAs and other crucial regulators for use in future studies to define the action of berberine in cancer. The effects of berberine on cancer cell survival and proliferation are also outlined.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Asmah Rahmat
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
42
|
Ghosh S, Chakrabarty S, Bhowmik D, Kumar GS, Chattopadhyay N. Stepwise Unfolding of Bovine and Human Serum Albumin by an Anionic Surfactant: An Investigation Using the Proton Transfer Probe Norharmane. J Phys Chem B 2014; 119:2090-102. [DOI: 10.1021/jp501150p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saptarshi Ghosh
- Department
of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Debipreeta Bhowmik
- Biophysical
Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | |
Collapse
|
43
|
Paul P, Suresh Kumar G. Self-structure formation in polyadenylic acid by small molecules: new insights from the binding of planar dyes thionine and toluidine blue O. RSC Adv 2014. [DOI: 10.1039/c4ra02671c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Thionine and toluidine blue targeting poly(A).
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|
44
|
Paul P, Kumar GS. Targeting ribonucleic acids by toxic small molecules: structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNA phe. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:735-745. [PMID: 24231328 DOI: 10.1016/j.jhazmat.2013.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/17/2013] [Accepted: 10/19/2013] [Indexed: 06/02/2023]
Abstract
This study was designed to examine the toxic interaction of two phenothiazinium dyes thionine (TO) and toluidine blue O (TBO) with tRNA(phe) by spectroscopic and calorimetric techniques. While phenothiazinium dye complexation with DNA is known, their bindings to RNA are not fully investigated. The non cooperative binding of both the dyes to tRNA was revealed from absorbance and fluorescence studies. From absorption, steady-state emission, the effect of ferrocyanide ion-induced steady-state fluorescence quenching, circular dichroism, the mode of binding of these dyes into the tRNA helix has been substantiated to be principally by intercalative in nature. Both dyes enhanced the thermal stability of tRNA. Circular dichroism studies provided evidence for the structural perturbations associated with the tRNA structure with induction of optical activity in the CD inactive dye molecules. Results from isothermal titration calorimetry experiments suggested that the binding of both dyes was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. The binding was dependent on the Na(+) concentration, but had a larger non-electrostatic contribution to the Gibbs energy. A small heat capacity value and the enthalpy-entropy compensation in the energetics of the interaction characterized the binding of the dyes to tRNA. This study confirms that the tRNA(phe) binding affinity is greater for TO compared to TBO. The utility of the present work lies in understanding the potential binding and consequent damage to tRNA by these toxic dyes in their development as therapeutic agents.
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
45
|
Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:257-264. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Franco Buzzetti
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gaetano Fiorillo
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Paolo Lombardi
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
46
|
Lakshmipraba J, Arunachalam S, Riyasdeen A, Dhivya R, Vignesh S, Akbarsha MA, James RA. DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:23-31. [PMID: 23501713 DOI: 10.1016/j.saa.2013.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.
Collapse
|
47
|
Bhowmik D, Kumar GS. Interaction of 9-O-(ω-amino) alkyl ether berberine analogs with poly(dT)·poly(dA)*poly(dT) triplex and poly(dA)·poly(dT) duplex: a comparative study. Mol Biol Rep 2013; 40:5439-50. [PMID: 23666107 DOI: 10.1007/s11033-013-2642-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Isoquinoline alkaloids and their analogs represent an important class of molecules for their broad range of clinical and pharmacological utility. These compounds are of current interest owing to their low toxicity and excellent chemo preventive properties. These alkaloids can play important role in stabilising the nucleic acid triple helices. The present study has focused on the interaction of five 9-O-(ω-amino) alkyl ether berberine analogs with the DNA triplex poly(dT)·poly(dA)*poly(dT) and the parent duplex poly(dA)·poly(dT) studied using various biophysical techniques. Scatchard analysis of the spectral data indicated that the analogs bind both to the duplex and triplex in a non-cooperative manner in contrast to the cooperative binding of berberine to the DNA triplex. Strong intercalative binding to the DNA triplex structure was revealed from ferrocyanide quenching, fluorescence polarization and viscosity results. Thermal melting studies demonstrated higher stabilization of the Hoogsteen base paired third strand of the DNA triplex compared to the Watson-Crick strand. Circular dichroism studies suggested a stronger perturbation of the DNA triplex conformation by the alkaloid analogs compared to the duplex. The binding was entropy-driven in each case and the entropy contribution to free energy increased as the length of the alkyl side chain increased. The analogs exhibited stronger binding affinity to the triple helical structure compared to the parent double helical structure.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | |
Collapse
|
48
|
Basu A, Jaisankar P, Suresh Kumar G. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe.). PLoS One 2013; 8:e58279. [PMID: 23526972 PMCID: PMC3602459 DOI: 10.1371/journal.pone.0058279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Background Three new analogs of berberine with aryl/arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNAphe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. Methodology/Principal Findings Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNAphe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNAphe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNAphe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. Conclusions/Significance The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNAphe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNAphe.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Gopinatha Suresh Kumar
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
49
|
Ambika S, Arunachalam S, Arun R, Premkumar K. Synthesis, nucleic acid binding, anticancer and antimicrobial activities of polymer–copper(ii) complexes containing intercalative phenanthroline ligand(DPQ). RSC Adv 2013. [DOI: 10.1039/c3ra42512f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Hossain M, Kabir A, Suresh Kumar G. Binding of the anticancer alkaloid sanguinarine with tRNA(phe): spectroscopic and calorimetric studies. J Biomol Struct Dyn 2012; 30:223-34. [PMID: 22702734 DOI: 10.1080/07391102.2012.677774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of the natural plant alkaloid and anticancer agent sanguinarine with tRNA(phe) has been investigated by spectroscopic and calorimetric techniques. Sanguinarine iminium binds to tRNA(phe) cooperatively; alkanolamine does not bind but in presence of large tRNA(phe) concentration, a conversion from alkanolamine to iminium occurs resulting in concomitant binding of the latter. The binding affinity of the iminium to tRNA(phe) obtained from isothermal titration calorimetry was of the order of 10(5) M(-1), which is close to that evaluated from spectroscopy. The binding was driven largely by negative enthalpy and a smaller but favourable positive entropy change. The binding was dependent on the [Na(+)] concentration, but had a larger non-electrostatic contribution to the Gibbs energy. A small heat capacity value and the enthalpy-entropy compensation in the energetics of the interaction characterized the binding of the iminium form to tRNA(phe). This study confirms that the tRNA(phe) binding moiety is the iminium form of sanguinarine.
Collapse
Affiliation(s)
- Maidul Hossain
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | | | | |
Collapse
|