1
|
Kraithong S, Liu Y, Suwanangul S, Sangsawad P, Theppawong A, Bunyameen N. A comprehensive review of the impact of anthocyanins from purple/black Rice on starch and protein digestibility, gut microbiota modulation, and their applications in food products. Food Chem 2025; 473:143007. [PMID: 39874887 DOI: 10.1016/j.foodchem.2025.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This review explores the impact of anthocyanins derived from purple and black rice on starch and protein digestibility, gut microbiota modulation, and their applications in food production. Anthocyanins are shown to reduce starch digestibility by forming complexes with starch, thereby inhibiting key digestive enzymes. Additionally, they can influence protein digestion by inducing structural changes that enhance resistance to digestive processes. Evidence suggests that black rice anthocyanins positively modulate gut microbiota composition, potentially improving overall gut health. The incorporation of anthocyanin-rich extracts into various food products, such as bread and beverages, underscores their potential as functional ingredients. This review provides valuable insights into the health benefits associated with rice anthocyanins and identifies areas for future research to optimize their application in functional foods aimed at managing metabolic health.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B, 9000, Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Department of Research and Development of Halal Products, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand.
| |
Collapse
|
2
|
Precupas A, Gheorghe D, Leonties AR, Popa VT. Resveratrol Effect on α-Lactalbumin Thermal Stability. Biomedicines 2024; 12:2176. [PMID: 39457489 PMCID: PMC11504486 DOI: 10.3390/biomedicines12102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The effect of resveratrol (RESV) on α-lactalbumin (α-LA) thermal stability was evaluated using differential scanning calorimetry (DSC), circular dichroism (CD) and dynamic light scattering (DLS) measurements. Complementary information offered by molecular docking served to identify the binding site of the ligand on the native structure of protein and the type of interacting forces. DSC thermograms revealed a double-endotherm pattern with partial overlapping of the two components. The most relevant effect of RESV is manifested in the narrowing of the protein thermal fingerprint: the first process (peak temperature T1) is shifted to higher temperatures while the second one (peak temperature T2) to lower values. The CD data indicated partial conformational changes in the protein non-α-helix domain at T1, resulting in a β-sheet richer intermediate (BSRI) with an unaffected, native-like α-helix backbone. The RESV influence on this process may be defined as slightly demoting, at least within DSC conditions (linear heating rate of 1 K min-1). On further heating, unfolding of the α-helix domain takes place at T2, with RESV acting as a promoter of the process. Long time incubation at 333 K produced the same type of BSRI: no significant effect of RESV on the secondary structure content was detected by CD spectroscopy. Nevertheless, the size distribution of the protein population obtained from DLS measurements revealed the free (non-bound) RESV action manifested in the developing of larger size aggregates.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| | | | | | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| |
Collapse
|
3
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk-Tea Blends. Foods 2024; 13:3016. [PMID: 39335944 PMCID: PMC11431367 DOI: 10.3390/foods13183016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the impact of substituting lactose with maltodextrin in milk-tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk-tea (SM-T) and whole milk-tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk-tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk-tea properties.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
4
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. Process-Induced Molecular-Level Protein-Carbohydrate-Polyphenol Interactions in Milk-Tea Blends: A Review. Foods 2024; 13:2489. [PMID: 39200417 PMCID: PMC11353574 DOI: 10.3390/foods13162489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The rapid increase in the production of powdered milk-tea blends is driven by a growing awareness of the presence of highly nutritious bioactive compounds and consumer demand for convenient beverages. However, the lack of literature on the impact of heat-induced component interactions during processing hinders the production of high-quality milk-tea powders. The production process of milk-tea powder blends includes the key steps of pasteurization, evaporation, and spray drying. Controlling heat-induced interactions, such as protein-protein, protein-carbohydrate, protein-polyphenol, carbohydrate-polyphenol, and carbohydrate-polyphenol, during pasteurization, concentration, and evaporation is essential for producing a high-quality milk-tea powder with favorable physical, structural, rheological, sensory, and nutritional qualities. Adjusting production parameters, such as the type and the composition of ingredients, processing methods, and processing conditions, is a great way to modify these interactions between components in the formulation, and thereby, provide improved properties and storage stability for the final product. Therefore, this review comprehensively discusses how molecular-level interactions among proteins, carbohydrates, and polyphenols are affected by various unit operations during the production of milk-tea powders.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka;
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka;
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka;
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
| |
Collapse
|
5
|
Wang C, Lu Y, Xia B, Li X, Huang X, Dong C. Complexation of bovine lactoferrin with selected phenolic acids via noncovalent interactions: Binding mechanism and altered functionality. J Dairy Sci 2024; 107:4189-4204. [PMID: 38369115 DOI: 10.3168/jds.2023-24088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Noncovalent interactions of 4 selected phenolic acids, including gallic acid (GA), caffeic acid (CA), chlorogenic acid (CGA), and rosmarinic acid (RA) with lactoferrin (LF) were investigated. Compound combined with LF in the binding constant of CA > GA > RA > CGA, driven by van der Waals and hydrogen bonding for GA, and hydrophobic forces for others. Conformation of LF was affected at secondary and ternary structure levels. Molecular docking indicated that GA and CA located in the same site near the iron of the C-lobe, whereas RA and CGA bound to the C2 and N-lobe, respectively. Significantly enhanced antioxidant activity of complexes was found compared with pure LF, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(2-ethylbenzothiazoline-6-sulfonate) (ABTS), and ferric reducing antioxidant power (FRAP) models. Caffeic acid, CGA, and RA significantly decreased the emulsifying stability index and improved foam ability of LF, and the effect of CA and RA was the most remarkable, respectively.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China.
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xiang Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
6
|
Fu W, Liu F, Zhang R, Zhao R, He Y, Wang C. Physicochemical Properties, Stability, and Functionality of Non-Covalent Ternary Complexes Fabricated with Pea Protein, Hyaluronic Acid and Chlorogenic Acid. Foods 2024; 13:2054. [PMID: 38998558 PMCID: PMC11241131 DOI: 10.3390/foods13132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to prepare and characterize stable non-covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, and antimicrobial efficacy. PP-HA binary complexes were first prepared at pH 7, and then CA was bound to the binary complexes, as verified by fluorescence quenching. Molecular docking elucidated that PP interacted with HA and CA through hydrogen bonding, hydrophobic and electrostatic interactions. The particle size of ternary complexes initially decreased, then increased with CA concentration, peaking at 0.025%. Ternary complexes demonstrated good stability against UV light and thermal treatment. Emulsifying activity of complexes initially decreased and then increased, with a turning point of 0.025%, while emulsion stability continued to increase. Complexes exhibited potent scavenging ability against free radicals and iron ions, intensifying with higher CA concentrations. Ternary complexes effectively inhibited Staphylococcus aureus and Escherichia coli, with inhibition up to 0.025%, then decreasing with CA concentration. Our study indicated that the prepared ternary complexes at pH 7 were stable and possessed good functionality, including emulsifying properties, antioxidant activity, and antibacterial properties under certain concentrations of CA. These findings may provide valuable insights for the targeted design and application of protein-polysaccharide-polyphenol complexes in beverages and dairy products.
Collapse
Affiliation(s)
| | | | | | | | | | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (W.F.); (F.L.); (R.Z.); (R.Z.); (Y.H.)
| |
Collapse
|
7
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
8
|
Wang D, Li H, Hou TY, Zhang ZJ, Li HZ. Effects of conjugated interactions between Perilla seed meal proteins and different polyphenols on the structural and functional properties of proteins. Food Chem 2024; 433:137345. [PMID: 37666124 DOI: 10.1016/j.foodchem.2023.137345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The study aims to perform alkali-induced covalent modification of perilla seed meal protein (PSMP) using different polyphenols: gallic acid (GA), protocatechuic acid (PCA), caffeic acid (CA), apigenin (API) and luteolin (LU). Covalent binding between different polyphenols and PSMP was found to occur, with PSMP-LU showing the highest binding rate of 90.89 ± 1.37 mg/g; the fluorescence spectrum of PSMP-CA showed a maximum blue shift of Δ13.4 nm; the solubility increased from 69.626 ± 1.39 % to 83.102 ± 0.98 %. In order to better understand how these covalent conjugates, stabilize -carotene in emulsions, they were utilized as emulsifiers in an emulsion delivery method. The work further reveals the formation of PSMP-polyphenol conjugates and develops a novel emulsification system to deliver readily decomposable functional factors, providing a potential scenario for the application of PSMP and bioactive conjugates.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhi-Jun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hui-Zhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
9
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Starkute V, Lukseviciute J, Klupsaite D, Mockus E, Klementaviciute J, Rocha JM, Özogul F, Ruzauskas M, Viskelis P, Bartkiene E. Characteristics of Unripened Cow Milk Curd Cheese Enriched with Raspberry ( Rubus idaeus), Blueberry ( Vaccinium myrtillus) and Elderberry ( Sambucus nigra) Industry By-Products. Foods 2023; 12:2860. [PMID: 37569128 PMCID: PMC10417324 DOI: 10.3390/foods12152860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to apply raspberry (Ras), blueberry (Blu) and elderberry (Eld) industry by-products (BIB) for unripened cow milk curd cheese (U-CC) enrichment. Firstly, antimicrobial properties of the BIBs were tested, and the effects of the immobilization in agar technology on BIB properties were evaluated. Further, non-immobilized (NI) and agar-immobilized (AI) BIBs were applied for U-CC enrichment, and their influence on U-CC parameters were analyzed. It was established that the tested BIBs possess desirable antimicrobial (raspberry BIB inhibited 7 out of 10 tested pathogens) and antioxidant activities (the highest total phenolic compounds (TPC) content was displayed by NI elderberry BIB 143.6 mg GAE/100 g). The addition of BIBs to U-CC increased TPC content and DPPH- (2,2-diphenyl-1-picrylhydrazyl)-radical scavenging activity of the U-CC (the highest TPC content was found in C-RaNI 184.5 mg/100 g, and strong positive correlation between TPC and DPPH- of the U-CC was found, r = 0.658). The predominant fatty acid group in U-CC was saturated fatty acids (SFA); however, the lowest content of SFA was unfolded in C-EldAI samples (in comparison with C, on average, by 1.6 times lower). The highest biogenic amine content was attained in C-EldAI (104.1 mg/kg). In total, 43 volatile compounds (VC) were identified in U-CC, and, in all cases, a broader spectrum of VCs was observed in U-CC enriched with BIBs. After 10 days of storage, the highest enterobacteria number was in C-BluNI (1.88 log10 CFU/g). All U-CC showed similar overall acceptability (on average, 8.34 points); however, the highest intensity of the emotion "happy" was expressed by testing C-EldNI. Finally, the BIBs are prospective ingredients for U-CC enrichment in a sustainable manner and improved nutritional traits.
Collapse
Affiliation(s)
- Vytaute Starkute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (V.S.); (J.L.)
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - Justina Lukseviciute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (V.S.); (J.L.)
| | - Dovile Klupsaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - Ernestas Mockus
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - Jolita Klementaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Balcali, Adana 01330, Turkey
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (V.S.); (J.L.)
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (D.K.); (E.M.); (J.K.)
| |
Collapse
|
11
|
Al-Shabib N, Khan JM, Al-Amri AM, Malik A, Husain FM, Sharma P, Emerson A, Kumar V, Sen P. Interaction Mechanism between α-Lactalbumin and Caffeic Acid: A Multispectroscopic and Molecular Docking Study. ACS OMEGA 2023; 8:19853-19861. [PMID: 37305235 PMCID: PMC10249380 DOI: 10.1021/acsomega.3c01755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Caffeic acid (CA) is a phenolic acid found in a variety of foods. In this study, the interaction mechanism between α-lactalbumin (ALA) and CA was explored with the use of spectroscopic and computational techniques. The Stern-Volmer quenching constant data suggest a static mode of quenching between CA and ALA, depicting a gradual decrease in quenching constants with temperature rise. The binding constant, Gibbs free energy, enthalpy, and entropy values at 288, 298, and 310 K were calculated, and the obtained values suggest that the reaction is spontaneous and exothermic. Both in vitro and in silico studies show that hydrogen bonding is the dominant force in the CA-ALA interaction. Ser112 and Lys108 of ALA are predicted to form three hydrogen bonds with CA. The UV-visible spectroscopy measurements demonstrated that the absorbance peak A280nm increased after addition of CA due to conformational change. The secondary structure of ALA was also slightly modified due to CA interaction. The circular dichroism (CD) studies showed that ALA gains more α-helical structure in response to increasing concentration of CA. The surface hydrophobicity of ALA is not changed in the presence of ethanol and CA. The present findings shown herein are helpful in understanding the binding mechanism of CA with whey proteins for the dairy processing industry and food nutrition security.
Collapse
Affiliation(s)
- Nasser
Abdulatif Al-Shabib
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- College
of Science, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- College
of Science, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine, Scranton, Pennsylvania 18509-3240, United States
| | - Arnold Emerson
- Department
of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Vijay Kumar
- Himalayan
School of Biosciences, Swami Rama Himalayan
University, Dehradun, Uttarakhand 248016, India
| | - Priyankar Sen
- Centre for
Bioseparation Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
12
|
Wang X, Li X, Xue J, Zhang H, Wang F, Liu J. Mechanistic understanding of the effect of zein–chlorogenic acid interaction on the properties of electrospun nanofiber films. Food Chem X 2022; 16:100454. [PMID: 36185106 PMCID: PMC9520017 DOI: 10.1016/j.fochx.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
The quenching of zein by chlorogenic acid is mainly static quenching. Hydrogen bonding and electrostatic interaction are main driving forces. The tensile strength of zein film with 2.0% chlorogenic acid increased by 132.44%. The addition of chlorogenic acid to zein films has potential as an active packaging.
The interaction mechanism between zein and chlorogenic acid (CA) and the effect of interaction on the performance of coaxial nanofiber films were investigated. The interactions between zein and CA were characterized by multiple spectroscopic methods. Ultraviolet spectrum analysis revealed the formation of a zein–CA complex. Fluorescence analysis pointed out that the quenching of zein by CA was static. FTIR and thermodynamic analyses showed that hydrogen bonds and electrostatic interactions dominated the interaction between zein and CA. Zein-based nanofiber films were successfully prepared by coaxial electrospinning. The interaction between zein and CA enhanced the mechanical properties but reduced the thermal stability of nanofiber films. The presence of CA endowed nanofiber films with antioxidant and antibacterial properties. This research provides significant insight into the effect of protein–polyphenol interactions on the properties of electrospun nanofiber films, which can be applied in the field of active packaging to improve food safety.
Collapse
Affiliation(s)
- Xinya Wang
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiang Li
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, PR China
| | - Jin Xue
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, PR China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, PR China
- Corresponding authors.
| | - Feng Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao, 266042, China
- Corresponding authors.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, PR China
| |
Collapse
|
13
|
Xu FY, Lin JW, Wang R, Chen BR, Li J, Wen QH, Zeng XA. Succinylated whey protein isolate-chitosan core-shell composite particles as a novel carrier: Self-assembly mechanism and stability studies. Food Res Int 2022; 160:111695. [PMID: 36076398 DOI: 10.1016/j.foodres.2022.111695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
Single protein [whey protein isolate (WPI) or succinylated whey protein isolate (SWPI)] and composite particles of proteins with chitosan (CS) were tested for their ability to encapsulate and protect curcumin (CUR). Combining protein and CS resulted in changes in zeta-potential and surface hydrophobicity, particularly in the SWPI-H (high degree of succinylation, 90 %) and CS composite particle (H-CS). Furthermore, the secondary and tertiary structures were dramatically altered using Fourier transform infrared (FTIR), circular dichroism (CD), and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and atomic force microscope (AFM) analyses revealed that H-CS exhibited a soft core-rigid shell morphology due to electrostatic interactions, hydrophobic interactions, and H-bond interactions. Fluorescence quenching results demonstrated that H-CS had a higher binding constant (K, 1.69 ×104 M-1) and encapsulation effectiveness (EE, 88.3 %) of CUR. Because of increased binding sites and steric hindrance, CUR was stabilized more effectively in H-CS in photostability and thermostability tests,. These results show that SWPI-CS composite particles can be utilized to build a protection system for water-insoluble nutritional supplements.
Collapse
Affiliation(s)
- Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Jia-Wei Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bo-Ru Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qing-Hui Wen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528011, China; Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
14
|
Exploring the lentil protein and onion skin phenolics interaction by fluorescence quenching method. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Lajnaf R, Picart-Palmade L, Attia H, Marchesseau S, Ayadi M. Foaming and air-water interfacial properties of camel milk proteins compared to bovine milk proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
17
|
Insight into binding behavior, structure, and foam properties of α-lactalbumin/glycyrrhizic acid complex in an acidic environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
|
19
|
Li D, Yang Y, Yang X, Wang Z, Yao X, Guo Y. Enhanced bioavailability and anti-hyperglycemic activity of young apple polyphenols by complexation with whey protein isolates. J Food Sci 2022; 87:1257-1267. [PMID: 35166381 DOI: 10.1111/1750-3841.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/01/2022]
Abstract
This study aims to evaluate the effects of complexation of whey protein isolate (WPI) and young apple polyphenols (YAP) on the bioavailability and anti-hyperglycemic activity of YAP. Two types of WPI-YAP complexes were fabricated by mixing WPI with YAP at 25℃ (WPI-YAP) and 90℃ (WPI-YAP-H), respectively. The intermolecular interactions between WPI and YAP were investigated by fluorescence spectroscopy and circular dichroism analyses. The in vitro bioaccessibility and bioavailability of YAP were determined using a simulated gastrointestinal digestion and human Caco-2 cells model. It was found that the total polyphenols transport efficiency was improved from 39.8% (YAP) to 48.2% (WPI-YAP) and 56.1% (WPI-YAP-H), indicating that the bioavailability of YAP was improved by complexation with WPI. Besides, after complexation with WPI, YAP displayed an improved in vivo effect on alleviating the increase in postprandial blood glucose level than the pure YAP, with WPI-YAP-H showing a better effect. This finding indicates that co-complexation of YAP with WPI is an effective way to improve the functionality of YAP, and the WPI-YAP complexes are also expected to have potential application in designing YAP-containing functional foods. PRACTICAL APPLICATION: The research provided a method to improve the bioavavibility of polyphenols, and the WPI-YAP complex can be developed in designing polyphenols related functional foods.
Collapse
Affiliation(s)
- Dan Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.,School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, People's Republic of China
| | - Yongli Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Zichao Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, People's Republic of China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.,National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China.,Engineering Research Center of High Value Utilization of Western China Fruit resources, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
Zhang Y, Li S, Yang Y, Wang C, Zhang T. Formation and characterization of noncovalent ternary complexes based on whey protein concentrate, high methoxyl pectin, and phenolic acid. J Dairy Sci 2022; 105:2963-2977. [DOI: 10.3168/jds.2021-21088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
|
21
|
Santa Rosa LN, Rezende JDP, Coelho YL, Mendes TAO, da Silva LHM, Pires ACDS. β-lactoglobulin conformation influences its interaction with caffeine. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Kopjar M, Buljeta I, Ćorković I, Kelemen V, Šimunović J, Pichler A. Plant‐based proteins as encapsulating materials for glucosyl‐hesperidin. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University Osijek Croatia
| | - Ivana Buljeta
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University Osijek Croatia
| | - Ina Ćorković
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University Osijek Croatia
| | - Vanja Kelemen
- Institute of Public Health for the Osijek‐Baranja County Osijek Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences North Carolina State University Raleigh NC USA
| | - Anita Pichler
- Faculty of Food Technology Osijek Josip Juraj Strossmayer University Osijek Croatia
| |
Collapse
|
23
|
Benbow NL, Rozenberga L, McQuillan AJ, Krasowska M, Beattie DA. ATR FTIR Study of the Interaction of TiO 2 Nanoparticle Films with β-Lactoglobulin and Bile Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13278-13290. [PMID: 34731567 DOI: 10.1021/acs.langmuir.1c01830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The technique of in situ particle film attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) has been used to probe the adsorption and coadsorption (sequential) of a common food protein (β-lactoglobulin, BLG) and two representative bile salts (taurocholic acid and glycocholic acid, abbreviated as TCA and GCA) onto the surface of titanium dioxide (TiO2) nanoparticles. Evaluating of binding interactions between commonly used (historically now, in some countries) food additives and food components, as well as the body's own digestion chemicals, is a critical step in understanding the role of colloidal phenomena in digestion and bioavailability. TCA is found to adsorb onto TiO2 but without any significant ability to be retained when it is not present in the aqueous phase. GCA is also found to adsorb via two distinct binding mechanisms, with one type of adsorbed species being resistant to removal. BLG adsorbs, is irreversibly bound, and has altered conformation when adsorbed at pH 2 (stomach conditions) to the conformation when adsorbed at pH 6.5 (small intestine conditions). This altered conformation is not interface-dependent and is mirrored in the solution spectra of BLG. Sequential coadsorption studies indicate that TCA and GCA adsorb onto TiO2 nanoparticle surfaces and display similar degrees of reversibility and binding in the presence or absence of preadsorbed BLG.
Collapse
Affiliation(s)
- N L Benbow
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - L Rozenberga
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - A James McQuillan
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - M Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - D A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
24
|
Priyadarshini MB, Balange AK, Xavier KAM, Reddy R, Nayak BB, Sanath Kumar H. The Effect of Lyophilized Coconut Mesocarp — Aqueous and Ethanol Phenolic Extracts on the Gel Quality of Tilapia Surimi. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1989100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Bhargavi Priyadarshini
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai, India
- Department of Fish Processing and Technology, Central Agricultural University (Imphal), West- Tripura, India
| | - Amjad Khansaheb Balange
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - K. A. Martin Xavier
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ramakrishna Reddy
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Binaya Bhusan Nayak
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - H. Sanath Kumar
- Department of Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
25
|
Kopjar M, Buljeta I, Jelić I, Kelemen V, Šimunović J, Pichler A. Encapsulation of Cinnamic Acid on Plant-Based Proteins: Evaluation by HPLC, DSC and FTIR-ATR. PLANTS (BASEL, SWITZERLAND) 2021; 10:2158. [PMID: 34685967 PMCID: PMC8538413 DOI: 10.3390/plants10102158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
Plant-based protein matrices can be used for the formulation of delivery systems of cinnamic acid. Pumpkin, pea and almond protein matrices were used for the formulation of dried complexes. The matrices were used in varying amounts (1%, 2%, 5% and 10%) whilst the amount of cinnamic acid was maintained constant. The obtained complexes were analyzed by HPLC, DSC and FTIR-ATR. The highest amounts of cinnamic acid were determined on complexes prepared by the lowest amounts of protein matrices, regardless of their type. The highest affinity for cinnamic acid adsorption was determined for the pumpkin protein matrix. DSC analysis revealed that adsorption of cinnamic acid caused an increase in the thermal stability of the almond protein matrix, while the other two matrices had the opposite behavior. The complexation of protein matrices and cinnamic acid was proven by recording the IR spectra. The obtained complexes could have potential applications in food products to achieve enrichment with cinnamic acid as well as proteins.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia; (I.B.); (I.J.); (A.P.)
| | - Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia; (I.B.); (I.J.); (A.P.)
| | - Ivana Jelić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia; (I.B.); (I.J.); (A.P.)
| | - Vanja Kelemen
- Teaching Institute of Public Health Osijek-Baranja County, Franje Krežme 1, 31 000 Osijek, Croatia;
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia; (I.B.); (I.J.); (A.P.)
| |
Collapse
|
26
|
Roles of Proteins/Enzymes from Animal Sources in Food Quality and Function. Foods 2021; 10:foods10091988. [PMID: 34574100 PMCID: PMC8465642 DOI: 10.3390/foods10091988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Animal proteins are good sources of protein for human, due to the composition of necessary amino acids. The quality of food depends significantly on the properties of protein inside, especially the gelation, transportation, and antimicrobial properties. Interestingly, various kinds of molecules co-exist with proteins in foodstuff, and the interactions between these can significantly affect the food quality. In food processing, these interactions have been used to improve the texture, color, taste, and shelf-life of animal food by affecting the gelation, antioxidation, and antimicrobial properties of proteins. Meanwhile, the binding properties of proteins contributed to the nutritional properties of food. In this review, proteins in meat, milk, eggs, and fishery products have been summarized, and polysaccharides, polyphenols, and other functional molecules have been applied during food processing to improve the nutritional and sensory quality of food. Specific interactions between functional molecules and proteins based on the crystal structures will be highlighted with an aim to improve the food quality in the future.
Collapse
|
27
|
Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Zhang Y, Lu Y, Yang Y, Li S, Wang C, Wang C, Zhang T. Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: Spectroscopic analysis and molecular docking. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
30
|
Chen Y, Yi X, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. The interaction mechanism between liposome and whey protein: Effect of liposomal vesicles concentration. J Food Sci 2021; 86:2491-2498. [PMID: 33929043 DOI: 10.1111/1750-3841.15708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Abstract
The interaction mechanism between liposomes (Lips) and whey protein isolates (WPI) with different mass ratios was explored in this paper. After binding with different concentration of Lips, the changes in hydrophilic and hydrophobic regions of WPI were investigated with fluorescein isothiocyanate (FITC) and pyrene fluorescence probes. The spatial structure changes of WPI were further characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, and circular dichroism. The results indicated that the structure of WPI was changed due to binding with Lips in hydrophilic and hydrophobic groups. The binding process might result in the migration, recombination, and alignment of WPI and Lip groups. Moreover, the oil-water interfacial tension with WPI decreased from 9.20 mN/m to 3.29 mN/m upon increasing the Lip-to-WPI ratio. This work suggests that the physiochemical properties of Lip-WPI complexes could be manipulated by adjusting the Lip-to-WPI ratio. This study shed some light on the mechanism explanation of the WPI structural changes due to the interaction with Lips during food processing.
Collapse
Affiliation(s)
- Yang Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiangzhou Yi
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,College of Food Science and Technology, Hainan University, Haikou, Hainan, 570228, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| | - Yi-Shiou Chiou
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiaoli Yin
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| |
Collapse
|
31
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Miyagusuku-Cruzado G, Jiménez-Flores R, Giusti MM. Whey protein addition and its increased light absorption and tinctorial strength of model solutions colored with anthocyanins. J Dairy Sci 2021; 104:6449-6462. [PMID: 33773783 DOI: 10.3168/jds.2020-19690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023]
Abstract
Anthocyanins (ACN) are pigments with vivid colors, but their application as food colorants is restricted by their limited stability and color expression. Anthocyanins exhibit higher stability in dairy systems than in buffers at similar pH, suggesting that pigments may be able to interact with dairy components such as proteins, resulting in improved performance as colorants. Our objective was to determine the type of interaction between whey proteins (WP) and ACN leading to color enhancements and to determine the role of the ACN chemical structure in this interaction. Model solutions colored with semipurified pigments from sources with different ACN profiles (Berberis boliviana, grape skin, purple corn, black carrot, and red cabbage) were mixed with different concentrations of whey protein isolate (WPI) in pH 3 buffer. Absorption spectra of these solutions were acquired using an absorbance microplate reader, and color parameters were calculated from spectral data. Isolated ACN 3-glucosides were used to determine the role of the aglycone structure in the WP-ACN interaction using visible and fluorescence spectroscopy. In silico modeling was used to visualize potential differences in the interaction between β-lactoglobulin and ACN. Addition of WPI resulted in hyperchromic shifts at the wavelength of maximum absorption in the visible range (λvis-max) of up to 19%, and a significant increase in tinctorial strength for all ACN sources (ΔE > 5). Moreover, ACN acylation did not seem to play a significant role in the WP-ACN interaction. When using isolated ACN, WPI addition resulted in hyperchromic shifts at the λvis-max only for methoxylated ACN such as petunidin-3-glucoside (up to 24%), and malvidin-3-glucoside (up to 97%). The bimolecular quenching constant values (Kq > 1010M-1s-1) strongly suggested that the predominant type of quenching interaction was static. Analysis of enthalpy, entropy, and Gibbs free energy showed that this binding was spontaneous; depending on the chemical structure of the ACN, the predominant binding forces could be hydrophobic interactions or hydrogen bonding. Modeling suggested that methoxylations in the B ring of the aglycon structure promoted interactions with electron acceptor amino acids. Overall, WP could be used to enhance the tinctorial strength of select ACN depending on their structural characteristics. Therefore, ACN source selection may play a key role for specific applications in dairy products.
Collapse
Affiliation(s)
- G Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1007
| | - R Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1007
| | - M M Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1007.
| |
Collapse
|
33
|
|
34
|
Li F, Fu Y, Yang H, Tang Y. The inhibition mechanism of luteolin on peroxidase based on multispectroscopic techniques. Int J Biol Macromol 2021; 166:1072-1081. [PMID: 33157143 DOI: 10.1016/j.ijbiomac.2020.10.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/11/2023]
Abstract
Luteolin, a plant-derived flavonoid, was found to exert effective inhibitory effect to peroxidase activity in a non-competitive manner with an IC50 of (6.62 ± 0.45) × 10-5 mol L-1. The interaction between luteolin and peroxidase induced the formation of a static complex with a binding constant (Ksv) of 7.31 × 103 L mol-1 s-1 driven by hydrogen bond and hydrophobic interaction. Further, the molecular interaction between luteolin and peroxidase resulted in intrinsic fluorescence quenching, structural and conformational alternations which were determined by multispectroscopic techniques combined with computational molecular docking. Molecular docking results revealed that luteolin bound to peroxidase and interacted with relevant amino acid residues in the hydrophobic pocket. These results will provide information for screening additional peroxidase inhibitors and provide evidence of luteolin's potential application in preservation and processing of fruit and vegetables and clinical disease remedy.
Collapse
Affiliation(s)
- Fengmao Li
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Yufan Fu
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Hao Yang
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Yunming Tang
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China.
| |
Collapse
|
35
|
Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Zhang Q, Cheng Z, Wang Y, Fu L. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit Rev Food Sci Nutr 2020; 61:3589-3615. [DOI: 10.1080/10408398.2020.1803199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Zhouzhou Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
37
|
Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105761] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Katouzian I, Jafari SM, Maghsoudlou Y, Karami L, Eikani MH. Experimental and molecular docking study of the binding interactions between bovine α-lactalbumin and oleuropein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Jiménez-Pérez C, Tello-Solís SR, Gómez-Castro CZ, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, Cruz-Borbolla J, García-Garibay M, Cruz-Guerrero A. Spectroscopic studies and molecular modelling of the aflatoxin M1-bovine α-lactalbumin complex formation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111957. [PMID: 32682284 DOI: 10.1016/j.jphotobiol.2020.111957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
Since the high incidence of aflatoxin M1 (AFM1) in milk and dairy products poses a serious risk to human health, this work aimed to investigate the complex formation between bovine α-lactalbumin (α-La) and AFM1 using different spectroscopic methods coupled with molecular docking studies. Fluorescence spectroscopy measurements demonstrated the AFM1 addition considerably reduced the α-La fluorescence intensity through a static quenching mechanism. The results indicated on the endothermic character of the reaction, and the hydrophobic interaction played a major role in the binding between AFM1 and α-La. The binding site stoichiometric value (n = 1.32) and a binding constant of 2.12 × 103 M-1 were calculated according to the Stern-Volmer equation. The thermodynamic parameters ΔH, ΔS and ΔGb were determined at 93.58 kJ mol-1, 0.378 kJ mol-1 K-1 and -19.17 ± 0.96 kJ mol-1, respectively. In addition, far-UV circular dichroism studies revealed alterations in the α-La secondary structures when the α-La-AFM1 complex was formed. An increased content of the α-helix structures (from 35 to 40%) and the β-sheets (from 16 to 19%) were observed. Furthermore, protein-ligand docking modelling demonstrated AFM1 could bind to the hydrophobic regions of α-La protein. Overall, the gathered results confirmed the α-La-AFM1 complex formation.
Collapse
Affiliation(s)
- Carlos Jiménez-Pérez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico
| | - Salvador R Tello-Solís
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico
| | - Carlos Z Gómez-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Pachuca, Hidalgo 42184, Mexico
| | - Sergio Alatorre-Santamaría
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico
| | - Lorena Gómez-Ruiz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico
| | - Gabriela Rodríguez-Serrano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico
| | - Julián Cruz-Borbolla
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Pachuca, Hidalgo 42184, Mexico
| | - Mariano García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico; Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. Hidalgo Poniente 46, Col. La Estación, Lerma de Villada, Edo. de México 52006, Mexico
| | - Alma Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, México 09340, Mexico.
| |
Collapse
|
40
|
Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies. Saudi Pharm J 2020; 28:238-245. [PMID: 32194324 PMCID: PMC7078544 DOI: 10.1016/j.jsps.2020.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Polyphenols has attained pronounced attention due to their beneficial values of health and found to prevent several chronic diseases. Here, we elucidated binding mechanism between frequently consumed polyphenol “tea catechin” and milk protein bovine beta-lactoglobulin (β-Lg). We investigated the conformational changes of β-Lg due to interaction with catechin using spectroscopic and in silico studies. Fluorescence quenching data (Stern-Volmer quenching constant) revealed that β-Lg interacted with catechin via dynamic quenching. Thermodynamic data revealed that the interaction between β-Lg and catechin is endothermic and spontaneously interacted mainly through hydrophobic interactions. The UV-Vis absorption and far-UV circular dichroism (CD) spectroscopy exhibited that the tertiary as well as secondary structure of β-Lg distorted after interaction with catechin. Molecular docking and simulation studies also confirm that catechin binds at the central cavity of β-Lg with high affinity (~105 M−1) and hydrophobic interactions play significant role in the formation of a stable β-Lg-catechin complex.
Collapse
|
41
|
Li T, Li X, Dai T, Hu P, Niu X, Liu C, Chen J. Binding mechanism and antioxidant capacity of selected phenolic acid - β-casein complexes. Food Res Int 2019; 129:108802. [PMID: 32036926 DOI: 10.1016/j.foodres.2019.108802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Phenolic acids are added to some dairy products as functional ingredients. The molecular interactions between the phenolic acids and milk proteins impacts their functional performance and product quality. In this study, the interactions between a milk protein (β-casein) and a number of phenolic acids was investigated: 3,4-dihydroxybenzoic acid (DA); gallic acid (GA); syringic acid (SA); caffeic acid (CaA); ferulic acid (FA); and, chlorogenic acid (ChA). The structural characteristics of the phenolic acids, such as type, hydroxylation, methylation, and steric hindrance, affected their binding affinity to β-casein. The strength of the binding constant decreased in the following order: CaA > ChA > FA > SA > GA > DA. Cinnamic acid derivatives (CaA, FA, and ChA) exhibited a stronger binding affinity with β-casein than benzoic acid derivatives (DA, GA, and SA). Hydrophobic forces and electrostatic interactions dominated the interactions of β-casein with benzoic acid and cinnamic acid derivatives, respectively. The number of hydroxyl groups on the phenolic acids enhanced their binding ability, while steric hindrance effects reduced their binding ability. The influence of methylation depended on phenolic acid type. After binding with phenolic acids, the conformation of the β-casein changed, with a loss of random coil structure, an increase in α-helix structure, and a decrease in surface hydrophobicity. Furthermore, the presence of β-casein decreased the in vitro antioxidant capacities of the phenolic acids, especially for gallic acid. These findings provide some useful insights into the structure-activity relationships of the interaction between β-casein and phenolic acids.
Collapse
Affiliation(s)
- Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Peng Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoqin Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
42
|
Ni H, Hayes H, Stead D, Liu G, Yang H, Li H, Raikos V. Interaction of whey protein with polyphenols from salal fruits (
Gaultheria shallon
) and the effects on protein structure and hydrolysis pattern by Flavourzyme
®. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- He Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development School of Life Sciences South China Normal University Guangzhou 510631 China
| | - Helen Hayes
- Rowett Institute University of Aberdeen Aberdeen Foresterhill AB25 2ZD UK
| | - David Stead
- Rowett Institute University of Aberdeen Aberdeen Foresterhill AB25 2ZD UK
| | - Guang Liu
- Sericultural and Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Guangzhou 510610 China
| | - Huaijie Yang
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Haihang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development School of Life Sciences South China Normal University Guangzhou 510631 China
| | - Vassilios Raikos
- Rowett Institute University of Aberdeen Aberdeen Foresterhill AB25 2ZD UK
| |
Collapse
|
43
|
Kılıç Bayraktar M, Harbourne NB, Fagan CC. Impact of heat treatment and acid gelation on polyphenol enriched milk samples. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Comparative studies of interaction of β-lactoglobulin with three polyphenols. Int J Biol Macromol 2019; 136:804-812. [PMID: 31228500 DOI: 10.1016/j.ijbiomac.2019.06.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023]
|
45
|
Zembyla M, Murray BS, Radford SJ, Sarkar A. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein. J Colloid Interface Sci 2019; 548:88-99. [DOI: 10.1016/j.jcis.2019.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
|
46
|
Chen C, Wang L, Chen Z, Luo X, Li Y, Wang R, Li J, Li Y, Wang T, Wu J. Effects of Milk Proteins on the Bioaccessibility and Antioxidant Activity of Oat Phenolics During In Vitro Digestion. J Food Sci 2019; 84:895-903. [PMID: 30977921 DOI: 10.1111/1750-3841.14499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/31/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023]
Abstract
This study investigated the effects of milk solution or milk proteins (casein and whey protein) on the bioaccessibility and antioxidant activity of oat phenolics during in vitro gastric and pancreatic digestion. During digestion, most of oat phenolics were partially degraded by alkaline pH of pancreatic fluid (pH 7.5). For phenolic acids, both milk solution and milk protein only had a slight influence on their bioaccessibility, while exhibited a significant effect on antioxidant activity of oat phenolic extracts and bioaccessibility of avenanthramides (AVs), a kind of bioactive phenols exclusively found in oats. The antioxidant activity and bioaccessibility of AVs were decreased by adding milk and casein, while significantly improved when mixed with milk whey protein. Remarkably, the bioaccessibility of AV 2c, which had the highest antioxidant activity among all phenolic compounds detected in oats, increased above 360% after intestinal digestion by mixing with whey protein. This result suggested the possibility of protecting AVs against digestive alteration and oxidation by milk whey protein. PRACTICAL APPLICATION: In recent years, oats are often consumed with milk under different conditions of preparation, and there have been many oat milk products manufactured by food companies all over the world. The results of this paper showed that the adding of milk may reduce the absorption and antioxidant activity of phenolic compounds from oat. However, the antioxidant activity and bioaccessibility of oat phenolics were significantly increased when mixed with milk whey protein, suggesting that oats could be consumed with milk whey protein to improve their functional properties.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Xiaohu Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Ren Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Juan Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Yanan Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Tao Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| | - Jue Wu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Lihu Road 1800, Wuxi, 214122, China
| |
Collapse
|
47
|
Condict L, Paramita VD, Kasapis S. Dairy protein–ligand interactions upon thermal processing and targeted delivery for the design of functional foods. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Wang R, Liu Y, Hu X, Pan J, Gong D, Zhang G. New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Res Int 2019; 120:226-234. [DOI: 10.1016/j.foodres.2019.02.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
|
49
|
Raikos V, Hays H, Stead D, Ni H. Angiotensin‐converting enzyme inhibitory activity of hydrolysates generated from whey protein fortified with salal fruits (
Galtheria shallon
) by enzymatic treatment with Pronase from
Streptomyces griseus. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vassilios Raikos
- Rowett Institute University of Aberdeen Foresterhill Aberdeen AB25 2ZD UK
| | - Helen Hays
- Rowett Institute University of Aberdeen Foresterhill Aberdeen AB25 2ZD UK
| | - David Stead
- Rowett Institute University of Aberdeen Foresterhill Aberdeen AB25 2ZD UK
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development School of Life Sciences South China Normal University Guangzhou510631China
| |
Collapse
|
50
|
Radibratovic M, Al-Hanish A, Minic S, Radomirovic M, Milcic M, Stanic-Vucinic D, Cirkovic Velickovic T. Stabilization of apo α-lactalbumin by binding of epigallocatechin-3-gallate: Experimental and molecular dynamics study. Food Chem 2019; 278:388-395. [DOI: 10.1016/j.foodchem.2018.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
|