1
|
Ding N, Xu S, Zheng S, Ye Q, Xu L, Ling S, Xie S, Chen W, Zhang Z, Xue M, Lin Z, Xu X, Wang L. "Sweet tooth"-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. J Mater Chem B 2021; 9:2816-2830. [PMID: 33690741 DOI: 10.1039/d0tb02787a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most cancer cells employ overexpression of glucose transports (GLUTs) to satisfy glucose demand ("Sweet Tooth") for increased aerobic glycolysis rates. GLUT1, one of the most widely expressed GLUTs in numerous cancers, was identified as a prognosis-related biomarker of gastric cancer via tissue array analysis. Herein, a "Sweet Tooth"-oriented SN38 prodrug delivery nanoplatform (Glu-SNP) was developed for targeted gastric cancer therapy. For this purpose, a SN38-derived prodrug (PLA-SN38) was synthesized by tethering 7-ethyl-10-hydroxycamptothecin (SN38) to biocompatible polylactic acid (PLA) with the appropriate degree of polymerization (n = 44). The PLA-SN38 conjugate was further assembled with glycosylated amphiphilic lipid to obtain glucosamine-decorated nanoparticles (Glu-SNP). Glu-SNP exhibited potent antitumor efficiency both in vitro and in vivo through enhanced cancer cell-specific targeting associated with the overexpression of GLUT1, which provides a promising approach for gastric cancer therapy.
Collapse
Affiliation(s)
- Ning Ding
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Tian Y, Shen S, Gu L, Zhou J, Li Y, Zheng X. Computer-aided design of glucoside brain-targeted molecules based on 4PYP. J Mol Graph Model 2021; 103:107819. [DOI: 10.1016/j.jmgm.2020.107819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
|
3
|
Li Q, Ren C, Yan S, Wang K, Hrynets Y, Xiang L, Xue X, Betti M, Wu L. Extract of Unifloral Camellia sinensis L. Pollen Collected by Apis mellifera L. Honeybees Exerted Inhibitory Effects on Glucose Uptake and Transport by Interacting with Glucose Transporters in Human Intestinal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1877-1887. [PMID: 33543617 DOI: 10.1021/acs.jafc.0c07160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bee pollen possesses potential hypoglycemic effects but its inhibitory mechanisms on glucose absorption and transportation in intestinal cells still need to be clarified. Here, we determined the inhibitory effects of bee pollen extract originating from Camellia sinensis L. (BP-Cs) as well as its representative phenolic compounds on glucose uptake and transport through a human intestinal Caco-2 cell monolayer model. It showed that three representative phenolic compounds, including gallic acid (GA), 3-O-[6'-O-(trans-p-coumaroyl)-β-d-glucopyranosyl]kaempferol (K1), and 3-O-[2',6'-di-O-(trans-p-coumaroyl)-β-d-glucopyranosyl]kaempferol (K2), with contents of 27.7 ± 0.86, 9.88 ± 0.54, and 7.83 ± 0.46 μg/mg in BP-Cs extract, respectively, exerted mutual antagonistic actions interacting with glucose transporters to inhibit glucose uptake and transport based on their combination index (CI) and molecular docking analysis. K1, K2, and GA might compete with d-glucose to form hydrogen bonds with the same active residues including GLU-412, GLY-416, GLN-314, and TRP-420 in GLUT2. These findings provide us a deep understanding of the mechanisms underlying the anti-hyperglycemia by bee pollen, which provide a new sight on dietary intervention strategies against diabetes.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Caijun Ren
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuliya Hrynets
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Mirko Betti
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
4
|
In silico identification of small molecules as novel LXR agonists for the treatment of cardiovascular disease and cancer. J Mol Model 2018; 24:57. [PMID: 29450657 DOI: 10.1007/s00894-018-3578-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/05/2018] [Indexed: 01/31/2023]
Abstract
Liver X receptor (LXR), a member of the nuclear receptor superfamily, mainly serves as a reverse cholesterol transporter in lipid metabolism. It has been demonstrated that LXR is a promising target for the treatment of cardiovascular diseases. LXR is also involved in cancer metabolism, glucose homeostasis, immunity, and various physiological processes. The antitumor function of LXR has become of great interest to researchers in recent years. However, while it is believed that activating LXR with small molecules could be a promising approach to cancer treatment, effective drugs that target LXR are yet to be reported. To find compounds that are potentially capable of activating LXR, we utilized a high-throughput screening method to search the MolMall database for suitable compounds. Seven candidates with lower GB/SA Hawkins scores than the reference ligand T0901317 were identified. Based on the results of molecular dynamics (MD) simulations, binding free energy analysis, and an analysis of the agonism mechanism, ZINC90512020 and ZINC3845032 were predicted to have high affinities for LXR and high relative stabilization, and were therefore selected as potential LXR agonists. Both of these compounds will undergo further development with a view to utilizing them for the treatment of LXR-related cardiovascular diseases or cancers.
Collapse
|
5
|
Zhang W, Li J, Huang Z, Wang H, Luo H, Wang X, Zhou N, Wu C, Bao J. Computer-aided identification of potential TYK2 inhibitors from drug database. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|