1
|
Hojo R, Bergmann K, Elgadi SA, Mayder DM, Emmanuel MA, Oderinde MS, Hudson ZM. Imidazophenothiazine-Based Thermally Activated Delayed Fluorescence Materials with Ultra-Long-Lived Excited States for Energy Transfer Photocatalysis. J Am Chem Soc 2023; 145:18366-18381. [PMID: 37556344 DOI: 10.1021/jacs.3c04132] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seja A Elgadi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Wantulok J, Sokolova R, Degano I, Kolivoska V, Nycz JE, Fiedler J. Spectroelectrochemical Properties of 1,10‐Phenanthroline Substituted by Phenothiazine and Carbazole Redox‐active Units. ChemElectroChem 2021. [DOI: 10.1002/celc.202100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jakub Wantulok
- Institute of Chemistry University of Silesia in Katowice ul. Szkolna 9 40-007 Katowice Poland
| | - Romana Sokolova
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Viliam Kolivoska
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Jacek E. Nycz
- Institute of Chemistry University of Silesia in Katowice ul. Szkolna 9 40-007 Katowice Poland
| | - Jan Fiedler
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| |
Collapse
|
3
|
Pluta K, Jeleń M, Morak-Młodawska B. The Smiles rearrangement in the syntheses of azaphenothiazines. Part I. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Morak-Młodawska B, Pluta K, Latocha M, Jeleń M, Kuśmierz D, Suwińska K, Shkurenko A, Czuba Z, Jurzak M. 10 H-1,9-diazaphenothiazine and its 10-derivatives: synthesis, characterisation and biological evaluation as potential anticancer agents. J Enzyme Inhib Med Chem 2019; 34:1298-1306. [PMID: 31307242 PMCID: PMC6691808 DOI: 10.1080/14756366.2019.1639695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
10H-1,9-diazaphenothiazine was obtained in the sulphurisation reaction of diphenylamine with elemental sulphur and transformed into new 10-substituted derivatives, containing alkyl and dialkylaminoalkyl groups at the thiazine nitrogen atom. The 1,9-diazaphenothiazine ring system was identified with advanced 1H and 13C NMR techniques (COSY, NOESY, HSQC and HMBC) and confirmed by X-ray diffraction analysis of the methyl derivative. The compounds exhibited significant anticancer activities against the human glioblastoma SNB-19, melanoma C-32 and breast cancer MDA-MB-231 cell lines. The most active 1,9-diazaphenothiazines were the derivatives with the propynyl and N, N-diethylaminoethyl groups being more potent than cisplatin. For those two compounds, the expression of H3, TP53, CDKN1A, BCL-2 and BAX genes was detected by the RT-QPCR method. The proteome profiling study showed the most probable compound action on SNB-19 cells through the intrinsic mitochondrial pathway of apoptosis. The 1,9-diazaphenotiazine system seems to be more potent than known isomeric ones (1,6-diaza-, 1,8-diaza-, 2,7-diaza- and 3,6-diazaphenothiazine).
Collapse
Affiliation(s)
- Beata Morak-Młodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Latocha
- Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Dariusz Kuśmierz
- Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Kinga Suwińska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Warszawa, Poland
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| | - Aleksander Shkurenko
- Division of Physical Functional Materials Design, Discovery & Development Research Group (FMD3), Sciences and Engineering Advanced Membranes & Porous Materials (AMPM), King Abdullah University of Science and Technology (KAU ST), Thuwal, Kingdom of Saudi Arabia
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Magdalena Jurzak
- Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
5
|
Pluta K, Jeleń M, Morak-Młodawska B, Zimecki M, Artym J, Kocięba M, Zaczyńska E. Azaphenothiazines - promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties. Eur J Med Chem 2017; 138:774-806. [PMID: 28734245 DOI: 10.1016/j.ejmech.2017.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
For the last two decades, classical phenothiazines have attracted attention of researchers, as the hitherto investigations have revealed many significant biological activities within this class of compounds, other than originally discovered neuroleptic ones. Important, new pharmaceutical results on phenothiazines, as 10-substituted dibenzothiazines, were recently highlighted in several reviews. Azaphenothiazines are structurally modified phenothiazines by substitution of one or both benzene rings in the phenothiazine ring system with the azine rings, such as: pyridine, pyridazine, pyrimidine, pyrazine, 1,2,4-triazine, quinoline, quinoxaline, benzoxazine and benzothiazine. They form over 50 different heterocyclic systems, of tri-, tetra-, penta- and hexacyclic structures, and contain from one to even four azine nitrogen atoms. This review summarizes the methodical knowledge on azaphenothiazines, referring to their nomenclature, synthesis, structure analysis and above all significant varied biological activities, examined in vitro and in vivo. It describes, in addition, current trends in the synthesis of azaphenothiazines. The influence of the azaphenothiazine ring system, the nature of the substituents, predominantly at the thiazine nitrogen atom, as well as at the azine nitrogen atom and carbon atom, on the biological activities, were also discussed.
Collapse
Affiliation(s)
- Krystian Pluta
- The Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Małgorzata Jeleń
- The Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Beata Morak-Młodawska
- The Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michał Zimecki
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| | - Jolanta Artym
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| | - Maja Kocięba
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| | - Ewa Zaczyńska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|