1
|
Chazapi I, Merhi T, Pasquier C, Diat O, Almunia C, Bauduin P. Controlling Protein Assembly with Superchaotropic Nano-Ions. Angew Chem Int Ed Engl 2024; 63:e202412588. [PMID: 39082437 DOI: 10.1002/anie.202412588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Indexed: 10/26/2024]
Abstract
In living systems, protein assemblies have essential functions, serving as structural supports, transport highways for molecular cargo, and containers of genetic material. The construction of protein assemblies, which involves control over space and time, remains a significant challenge in biotechnology. Here, we show that anionic boron clusters, 3,3'-commo-bis[closo-1,2-dicarba-3-cobaltadodecaborane] (COSAN-), and halogenated closo-dodecarboranes (B12X12 2-, X=H, Cl, or I), described as super-chaotropic nano-ions, induce the formation of 2D assemblies of model proteins, myoglobin, carbonic anhydrase, and trypsin inhibitor. We found that the nano-ion concentration reversibly controls the size of the protein assemblies. Furthermore, the secondary structures of the proteins are only slightly affected by assembly formation. For myoglobin, the formation of these assemblies even prevents temperature denaturation, highlighting a preservation effect of nano-ions. Our study reveals that inorganic boron-based nano-ions act as a reversible molecular glue for proteins, providing a potential starting point for the further development of controlled protein assemblies.
Collapse
Affiliation(s)
- Ioanna Chazapi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Tania Merhi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Coralie Pasquier
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Christine Almunia
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Pierre Bauduin
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| |
Collapse
|
2
|
Ma X, Zhang Z, Barba-Bon A, Han D, Qi Z, Ge B, He H, Huang F, Nau WM, Wang X. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. Proc Natl Acad Sci U S A 2024; 121:e2407515121. [PMID: 39436658 PMCID: PMC11536097 DOI: 10.1073/pnas.2407515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Intracellular protein delivery has the potential to revolutionize cell-biological research and medicinal therapy, with broad applications in bioimaging, disease treatment, and genome editing. Herein, we demonstrate successful delivery of a functional protein, cytochrome c (CYC), by using a boron cluster anion as molecular carrier of the superchaotropic anion type (B12Br11OPr2-). CYC was delivered into lipid bilayer vesicles as well as living cells, with a cellular uptake ratio approaching 90%. Mechanistic studies showed that CYC was internalized into cells through a permeation pathway directly into the cytoplasm, bypassing endosomal entrapment. Upon carrier-assisted internalization, CYC retained its bioactivity, as reflected by an induced cell apoptosis rate of 25% at low dose (1 µM). This study furbishes a direct protein delivery method by a molecular carrier with high efficiency, confirming the potential of inorganic cluster ions as protein transport vehicles with an extensive range of future cell-biological or biomedical applications.
Collapse
Affiliation(s)
- Xiqi Ma
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhixiong Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | | | - Dongxue Han
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zichun Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Baosheng Ge
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Hua He
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Fang Huang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Werner M. Nau
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
- School of Science, Constructor University, Bremen28759, Germany
| | - Xiaojuan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
3
|
Salluce G, Folgar-Cameán Y, Barba-Bon A, Nikšić-Franjić I, El Anwar S, Grüner B, Lostalé-Seijo I, Nau WM, Montenegro J. Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport. Angew Chem Int Ed Engl 2024; 63:e202404286. [PMID: 38712936 DOI: 10.1002/anie.202404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.
Collapse
Affiliation(s)
- Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Andrea Barba-Bon
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Ivana Nikšić-Franjić
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Suzan El Anwar
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Guo S, He F, Hu S, Zong W, Liu R. Novel evidence on iodoacetic acid-induced immune protein functional and conformational changes: Focusing on cellular and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169359. [PMID: 38103599 DOI: 10.1016/j.scitotenv.2023.169359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Elevated levels of iodide occur in raw water in certain regions, where iodination disinfection byproducts are formed during chloramine-assisted disinfection of naturally iodide-containing water. Iodoacetic acid (IAA) is one of the typical harmful products. The mechanisms underlying IAA-induced immunotoxicity and its direct effects on biomolecules remained unclear in the past. Cellular, biochemical, and molecular methods were used to investigate the mechanism of IAA-induced immunotoxicity and its binding to lysozyme. In the presence of IAA, the cell viability of coelomocytes was significantly reduced to 70.8 %, as was the intracellular lysozyme activity. Upon binding to IAA, lysozyme underwent structural and conformational changes, causing elongation and unfolding of the protein due to loosening of the backbone and polypeptide chains. IAA effectively quenched the fluorescence of lysozyme and induced a reduction in particle sizes. Molecular docking revealed that the catalytic residue, Glu 35, which is crucial for lysozyme activity, resided within the docking range, suggesting the preferential binding of IAA to the active site of lysozyme. Moreover, electrostatic interaction emerged as the primary driving force behind the interaction between IAA and lysozyme. In conclusion, the structural and conformational changes induced by IAA in lysozyme resulted in impaired immune protein function in coelomocytes, leading to cellular dysfunction.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
5
|
Zhang J, Gabel D, Assaf KI, Nau WM. A Fluorescein-Substituted Perbrominated Dodecaborate Cluster as an Anchor Dye for Large Macrocyclic Hosts and Its Application in Indicator Displacement Assays. Org Lett 2022; 24:9184-9188. [PMID: 36507622 DOI: 10.1021/acs.orglett.2c03615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perhalogenated boron clusters derived from B12Br122-, a superchaotropic dianion with a globular icosahedral shape, serve as inorganic cavity binders for cyclodextrins (CDs), in particular for large CDs (γ-CD and δ-CD), with high binding affinity (Ka > 106 M-1) in aqueous solution. This opens the door for applications of this anchoring moiety by linking it to organic residues, prominently fluorescent dyes. We report here the synthesis of a novel fluorescein-substituted perbrominated dodecaborate cluster by a copper(I)-catalyzed azide-alkyne click reaction. The formation of host-guest inclusion complexes between the dodecaborate-modified fluorescein dye and CDs can be readily followed by optical titrations, which afforded a binding constant of ∼1 × 104 M-1 with γ-CD; that is, the cluster functionalization allows binding of an otherwise nonbinding dye to the macrocycle ("anchor dye"). The formation of the 1:1 host-guest inclusion complex between the dye and γ-CD occurs over a broad range of pH values, which allows its application as a sensitive reporter pair according to the indicator displacement method, e.g., for drug detection. In addition, the substituted dye shows outer-wall binding to cucurbiturils through the dodecaborate moiety, leading to the formation of aggregates and significant fluorescence quenching of the dye.
Collapse
Affiliation(s)
- Jinling Zhang
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Detlef Gabel
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Jacobs University Bremen, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
6
|
Nelyubin AV, Selivanov NA, Bykov AY, Klyukin IN, Novikov AS, Zhdanov AP, Zhizhin KY, Kuznetsov NT. N-Borylated Hydroxylamines [B12H11NH2OH]– as a Novel Type of Substituted Derivative of the closo-Dodecaborate Anion. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620060133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
El Anwar S, Assaf KI, Begaj B, Samsonov MA, RůŽičková Z, Holub J, Bavol D, Nau WM, Gabel D, Grűner B. Versatile, one-pot introduction of nonahalogenated 2-ammonio-decaborate ions as boron cluster scaffolds into organic molecules; host-guest complexation with γ-cyclodextrin. Chem Commun (Camb) 2019; 55:13669-13672. [PMID: 31663544 DOI: 10.1039/c9cc07678f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the modification of the 2-ammonio group at halogenated decaborate ions with 2,3-epoxypropane, the product of which reacts readily with nucleophiles to form previously inaccessible coupling of polyhedra with organic molecules and materials. We demonstrate that these ions present a good binding motif in supramolecular chemistry.
Collapse
Affiliation(s)
- Suzan El Anwar
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 25068 ŘeŽ, Czech Republic.
| | - Khaleel I Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany and Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Barbara Begaj
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Maksim A Samsonov
- Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Zdeňka RůŽičková
- Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 25068 ŘeŽ, Czech Republic.
| | - Dmytro Bavol
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 25068 ŘeŽ, Czech Republic.
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Bohumír Grűner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 25068 ŘeŽ, Czech Republic.
| |
Collapse
|
8
|
Assaf KI, Begaj B, Frank A, Nilam M, Mougharbel AS, Kortz U, Nekvinda J, Grüner B, Gabel D, Nau WM. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. J Org Chem 2019; 84:11790-11798. [DOI: 10.1021/acs.joc.9b01688] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Barbara Begaj
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Angelina Frank
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Mohamed Nilam
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ali S. Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Jan Nekvinda
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|
9
|
Fink K, Kobak K, Kasztura M, Boratyński J, Goszczyński TM. Synthesis and Biological Activity of Thymosin β4-Anionic Boron Cluster Conjugates. Bioconjug Chem 2018; 29:3509-3515. [DOI: 10.1021/acs.bioconjchem.8b00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Krzysztof Fink
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| | - Kamil Kobak
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 5 Rudolf Weigl Street, 50-981 Wrocław, Poland
| | - Monika Kasztura
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 5 Rudolf Weigl Street, 50-981 Wrocław, Poland
| | - Janusz Boratyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| | - Tomasz M. Goszczyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| |
Collapse
|
10
|
Assaf KI, Nau WM. The Chaotropic Effect as an Assembly Motif in Chemistry. Angew Chem Int Ed Engl 2018; 57:13968-13981. [PMID: 29992706 PMCID: PMC6220808 DOI: 10.1002/anie.201804597] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/01/2018] [Indexed: 11/26/2022]
Abstract
Following up on scattered reports on interactions of conventional chaotropic ions (for example, I- , SCN- , ClO4- ) with macrocyclic host molecules, biomolecules, and hydrophobic neutral surfaces in aqueous solution, the chaotropic effect has recently emerged as a generic driving force for supramolecular assembly, orthogonal to the hydrophobic effect. The chaotropic effect becomes most effective for very large ions that extend beyond the classical Hofmeister scale and that can be referred to as superchaotropic ions (for example, borate clusters and polyoxometalates). In this Minireview, we present a continuous scale of water-solute interactions that includes the solvation of kosmotropic, chaotropic, and hydrophobic solutes, as well as the creation of void space (cavitation). Recent examples for the association of chaotropic anions to hydrophobic synthetic and biological binding sites, lipid bilayers, and surfaces are discussed.
Collapse
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| |
Collapse
|
11
|
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Deutschland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Deutschland
| |
Collapse
|
12
|
El Anwar S, Holub J, Tok O, Jelínek T, Růžičková Z, Fojt L, Šolínová V, Kašička V, Grüner B. Synthesis and selected properties of nonahalogenated 2-ammonio-decaborate anions and their derivatives substituted at N-centre. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Axtell JC, Saleh LMA, Qian EA, Wixtrom AI, Spokoyny AM. Synthesis and Applications of Perfunctionalized Boron Clusters. Inorg Chem 2018; 57:2333-2350. [PMID: 29465227 PMCID: PMC5985200 DOI: 10.1021/acs.inorgchem.7b02912] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Viewpoint describes major advances pertaining to perfunctionalized boron clusters in synthesis and their respective applications. The first portion of this work highlights key synthetic methods, allowing one to access a wide range of polyhedral boranes (B4 and B6-B12 cluster cores) that contain exhaustively functionalized vertices. The second portion of this Viewpoint showcases the historical developments in using these molecules for applications ranging from materials science to medicine. Last, we suggest potential new directions for these clusters as they apply to both synthetic methods and applications.
Collapse
Affiliation(s)
- Jonathan C. Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Liban M. A. Saleh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Elaine A. Qian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Alex I. Wixtrom
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| |
Collapse
|
14
|
Kuperman M, Chernii S, Varzatskii O, Zhdanov A, Bykov A, Zhizhin K, Yarmoluk S, Kovalska V. The Discovery of the Effect of closo
-Borate on Amyloid Fibril Formation. ChemistrySelect 2017. [DOI: 10.1002/slct.201701936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marina Kuperman
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Svitlana Chernii
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Oleg Varzatskii
- Institute of General and Inorganic Chemistry NASU; 32/34 Palladin Av. 03080 Kyiv Ukraine
| | - Andrey Zhdanov
- Kumakov Institute of General and Inorganic Chemistry; 31 Leninskii Av. 119071 Moscow, the Russian Federation
| | - Alexander Bykov
- Kumakov Institute of General and Inorganic Chemistry; 31 Leninskii Av. 119071 Moscow, the Russian Federation
| | - Konstantin Zhizhin
- Kumakov Institute of General and Inorganic Chemistry; 31 Leninskii Av. 119071 Moscow, the Russian Federation
| | - Sergiy Yarmoluk
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Vladyslava Kovalska
- Institute of Molecular Biology and Genetics NASU; 150 Zabolotnogo St. 03143 Kyiv Ukraine
| |
Collapse
|